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SURFACES OF GENERAL TYPE WITH VANISHING
GEOMETRIC GENUS FROM DOUBLE PLANES

ALBERTO CALABRI - EZIO STAGNARO

We show how to construct some old and new surfaces of general type
with vanishing geometric genus from double planes, by computing ex-
plicit equations of their branch curves.

1. Introduction

The first example of a double plane X whose smooth model is a surface Y of gen-
eral type with vanishing geometric genus has been given by Campedelli in 1932
(see [11]): its branch curve has degree 10 and has six [3,3]-points p1, . . . , p6,
such that there is no conic passing through p1, . . . , p6 (a [3,3]-point is a triple
point with infinitely near another triple point, cf. §2 for notation and definitions).
This double plane has bigenus P2(Y ) = h0(Y,OY (2KY )) = 3.

Campedelli proposed also the construction of a reduced curve of degree 10
with five [3,3]-points p1, . . . , p5 and a point p6 of multiplicity 4, such that there
is no conic through p1, . . . , p6. A curve with these properties has been explicitly
constructed only much later by Oort and Peters in [24], following an idea due to
Vik. S. Kulikov. The resulting double plane has pg = 0 and P2 = 2.
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We say that the double planes branched along curves of degree 10 with
singularities as above are of Campedelli type C6,0 (the former one) and C5,1 (the
latter one).

Just one year before Campedelli, Godeaux constructed the first example of
surface of general type with pg = 0 (see [17]). He considered a quotient of a
quintic surface in P3 by a freely acting cyclic group of order 5 of projective
transformations. Some years ago, in [23], Murakami showed that the Godeaux
surface is birationally equivalent to a double plane of type C5,1, branched over
an irreducible curve, constructed by Stagnaro in [31].

The first examples of surfaces of general type with pg = 0 and 4 ≤ P2 ≤ 7,
given by Burniat in the 1960’s as bidouble covers of P2 branched along suitable
9 lines, are birationally equivalent to double planes too; the same is true for
Inoue’s surface, the first one of general type with pg = 0 and P2 = 8 (cf. [19]
and [21]).

Although surfaces of general type with pg = 0 have been studied by sev-
eral mathematicians like D. Mumford, E. Bombieri, Y. Miyaoka, A. Beauville,
I. Dolgachev, F. Catanese, M. Reid, R. Barlow, J. Keum, Y. Lee, M. Mendes
Lopes, R. Pardini, D. Naie, C. Ciliberto, C. Werner, P. Supino, Vik. S. Kulikov,
R. Pignatelli, I. Bauer, C. Rito, J. Park, H. Park, D. Shin, with different tech-
niques and from many points of view, their classification is not yet known. We
cannot report here about all relevant contributions during the last decades; we
will mention only few results, mainly related to double planes (see [3] for a
recent survey).

A smooth minimal surface Y of general type with pg(Y )= h2(Y,OY )= 0 has
q(Y )= h1(Y,OY )= 0, χ(OY )= 1 and K2

Y ≥ 1, or equivalently P2(Y )≥ 2. On the
other hand, Miyaoka-Yau inequality implies that K2

Y ≤ 9, i.e. P2(Y ) ≤ 10, and
it has been shown by Dolgachev, Mendes Lopes and Pardini in [15] that there
exists no double plane whose smooth minimal model is a surface of general type
with pg = 0 and P2 = 10.

Some years ago, in [25], Rita Pardini classified double planes of general
type whose smooth model has pg = 0 and P2 = 9 (see Theorem 3.1 later) by
means of quotients of a product of two curves under a suitable group action, a
construction originally due to Beauville. However Pardini did not give equations
of the branch curves of these double planes. Pardini herself says that “it seems
very difficult to construct the plane models directly” (p. 112 in [25]).

The other extremal case P2 = 2 has been classified in [8]. It turns out that
double planes of general type with pg = 0 and P2 = 2 are birationally equivalent
to double planes either of Campedelli type C5,1 or branched over a reduced curve
B =C+L1 +L2, where L1, L2 are lines, such that B has degree 14, multiplicity
6 at the point L1∩L2, two [5,5]-points pi ∈ Li, i = 1,2, one [3,3]-point and two
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points of multiplicity 4. We say that the latter double plane is of Du Val type
DV2;1,3, because it is a degeneration of examples originally described by Du Val
(cf. Example 2.2 and Definition 2.3). The existence of double planes of type
DV2;1,3 is proved in that paper, together with some explicit examples of their
branch curves.

The subsequent case P2 = 3 has been studied and essentially classified in
[10], although the problem of the existence of double planes with pg = 0, P2 = 3
and bicanonical map not composed with the involution has been left open.

Therefore, in this paper, we deal with double planes of general type with
pg = 0 and 4≤ P2 ≤ 9.

Nowadays, the better way to construct surfaces of general type with pg = 0
is to consider quotients of the product of two curves by the action of a finite
group acting on each curve, see e.g. [2] for a list of surfaces constructed in that
way. However, it is not clear how to find explicit equations of the branch curve
of double planes appearing in that list.

Other very interesting classification results have been proved by Borrelli in
[5], concerning surfaces of general type with non-birational bicanonical map. In
his classification, a central role is played by Du Val double planes, see Example
2.2.

In this paper we find the explicit equations of the branch curves of some
double planes of Du Val types DV6;0,0, DV4;1,1, DV4;0,2, DV3;2,1 and DV2;3,1, see
Definition 2.3 for notation. Note that the bicanonical map of the smooth model
of a Du Val double plane is composed with the involution induced by the double
plane structure.

Furthermore, we construct other branch curves of double planes of general
type with vanishing geometric genus, whose degree and configuration of singu-
larities were previously unknown. In these examples the bicanonical map of the
smooth model is not composed with the involution.

This paper is organized as follows: after introducing notation in §2, in the
following sections we will give several examples of surfaces of general type
with pg = 0, considering in each section a different value of P2, backwards
from 9 to 4. As suggested by the referee, in the appendix we list the explicit
equations of the plane curves we construct so that they can be copied and pasted
in a computer algebra system.

Let us briefly explain our approach to construct the examples. Regarding
Du Val double planes, we already know the degree and the number and type
of singularities of the branch curve. One immediately sees that the singular
points of the branch curve cannot be general in the plane, because they have to
impose dependent conditions to curves of suitable degree. On the other hand,
these points cannot be too special, e.g. they cannot lie on a conic, otherwise the
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geometric genus is > 0.
In order to construct new examples, our approach is threefold:

(a) try to split the branch curve in components which should be easier to con-
struct;

(b) try to construct the branch curve invariant under a finite-order linear auto-
morphism of P2;

(c) if (a) & (b) does not work, apply a Cremona transformation, e.g. a quadratic
one, and try again (a) & (b).

There are two linear automorphisms of P2 which turn out to be useful: the
first one is the automorphism ι2 : P2 → P2 of order 2 given, in homogeneous
coordinates x,y,z on P2, by

ι2(x,y,z) = (x,−y,z); (1)

the second one is the automorphism ι5 : P2→ P2 of order 5 given by

ι5(x,y,z) = (εx,ε2y,z), (2)

where ε is a 5th root of unity, say ε = e2π
√
−1/5. The latter automorphism has

three isolated fixed points, namely the coordinate points. The former one has
the line y = 0 of fixed points and the isolated fixed point (0,1,0).

Almost all computations in this paper were performed by using Maple [20].
In particular, we defined some procedures in Maple which help to construct
plane curves with prescribed singularities. The interested reader may contact
the authors in order to get them. Note that similar procedures have been defined
for the computer algebra system Magma by Rito in [28].

2. Notation, definitions and preliminaries

A singular point p of type [m,n], or briefly a [m,n]-point, of a curve C on a sur-
face is a point of multiplicity m with infinitely near, in the first neighbourhood, a
point of multiplicity n. For example, a tacnode is a point of type [2,2]. If C⊂ P2

and n=m, the unique line which has intersection multiplicity larger than m with
C at p is called the proper tangent to C at p.

A double plane is a double cover of P2, i.e. a finite morphism π : X→ P2 of
degree 2, and it is uniquely determined by its branch curve B⊂P2. If f (x,y) = 0
is the affine equation of B, where x,y are affine coordinates in P2, then X is
birationally equivalent to the surface in P3 with affine equation z2 = f (x,y).
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One may assume, with no loss in generality, that X is normal, or equivalently
that B is reduced.

If B is singular, then X is singular too and there exists a birational morphism
σ : S→ P2 such that the normalization of the fibred product Y = S×P2 X is
smooth and the induced map ρ : Y → S is a double cover. Indeed, one can
proceed as follows: (1) blow-up P2 at a singular point of the branch curve B,
(2) normalize the double cover branched over the total transform of B, which
is again a double cover, say Y ′ → S′ branched over a curve B′. If B′ is still
singular, repeat steps (1) and (2) replacing P2 with S′ and B with B′. After
finitely many steps, one gets rid of all the singularities (cf. e.g. [9], [18]). In
such a way, one gets the so-called canonical resolution ρ : Y → S of the double
plane π : X → P2. If D ⊂ S is the smooth branch curve of ρ , then D is an even
divisor—i.e. D is divisible by 2 in Pic(S)—and the projection formula says that
ρ∗OY ∼=OS⊕OS(−D/2), thus the geometric genus of Y is

pg(Y ) = h0(Y,KY ) = h0(S,KS +D/2)+h0(S,KS) = h0(S,KS +D/2) (3)

and the second plurigenus, also known as the bigenus, of Y is

P2(Y ) = h0(Y,2KY ) = h0(S,2KS +D)+h0(S,2KS +D/2). (4)

More generally, for any positive integer m, the m-plurigenus of Y is

Pm(Y ) = h0(Y,mKY ) = h0(S,mKS +mD/2)+h0(S,mKS +(m−1)D/2). (5)

Equivalently, one can directly compute the adjoint and pluri-adjoint curves in
the way explained in detail by the second author in [32] and [33].

Another birational invariant of surfaces is the irregularity:

q(Y ) = h1(Y,KY ) = h1(S,−D/2) = pg(Y )− pa(D/2), (6)

where pa(D/2) = D(D+ 2KS)/8+ 1 is the arithmetic genus of D/2 on S. By
abusing notation, we often write Pm(X) and q(X) instead of Pm(Y ) and q(Y ).

The double cover structure on Y determines an involution ι : Y → Y , i.e. an
automorphism of order 2. One says that a rational map ϕ : Y 99K Z, for some Z,
is composed with the involution ι if and only if ϕ ◦ ι = ϕ .

From now on, we always assume that Y is a surface of general type and
pg(Y ) = 0. With these assumptions, it is well-known that (cf., e.g., Corollary
3.6 in [8]):

Proposition 2.1. The bicanonical map ϕ2KY is composed with the involution ι

if and only if h0(S,2KS +D/2) = 0.

Let us recall some significant examples of double planes.
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Example 2.2 (Du Val). Suppose that there exist a reduced curve B =C+L1 +
· · ·+Ld , d ≥ 1, such that

(i) L1, . . . ,Ld are lines through a fixed point p0;

(ii) C is a curve of degree 10+ d having multiplicity d + 2 at p0 and [4,4]-
points pi ∈ Li, where Li is the proper tangent, for each i = 1, . . . ,d.

If C has exactly such singularities at p0, . . . , pd , and no more, one sees that the
smooth minimal model of the double plane branched along B is a surface of
general type with pg = 6−d, q = 0, K2 = 8 and non-birational bicanonical map
(assuming that there is no conic through p1, . . . , p6 if d = 6). The bicanoni-
cal map is indeed composed with the involution induced by the double plane
structure.

These examples have been originally described by Du Val in [16] and have
been called Du Val ancestors in the paper [12] by Ciliberto.

Note that the invariants of the double plane do not change even if B acquires
non-essential singularities, namely double points or triple points with no in-
finitely near triple point. On the other hand, if B acquires essential singularities,
then pg and K2 of the smooth minimal model of the double plane decrease.

Definition 2.3. Let us say that a double plane X is of Du Val type (d; t,q), or
briefly of type DVd;t,q, if X is branched along a reduced curve B =C+L1+ · · ·+
Ld as in Example 2.2, such that:

• C has further t points pd+1, . . . , pd+t of type [3,3],

• C has further q = 6−d− t points pd+t+1, . . . , pd+t+q=6 of multiplicity 4,

• there is no conic through p1, . . . , p6.

In order to distinguish surfaces of general type, another invariant is the tor-
sion subgroup of the Picard group. For double planes, the subgroup Tors2 of
2-torsion elements can be easily computed by means of the following:

Lemma 2.4 (Beauville, Lemme 2 in [4]). Let V →W be a double cover between
two smooth surfaces V and W, branched over the smooth curve B1 + · · ·+Bn,
where B1, . . . ,Bn are irreducible. Suppose that Pic(W ) has no 2-torsion ele-
ment. Define a group homomorphism ψ : (Z/2Z)⊕n → (Z/2Z)⊗ Pic(W ) by
ψ(ε1, . . . ,εn) = ∑

n
i=1 εiBi. Then Tors2(V )∼= ker(ψ)/〈(1, . . . ,1)〉.

Notation 2.5. We denote the linear system of the plane curves, say of degree
d with multiplicity m0 at a point p0 and with a point p1 of type [m1,m′1], as
follows:

|dL−m0 p0−m1 p1−m′1 p′1|,
where p′1 is the infinitely near point to p1 of multiplicity m′1.
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3. Double planes of general type with pg = 0 and P2 = 9

These double planes have been classified by Rita Pardini in [25]:

Theorem 3.1 (Pardini). A double plane, whose smooth model is a surface of
general type with pg = 0 and P2 = 9, is birationally equivalent to a double
plane of two types, I and II. Type I is Du Val type DV6;0,0, such that the curve C
of degree 16 either is irreducible or has two irreducible components of degree
8. Type II double planes are branched along a curve B = C + L1 + · · ·+ L5,
where L1, . . . ,L5 are lines through a fixed point p0 and C is an irreducible curve
of degree 21 with the following singularities:

• a point of multiplicity 9 at p0,

• a [6,6]-point pi ∈ Li, i = 1, . . . ,5, where Li is the proper tangent,

such that the canonical resolution of the double plane is obtained by exactly 11
blowing-ups and |5L− p0−∑

5
i=1(2pi + p′i)|= /0, where p′i is the infinitely near

point to pi in the direction of the line Li.
Conversely, if there exists such a curve B, then the smooth model of the

double plane branched along B is a surface of general type with pg = 0 and
P2 = 9.

However Pardini did not give equations of the branch curves of these double
planes. Pardini herself says that “it seems very difficult to construct the plane
models directly” (p. 112 in [25]).

In this section we find the equation of the branch curve of two double planes,
one of type II and the other of type Ia in Pardini’s notation, i.e. of type DV6;0,0
such that the curve C of degree 16 is the union of two curves of degree 8.

Example 3.2. We now find the equation of an irreducible curve C21 of degree
21, with the properties described in Theorem 3.1, whose equation is invariant
under the automorphism ι5 : P2→ P2 defined in (2).

Let f be a polynomial of degree 21 such that f (εx,ε2y,z) = f (x,y,z), where
ε is a 5th root of unity, so f is ι5-invariant. We impose to the curve C21 : f = 0
the following singularities:

• the point p0 = (0,0,1) of multiplicity 9;

• the point p5 = (1,1,1) of type [6,6], where the proper tangent is the line
L5 : y = x, passing through p0 and p5.

This forces C21 to have five points pi = (ε i,ε2i,1), i = 1, . . . ,5, of type [6,6],
where the proper tangent line to C21 at pi is Li : y = ε ix.
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Since there exists a projectivity which fixes the three fixed points of ι5 and
maps p5 to any other point (x,y,z) of P2 with xyz 6= 0, our choice of the coordi-
nates of p5 causes no loss in generality.

There are 51 monomials of degree 21 in 3 variables which are ι5-invariant.
The point p0 of multiplicity 9 imposes only 9 (instead of 45) conditions, because
p0 is a fixed point of ι5. Since a point of multiplicity 6 imposes 21 conditions,
one would expect to find no curve like C21 in such a way.

Quite surprisingly, it turns out that this C21 exists, as one may check by using
a computer algebra software, like e.g. Maple or Magma. The affine equation of
C21 is written in the appendix, see A.1.

Proposition 3.3. The curve C21 of degree 21 found in Example 3.2 is irreducible
and, together with the five lines Li : y = ε ix, i = 1, . . . ,5, is the branch curve of a
double plane, whose smooth model is a surface of general type with pg = 0 and
P2 = 9.

Proof. Maple is able to check that C21 is irreducible in the algebraic closure of
Q, so it is irreducible also over C. Then one checks that C21 has exactly the
imposed singularities, and not worse, and that |5L− p0−∑

5
i=1(2pi + p′i)| = /0.

The rest of the statement follows by Pardini’s Theorem 3.1 (cf. [25, Theorem
5.2]).

Remark 3.4. The singularity of C21 at p0 is not ordinary, indeed C21 has 7
branches locally around p0. Nonetheless, it is resolved by just one blowing-up,
because the strict transform of C21 has a flex at the point infinitely near to p0 in
the direction of the line x = 0, where the flex tangent is the exceptional curve.

Question 3.5. Is there any geometric reason which explains the existence of
such unexpected ι5-invariant polynomial of degree 21?

Let us now see how to find some explicit equation of a branch curve of
Pardini’s type Ia, i.e. of type DV6;0,0 with curve C16 of degree 16 split in two
curves C8 and C′8 of degree 8.

Example 3.6. We were not able to find equations of C8 and C′8 which are in-
variant under either ι2 as in (1) or ι5 as in (2). So we perform a quadratic trans-
formation α and we consider curves C10,C′10 of degree 10 with the following
singularities:

• a point of multiplicity 6 at p0,

• a tacnode qi, i = 1, . . . ,6, such that the proper tangent Hi to C10 and to C′10
at qi passes also through p0,
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• a further point q7 of multiplicity 4,

so that α maps C10,C′10 respectively to curves C8,C′8 in such a way that C8+C′8+
6 lines is a branch curve of a Du Val double plane of type (6;0,0).

We want the equation of C10 to be ι2-invariant, where ι2 is as in (1). In
particular we impose p0 to be a fixed point of ι2, namely (0,0,1), and q7 to be
the isolated fixed point of ι2, i.e. (0,1,0). Then we choose three points q1,q2,q3
in the plane and we require q7−i = ι2(qi), i = 1,2,3.

Note that ι2-invariant polynomials of degree 10 in x,y,z depend on 36 ho-
mogeneous parameters and we are imposing:

• 12 (and not 21) conditions for p0 to be of multiplicity 6,

• 4 (and not 10) conditions for q7 to be of multiplicity 4,

• 6 conditions for qi, i= 1,2,3, to be a tacnode, with Hi as tacnodal tangent.

Thus one expects to find a pencil of such curves of degree 10.
By using a computer algebra software, one may check that this naive expec-

tation turns out to be right.
Indeed, we chose q1 = (1,1,1), q2 = (2,1,1) and q3 = (−1,3,1), so that

q4 = (1,−1,1), q5 = (2,−1,1) and q6 = (−1,−3,1), and we find a pencil of
curves of degree 10 whose general member is irreducible and it has exactly
the imposed singularities, and no worse. By applying the quadratic Cremona
transformation

α : P2 99K P2, α(x,y,z) = ((x− y)(x− z),y(z− x),z(y− x)).

with fundamental points p0,q1,q7, we find a pencil C8+ tC′8 of curves of degree
8, where C8,C′8 have the affine equations written in the appendix, see A.2.

The singular points of C8 and C′8 are p0 = (0,0,1) of multiplicity 4, p1 =
(0,1,0), p2 = (2,3,1), p3 = (4,3,2), p4 = (−1,1,1) and p5 = (3,1,−3) which
are tacnodes with proper tangent respectively

L1 : x = 0, L2 : 3x−2y = 0, L3 : 3x−4y = 0, L4 : x+ y = 0, L5 : x−3y = 0;

moreover, C8 and C′8 have a point p6 of type [2,2] which is infinitely near to p0
in the direction of the line L6 : x− 2y = 0 in such a way that the intersection
multiplicity with L6 at p0 is 8.

Proposition 3.7. Let C8,C′8,L1, . . . ,L6 be as in the previous example. Then B =
C8 +C′8 +L1 + · · ·+L6 is the branch curve of a Du Val double plane X of type
DV6;0,0, in particular its smooth minimal model is a surface of general type with
pg = 0 and P2 = 9.
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Proof. Maple is able to check that the curves C8,C′8 are irreducible in the alge-
braic closure of Q, so they are irreducible also over C. Then one checks that
C8 +C′8 has exactly the wanted singularities, and not worse, and that there is no
conic through p0, p1, . . . , p5. Therefore X is a double plane of Pardini’s type Ia

by Pardini’s Theorem 3.1, cf. [25, Theorem 5.2].

We refer the readers, interested to more details about the classification of
double planes with these invariants, to Pardini’s paper [25].

4. A double plane of general type with pg = 0 and P2 = 8

In this section we construct a double plane, whose smooth model is a surface of
general type with pg = 0 and P2 = 8, which has a new configuration of degree
and singularities of the branch curve. In particular the bicanonical map of its
smooth model is not composed with the involution induced by the double plane
structure. The referee informed us that a double plane with the same invariants
and properties has been constructed by Rito in the unpublished paper [28]. Note
however that our construction is different from that of Rito, in particular our
branch curve is ι2-invariant.

Example 4.1. We now find an equation of a reduced curve B =C6+C14+L1+
L2+L3+L4, where L1, . . . ,L4 are lines through a fixed point p0 and B is a curve
of degree 24 with the following singularities:

• a point of multiplicity 12 at p0,

• a point pi ∈ Li, i = 1, . . . ,4, of type [7,7], where Li is the proper tangent,

• a further [5,5]-point p5, where we denote by L5 its proper tangent.

So we require the curve C14 of degree 14 to have the following singularities:

• a point of multiplicity 6 at p0,

• a [4,4] point pi ∈ Li, i = 1, . . . ,4, where Li is the proper tangent,

• a further [4,4]-point p5, with L5 as proper tangent,

and the curve C6 to be a sextic with the following properties:

• a double point at p0;

• a tacnode at pi, i = 1, . . . ,4, where Li is the tacnodal tangent;

• passing simply through p5, with L5 as tangent line.
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Setting ι2 the automorphism of P2 of order 2 defined in (1), we require B
to be ι2-invariant, namely the equations of C6 and of C14 are required to be
ι2-invariant, whereas ι2(L1) = L3 and ι2(L2) = L4.

We choose p0 and p5 to be fixed points of ι2, e.g. p0 = (0,0,1) and p5 =
(1,0,0), and L5 to be the line z = 0. In such a way we are imposing to sextic
ι2-invariant polynomials in x,y,z, which depend on 16 parameters, the following
conditions:

• 2 (and not 3) for p0 to be double;

• 1 (and not 2) for passing through p5 with tangent line L5;

• 6 for pi, i = 1,2, to be a tacnode, with Li as tacnodal tangent.

Thus we expect to find one ι2-invariant sextic with these singularities.
Similarly, ι2-invariant polynomials in x,y,z of degree 14 depend on 64 pa-

rameters and we are imposing to these curves the following conditions:

• 12 (instead of 21) for p0 to have multiplicity 6;

• 10 (instead of 20) for p5 to be a point of type [4,4] with proper tangent
L5;

• 20 for pi, i = 1,2, to be a point of type [4,4] with proper tangent Li.

Therefore we expect to find a pencil of such ι2-invariant curves of degree 14.
These naive expectations turn out to be right.
Let us choose p1 = (2,1,1), p2 = (1,2,1), so that p3 = ι2(p1) = (2,−1,1)

and p4 = ι2(p2) = (1,−2,1). Hence L1 : x = 2y, L2 : 2x = y, L3 : x = −2y,
L4 : 2x =−y. By using Maple, we found such an irreducible sextic plane curve
C6, with affine equation written in the appendix (see A.3) and we found a pencil
of plane curves of degree 14 with the above singularities and such that its general
member is irreducible, e.g. the curve C14 written in the appendix, see A.3. One
can check that C6 and C14 have exactly the prescribed singularities.

Proposition 4.2. The smooth model Y of the double plane branched along the
curve B = C6 +C14 +L1 + · · ·+L4 of the previous Example 4.1 is a surface of
general type with pg = 0 and P2 = 8. Furthermore Tors2(Y )∼= (Z/2Z)⊕4.

Proof. The branch curve is B ∈ |24L− 12p0−∑
4
i=1 7(pi + p′i)− 5(p5 + p′5)|,

where the coordinate of the points are given in Example 4.1 and p′i, i = 1, . . . ,5,
is the infinitely near point to pi in the direction of the line Li. According to (3),
the canonical linear system of Y is determined by∣∣∣5L− p0−

4

∑
i=1

(2pi + p′i)−2p5− p′5
∣∣∣+ 4

∑
i=1

Li
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that turns out to be empty: quintic polynomials in x,y,z depend on 21 parame-
ters and one checks that they have to satisfy 21 independent linear conditions.
Therefore, one has pg(Y ) = 0.

According to (4), the second summand of the bigenus of Y is determined
by ∑

4
i=1 Li + |2L−∑

5
i=1 pi|, where the last linear system is the unique conic

y2 +3xz−7z2 = 0. By Proposition 2.1, it follows that the bicanonical map of Y
is not composed with the involution induced by the double plane structure.

The first summand of (4) is determined by∣∣∣14L−6p0−
4

∑
i=1

4(pi + p′i)−3(p5 + p′5)
∣∣∣+ 4

∑
i=1

Li

which turns out to have dimension 6, therefore P2(Y ) = 7+1 = 8. Two general
curves in the above linear system meet in 14 points, off the base points, which
implies that the smooth minimal model has K2 = 7 and it is a surface of general
type. Note that the pencil of lines through p0 pulls back to an hyperelliptic
pencil of curves of genus 5 on Y .

It remains to show only the assertion about the 2-torsion. Following the
canonical resolution, let S be the blowing-up of P2 at p0, pi, p′i, i = 1, . . . ,5.
Let Ei, i = 0, . . . ,5, be the irreducible exceptional curve corresponding to pi.
Note that E0 is a (−1)-curve, whereas E1, . . . ,E5 are (−2)-curves. By abusing
notation, let us denote by C6, C14, Li, i = 1, . . . ,4, also their proper transform in
S. Then the smooth double cover Y of S branched along C6 +C14 +L1 + · · ·+
L4 +E1 + · · ·+E5 is a smooth model of the double plane. In Pic(S) one sees
that the following four divisors are even:

C14, L1 +E1 +L j +E j, j = 2,3,4,

and, setting ψ the map defined in Lemma 2.4, one sees that the inverse images
of these 4 divisors generate ker(ψ).

5. A double plane of general type with pg = 0 and P2 = 7

In this section we construct an example of a double plane, whose smooth model
is a surface of general type with pg = 0, P2 = 7 and bicanonical map not com-
posed with the involution, by slightly modifying Example 4.1 of the previous
section.

Example 5.1. We will find a reduced curve B = C6 +C′14 +L1 +L2 +L3 +L4
where L1, . . . ,L4 are lines through a fixed point P0 and the curve C′14 has degree
14 with the following singularities:

• a point of multiplicity 6 at p0,
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• a [4,4] point pi ∈ Li, i = 1, . . . ,4, where Li is the proper tangent,

• a point p5 of type [5,3], where the infinitely near point p′5 is in the direc-
tion of a line denoted by L5,

and C6 is a sextic with the following properties:

• a double point at p0;

• a tacnode at pi, i = 1, . . . ,4, where Li is the tacnodal tangent;

• passing simply through p5, with L5 as tangent line.

In other words, B has the same singularities as in Example 4.1, except at p5,
that is a point of type [6,4] here, whereas it was of type [5,5] there.

As before, we want the equations of C6 and of C′14 to be ι2-invariant, where
ι2 is the automorphism (1) of P2, and moreover ι2(L1) = L3 and ι2(L2) = L4.

Let us choose the same points, thus C6 is the same as in Example 4.1, cf.
A.3 in the appendix.

Concerning the curve of degree 14, note that ι2-invariant polynomials in
x,y of degree 14 depend on 64 parameters and we are imposing the following
conditions:

• 12 (instead of 21) for p0 to have multiplicity 6;

• 11 (instead of 21) for p5 to be a point of type [5,3] with proper tangent
L5;

• 20 for pi, i = 1,2, to be a point of type [4,4] with proper tangent Li.

Therefore one expects to find one such ι2-invariant curve C′14 of degree 14. We
indeed found the one written in the appendix, see A.4. One can check that C′14
have exactly the prescribed singularities.

Proposition 5.2. The smooth minimal model Y of the double plane branched
along the curve B = C6 +C′14 + L1 + · · ·+ L4 of Example 5.1 is a surface of
general type with pg = 0 and P2 = 7. Furthermore, Tors2(Y )∼= (Z/2Z)⊕3.

Proof. Just follow the proof of Proposition 4.2: the only difference is that the
second summand of the bicanonical linear system (4) is now∣∣∣14L−6p0−

4

∑
i=1

4(pi + p′i)−4p5−2p′5
∣∣∣+ 4

∑
i=1

Li

and it has dimension 5, so the bi-genus of a smooth model of the double plane
is P2 = 1+6 = 7. Moreover, two general curves in this linear system now meet
in 12 points, off the base points, thus the smooth minimal model has K2 = 6.
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Concerning the 2-torsion, the divisors L̄1 +E1 + L̄ j +E j, j = 2,3,4, where
E j is the irreducible exceptional curve corresponding to p j and L̄ j is the strict
transform of Li on the blown-up surface, generate the kernel of the map ψ in
Lemma 2.4.

6. Two double planes of general type with pg = 0 and P2 = 6

There are two types of Du Val double planes with these invariants, namely
DV3;3,0 and DV4;1,1. The existence of the former type is already known: e.g.
Burniat surfaces are birationally equivalent to double planes of this type DV3;3,0.
So in this section we prove the existence of Du Val type DV4;1,1 by giving an
example.

We will then construct a surface of general type with pg = 0, P2 = 6 and
bicanonical map not composed with the involution, from a double plane with a
new configuration of degree and singularities.

Example 6.1. We want to find a reduced curve B =C4+C10+L1+L2+L3+L4
where L1, . . . ,L4 are lines through a fixed point p0, and the curve C10 has degree
10 with the following singularities:

• a point of multiplicity 4 at p0,

• a [3,3] point pi ∈ Li, where Li is the proper tangent, i = 1, . . . ,4,

• a tacnode p5, where we denote by L5 the tacnodal (i.e., proper) tangent,

• a point p6 of multiplicity 2,

and C4 is a quartic with the following properties:

• double points at p0 and at p6;

• passing simply through the points pi, i = 1, . . . ,5, where the tangent line
to C4 is Li.

We require the equations of C4 and of C10 to be ι2-invariant, whilst ι2(L1) =
L3 and ι2(L2) = L4, where ι2 is the usual automorphism (1) of P2.

Let us choose p0 = (0,0,1), p1 = (2,1,1), p2 = (1,2,1), p3 = ι2(P1) =
(2,−1,1), p4 = ι2(P2) = (1,−2,1), p5 = (1,0,0), p6 = (0,1,0) and L5 : z = 0.

Quartic ι2-invariant polynomials in x,y,z depend on 9 homogeneous param-
eters and we are imposing 2 (instead of 3) conditions for p0 to be double, 1
(instead of 2) condition for passing through p5 with tangent line L5, 1 (instead
of 3) condition for p6 to be double, 2 conditions for passing through pi, i = 1,2
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with tangent line Li. In such a way, we find a unique quartic curve C4, with
affine equation

8*x^3-15*x^2*y^2-12*x^2+28*x*y^2-12*y^2=0. (7)

Similarly, ι2-invariant polynomials in x,y of degree 10 depend on 36 parameters.
The conditions we are imposing are

• 6 (instead of 10) for p0 to have multiplicity 4;

• 3 (instead of 6) for p5 to be a tacnode with tacnodal tangent L5;

• 1 (instead of 3) for p6 to be a double point;

• 12 for pi, i = 1,2, to be a point of type [3,3] with proper tangent Li.

We find a pencil of ι2-invariant curves of degree 10 with the above singularities
and such that its general member is irreducible, e.g. the curve C10 with affine
equation in the appendix, see A.5. One may check that C4 and C10 have exactly
the prescribed singularities.

Proposition 6.2. The smooth minimal model Y of the double plane branched
along the curve B = C4 +C10 + L1 + · · ·+ L4 of Example 6.1 is a surface of
general type with pg = 0 and P2 = 6. Furthermore Tors2(Y )∼= (Z/2Z)⊕4.

Proof. The branch curve B is reduced, of degree 18, with the following singu-
larities:

• a point of multiplicity 10 at p0,

• a [5,5] point pi ∈ Li, i = 1, . . . ,4, where Li is the proper tangent,

• a [3,3]-point p5, where L5 is the proper tangent,

• a point of multiplicity 4 at p6,

or equivalently B ∈ |18L− 10p0−∑
4
i=1 5(pi + p′i)− 3(p5 + p′5)− 4p6|. Since

there is no conic through p1, . . . , p6, one sees that pg = 0 and the double plane
branched along B is of Du Val type DV4;1,1. In particular, the first summand of
the bicanonical linear system (5) is |3L− 3p0−∑

4
i=1 pi| = /0 and Proposition

2.1 implies that the bicanonical map of the smooth model of the double plane is
composed with the involution induced by the double plane structure.

The second summand of the bicanonical linear system (5) is∣∣∣8L−4p0−
4

∑
i=1

2(pi + p′i)− p5− p′5− p6

∣∣∣+ 4

∑
i=1

Li
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which has dimension 5, thus the bi-genus of a smooth model of the double
plane is P2 = 0+6 = 6. Two general curves in the above linear system meet in
10 points, off the base points, which implies that the smooth minimal model has
K2 = 5.

It remains to show only the assertion about the 2-torsion. Following the
canonical resolution, one blows-up P2 at p0, . . . , p6 and at the points p′i, i =
1, . . . ,5, infinitely near to pi in the direction of the line Li. Let Ei, i = 1, . . . ,5,
be the irreducible exceptional curve corresponding to pi. By abusing notation,
let us denote by C4, C10, Li, i= 1, . . . ,4, also their proper transform in the blown-
up surface S. Then Y is a smooth double cover branched along C4 +C10 +L1 +
· · ·+L4 +E1 + · · ·+E5. In Pic(S) one sees that the following five divisors are
even:

C4 +
5

∑
i=1

Ei, L1 +E1 +L j +E j, j = 2,3,4,

and, setting ψ the map defined in Lemma 2.4, one sees that the inverse image
of these 4 divisors generate ker(ψ).

We now construct a surface of general type with pg = 0, P2 = 6 and bi-
canonical map not composed with the involution, from a double plane with a
new configuration of degree and singularities.

Example 6.3. We want to construct a reduced curve B =C4+C6+C8+L1+L2
where L1,L2 are lines, the curve C8 has degree 8 with the following singularities:

• a double point at p0 = L1∩L2,

• a [3,3] point pi ∈ Li, i = 1,2, where Li is the proper tangent,

• three tacnodes, say p j, j = 3,4,5 (denote by L j the tacnodal tangent),

C6 is a sextic with the following properties:

• a double point at p0;

• a tacnode at pi, i = 1, . . . ,4, where Li is the tacnodal tangent;

• passing simply through p5, with L5 as tangent line;

and finally C4 is a quartic with the following properties:

• a double point at p0;

• passing simply through pi, i = 1, . . . ,4, with Li as tangent line,

• a tacnode at p5, with L5 as tacnodal tangent.
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We want B to be ι2-invariant, where ι2 is the involution (1) of P2. So we
assume that the equations of C4,C6,C8,L5 are ι2-invariant and that ι2(L1) = L2.

Let us choose p0 = (0,0,1), p1 = (1,1,1), p3 = (2,1,1), p5 = (1,0,0) and
L5 : z = 0, hence L1 : x− y = 0, p2 = ι2(p1) = (1,−1,1), L2 : x+ y = 0, and
p4 = ι2(p3) = (2,−1,1).

Quartic ι2-invariant polynomials in x,y,z depend on 9 homogenous param-
eters and we are imposing the following conditions:

• 2 (and not 3) for p0 to be double;

• 3 (and not 6) for p5 to be a tacnode with tacnodal tangent L5;

• 2 for passing through p1 with tangent line L1,

• 1 for passing through p3,

so one expects to find one such quartic. This is indeed true and the quartic C4
has the following affine equation

2*x^2-6*x*y^2+3*y^4+y^2=0,

and the tangent line to C4 at p3 (at p4, resp.) is L3 : x−5y+3z = 0 (is L4 : x+
5y+3z = 0, resp.).

Sextic ι2-invariant polynomials in x,y,z depend on 16 homogeneous param-
eters and we are imposing the following conditions:

• 2 (and not 3) for p0 to be double;

• 1 (and not 2) for passing through p5 with tangent line L5;

• 6 for pi, i = 1,3, to be a tacnode, with Li as tacnodal tangent.

so one expects to find one such sextic C6. This is again true and its affine equa-
tion is given in the appendix, see A.6.

Finally, ι2-invariant polynomials in x,y of degree 8 depend on 25 parame-
ters. The conditions we are imposing to these curves of degree 8 are

• 2 (instead of 3) for p0 to be double,

• 3 (instead of 6) for p5 to be a tacnode with proper tangent L5,

• 12 for p1 to be a point of type [3,3], with L1 as proper tangent,

• 6 for p3 to be a tacnode, with L2 as tacnodal tangent.
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Therefore one expects to find a pencil of such ι2-invariant curves of degree 8.
One indeed finds a pencil of curves of degree 8, whose general element is

irreducible, e.g. the curve C8 with affine equation written in the appendix, see
A.6.

Proposition 6.4. The smooth model Y of the double plane branched along the
curve B = C4 +C6 +C8 +L1 +L2 of Example 6.3 is a surface of general type
with pg = 0 and P2 = 6. Furthermore Tors2(S)∼= (Z/2Z)⊕3.

Proof. The branch curve B is reduced, of degree 20, with the following singu-
larities:

• a point of multiplicity 8 at p0,

• a [7,7] point pi ∈ Li, i = 1,2, where Li is the proper tangent,

• three further [5,5]-points p j, j = 3,4,5, where L j is the proper tangent,

or equivalently B ∈ |20L−8p0−∑
2
i=1 7(pi+ p′i)−∑

5
j=3 5(p j + p′j)|. According

to (3), the canonical linear system is given by∣∣∣5L− p0−
5

∑
i=1

(2pi + p′i)
∣∣∣+L1 +L2

that turns out to be empty: quintic polynomials depend on 21 homogenous pa-
rameters and one checks that the 21 imposed conditions are independent. This
means that pg = 0.

The first summand of the bicanonical linear system (5) corresponds to a
unique, fixed, curve. By Proposition 2.1, it follows that the bicanonical map
of the smooth model of the double plane is not composed with the involution
induced by the double plane structure.

The second summand of the bicanonical linear system (5) is∣∣∣12L−4p0−
5

∑
i=1

3(pi + p′i)
∣∣∣+L1 +L2

which turns out to have dimension 4, therefore the bi-genus of the smooth model
of the double plane is P2 = 1+ 5 = 6. Two general curves in the above linear
system meet in 10 points, off the base points, which implies that the smooth
minimal model Y has K2 = 5. Note that the pencil of lines through P0 pulls back
to an hyperelliptic pencil of curves of genus 5 on Y .

It remains to show only the assertion about the 2-torsion. Following the
canonical resolution, one blows up P2 at p0, p1, . . . , p5 and at the points p′i, i =
1, . . . ,5, infinitely near to pi in the direction of the line Li. Let Ei, i = 0, . . . ,5,
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be the irreducible exceptional curve corresponding to pi. By abusing notation,
let us denote by C4,C6,C8,L1,L2 also their proper transform in the blown-up
surface S. Then the smooth double cover Y of S branched along C4 +C6 +C8 +
L1 +L2 +E1 + · · ·+E5 is a smooth model of the double plane. In Pic(S) one
sees that the following three divisors are even:

C6 +E5, C8 +E1 +E2, L1 +E1 +L2 +E2,

and, setting ψ the map defined in Lemma 2.4, one sees that the inverse image
of these three divisors generate ker(ψ).

Remark 6.5. The double plane branched along C4 +C6 is of Campedelli type
C5,1, so its smooth minimal model is a numerically Godeaux surface, i.e. it is of
general type with pg = 0 and P2 = 2.

7. Two double planes of general type with pg = 0 and P2 = 5

There are three Du Val types of double planes with pg = 0 and P2 = 5, namely
DV4;0,2, DV3;2,1 and DV2;0,4. The existence of the last type DV2;0,4 is already
known: e.g. Burniat surfaces are birationally equivalent to double planes of this
type (cf. also the construction given by the second author in [32, Example 4]).

In this section we construct a double plane of type DV4;0,2 by slightly modi-
fying Example 6.1, and then a double plane of type DV3;2,1.

Example 7.1. We want to find a reduced curve B=C4+C10+L1+L2+L3+L4,
where L1, . . . ,L4 are lines through a fixed point p0, the curve C10 has degree 10
with the following singularities:

• a point of multiplicity 4 at p0,

• a [3,3] point pi ∈ Li, where Li is the proper tangent, i = 1, . . . ,4,

• a point p5 of multiplicity 3,

• a point p6 of multiplicity 2,

and C4 is a quartic with the following properties:

• double points at p0 and p6;

• passing simply through pi, i = 1, . . . ,4, where Li is the tangent line,

• passing simply through p5.
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In other words, the singularities are the same as in Example 6.1, but p5 is a
4-tuple point for the branch curve here, whereas it was a [3,3]-point there.

We again require the equations of C4 and of C10 to be ι2-invariant, where
ι2 is the usual involution (1) and we choose the same points as in Example 6.1.
Imposing the conditions to a generic plane quartic, we find again the same curve
C4 with equation (7).

On the other hand, ι2-invariant polynomials in x,y of degree 10 depend on
36 parameters and the imposed conditions are the following:

• 6 (instead of 10) for p0 to have multiplicity 4;

• 4 (instead of 6) for p5 to be a triple point;

• 1 (instead of 3) for p6 to be a double point;

• 12 for pi, i = 1,2, to be a point of type [3,3] with proper tangent Li.

We find a unique such curve C10 of degree 10, written in the appendix, see A.7.
One can check that C10 has exactly the imposed singularities. Note that C4+C10
has a double point p′6 infinitely near to p6 in the direction of the line z = 0.

Proposition 7.2. The smooth model Y of the double plane branched along the
curve B = C4 +C10 +L1 + · · ·+L4 of Example 7.1 is a surface of general type
with pg = 0 and P2 = 5. Furthermore Tors2(Y )∼= (Z/2Z)⊕3.

Proof. The branch curve B is reduced, of degree 18, with the following singu-
larities:

• a point of multiplicity 10 at p0,

• a [5,5] point pi ∈ Li, i = 1, . . . ,4, where Li is the proper tangent,

• two points p5, p6 of multiplicity 4,

or equivalently B ∈ |18L− 10p0 −∑
4
i=1 5(pi + p′i)− 4(p5 + p6)|. Such as in

Example 6.1, one may check that there is no conic through p1, . . . , p6, so the
double plane branched along B is of Du Val type DV4;0,2. The only difference
with Example 6.1 is that the second summand of the bicanonical linear system
(5) is now ∣∣∣8L−4p0−

4

∑
i=1

2(pi + p′i)−2p5−2p6

∣∣∣+ 4

∑
i=1

Li

which turns out to have dimension 4, therefore the bi-genus of a smooth model
of the double plane is P2 = 5, and two general curves in the above linear system
meet in 8 points, off the base points, so K2 = 4.
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Concerning the 2-torsion, one sees that, with usual notation, the canonical
resolution of the double plane is a smooth double cover branched along:

C4 +C10 +L1 +L2 +L3 +L4 +E1 +E2 +E3 +E4,

and the following three divisors in the blown-up surface

L1 +E1 +L j +E j, j = 2,3,4,

are even and they give the generators of ker(ψ), where ψ is the usual map
defined in Lemma 2.4.

We finally construct a double plane of type DV3;2,1, by means of a quadratic
transformation in the plane.

H3

H4

H1

H2 H7H8

H9

q1

q3q4

q5q6

q7

q8

q9

q2

Example 7.3. We are going to find a reduced curve B = C2 +C6 +C8 +H1 +
H2 +H3 +H4, which is invariant under the involution ι2 defined by (1), where

• H1, . . . ,H4 are lines forming a quadrilateral with vertices q1 = H1 ∩H2,
q2 = H3∩H4, q3 = H1∩H3, q4 = H2∩H3, q5 = H2∩H4, q6 = H1∩H4;

C8 is an irreducible curve of degree 8 with the following singularities:

• double points at q1, q2 and triple points at qi, i = 3,4,5,6;

• a tacnode q7, with a line H7 as tacnodal tangent,

• two further tacnodes q j, j = 8,9, with a line H j as tacnodal tangent;
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C6 is an irreducible sextic curve with the following properties:

• double points at qi, i = 1, . . . ,6;

• a tacnode q7, with H7 as proper tangent,

• passing through q j, j = 8,9, where H j is tangent line,

and C2 is a smooth conic with the following properties:

• passing through q3, . . . ,q6,

• passing through q7 where H7 is the tangent line,

such that there is no conic through q1,q2, . . . ,q9.
We require that the equations of C2,C6,C8 are ι2-invariant, whereas ι2(Hi) =

Hi+1, i = 1,3. Let us choose q1 = (0,0,1), q2 = (1,0,0), q3 = (1,1,1), q4 =
(−1,1,1), q7 = (2,0,1) and q8 = (0,2,1), so that H1 : x− y = 0, H3 : y− z = 0,
hence H2 = ι2(H1) : x+ y = 0, H4 = ι2(H3) : y+ z = 0, H7 : x− 2z = 0, q5 =
ι2(q3) = (1,−1,1), q6 = ι2(q4) = (−1,−1,1) and q9 = ι2(q8) = (0,−2,1). The
proper tangent H8 to C8 at q8 will be determined in a moment (as well as the
proper tangent H9 = ι2(H8) at q9).

A ι2-invariant degree-2 polynomial depends on four parameters and we im-
pose it to pass through q3,q4,q7. In this way we find the conic

C2 : x^2+3y^2-4=0,

which passes also through q5,q6 and such that the tangent line at q7 is H7.

Degree-8 ι2-invariant polynomials in x,y,z depend on 25 homogeneous pa-
rameters and we are imposing the following conditions:

• 2 (and not 3) for p1 and for p2 to be double;

• 3 (and not 6) for p7 to be a tacnode, with H7 as tacnodal tangent;

• 6 for pi, i = 3,4, to be of multiplicity 3;

• 6 for p8 to be a tacnode, with a given line H8 as tacnodal tangent.

Thus, if these conditions are independent, one expects to find no such curve of
degree 8. Setting H8 : x+ ty− 2tz = 0, t ∈ C, to be the proper tangent to C8 at
p8, by using a computer algebra software one finds out that these conditions are
not independent if t = 3/4, i.e. if H8 : 4x+3y−6z = 0. Indeed one finds out the
curve C8 of degree 8 with the affine equation written in the appendix, see A.8.
One may check that C8 is irreducible and has exactly the imposed singularities.

Degree-6 ι2-invariant polynomials in x,y,z depend on 16 homogeneous pa-
rameters and we are imposing the following conditions:
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• 2 (and not 3) for p1 and for p2 to be double;

• 3 (and not 6) for p7 to be a tacnode, with H7 as tacnodal tangent;

• 3 for pi, i = 3,4, to be double;

• 2 for passing through p8, with H8 as tangent line.

Thus one expects to find one such sextic curve. Indeed one finds out the sextic
C6 with the affine equation written in the appendix, see A.8. One may check
that C6 is irreducible and has exactly the wanted properties.

Proposition 7.4. Let C2, C6 and C8 be the irreducible curves constructed in
the previous example. Then B = C2 +C6 +C8 + H1 + H2 + H3 + H4 is the
branch curve of a double plane X, whose smooth minimal model Y is a sur-
face of general type with pg = 0 and P2 = 5. In particular, Y is isomorphic
to the smooth minimal model of a double plane of type DV3;2,1. Furthermore,
Tors2(Y )∼= (Z/2Z)⊕3.

Proof. The quadratic Cremona transformation α with fundamental points q4,
q5, q6 is

α : P2 99K P2, α(x,y,z) = ( f −2x2, f −2y2, f −2z2),

where f = x2 + y2 + z2 + yz+ xz+ xy. Then α determines a double plane Xα

birationally equivalent to X (whose smooth minimal model is the same as the
one obtained from X), whose branch curve is obtained from the total transform
of B by removing the components of even multiplicity and taking the reduced
part (cf., e.g., [7]).

One checks that the branch curve of Xα is B̄ =C′6+C7+L1+L2+L3 where

• L1 : x− y = 0 is the strict transform of H1,

• L2 : x+3y−4z = 0 is the strict transform of C2,

• L3 : y− z = 0 is the strict transform of H3,

• L1,L2,L3 are lines through p0 = q3 = (1,1,1),

• C7 is the strict transform of C8: it has the affine equation written in the
appendix, see A.9, and has the following singularities:

– a triple point at p0 and a double point at p6 = q5 = (1,−1,1),

– a tacnode pi ∈ Li, i = 1,2,3, where Li is the proper tangent, namely
p1 = q6 = (−1,−1,1), p2 = α(q7) = (−1,7,5), and p3 = q4 =
(−1,1,1); note that q1 (q2, resp.) corresponds to the infinitely near
point to p1 (p3, resp.) in the direction of the line L1 (L3, resp.);
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– further two tacnodes p j, j = 4,5, where we denote by L j the proper
tangent, namely p4 = α(q8) = (7,−1,5), p5 = α(q9) = (3,−5,1),
L4 : 47x−11y−68z = 0 is the tangent line at p4 to the strict trans-
form of H8 (that is a conic), L5 : 29x+15y−12z = 0 is the tangent
line at p5 to the strict transform of H9;

• C′6 is the strict transform of C6: it has the affine equation written in the
appendix, see A.9, and has the following properties:

– double points at p0 and at p6,
– a tacnode pi ∈ Li, i = 1,2,3, where Li is the tacnodal tangent,
– passing simply through p j, j = 4,5, with L j as tangent line.

One sees that there is no conic through p1, . . . , p6, therefore Xα is a double
plane of Du Val type DV3;2,1. The branch curve B̄ is indeed reduced, of degree
16, with the following singularities:

• a point of multiplicity 8 at p0,

• a [5,5]-point pi ∈ Li, i = 1,2,3, where Li is the proper tangent,

• two [3,3]-points p j, j = 4,5, where L j is the proper tangent,

• a point p6 of multiplicity 4,

or equivalently B̄ ∈ |16L−8p0−∑
3
i=1 5(pi + p′i)−∑

5
j=4 3(p j + p′j)−4p6|.

In particular pg(Xα) = 0 and the first summand of the bicanonical linear
system (5) is empty, while the second summand of the bicanonical linear system
(5) is ∣∣∣7L−3p0−

3

∑
i=1

2(pi + p′i)−
5

∑
i=4

(pi + p′i)−2p6

∣∣∣+L1 +L2 +L3

which turns out to have dimension 4, therefore the bigenus is P2 = 0+5 = 5.
It remains to show only the assertion about the 2-torsion. Following the

canonical resolution, one blows up P2 at p0, p1, . . . , p5 and at the points p′i, i =
1, . . . ,5, infinitely near to pi in the direction of the line Li. Let Ei, i = 0, . . . ,5,
be the irreducible exceptional curve corresponding to pi. By abusing notation,
let us denote by C′6,C7,L1,L2,L3 also their proper transform in the blown-up
surface S. Then the smooth double cover Y of S branched along C′6 +C7 +L1 +
L2 +L3 +E1 + · · ·+E5 is a smooth model of the double plane. In Pic(S) one
sees that the following three divisors are even:

C′6 +E4 +E5, L1 +E1 +L2 +E2, L1 +E1 +L3 +E3,

and, setting ψ the map defined in Lemma 2.4, one sees that the inverse image
of these three divisors generate ker(ψ).
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8. A double plane of general type with pg = 0 and P2 = 4

There are three Du Val types of double planes with pg = 0 and P2 = 4, namely
DV3;1,2, DV2;3,1, and DV1;5,0. The existence of the last type DV1;5,0 is already
known: e.g. Burniat surfaces are birationally equivalent to double planes of this
type (cf. also the construction given by the second author in [32, Example 1]).

Concerning double planes of general type with these invariants and bicanon-
ical map not composed with the involution, the second author gave an example
in [33]: its branch curve is irreducible, of degree 22, with five points of type
[7,7].

In this section we construct one example of Du Val double plane of type
DV2;3,1.

Example 8.1. We want to construct a reduced curve B =C2+C4+C6+L1+L2
where L1,L2 are lines, the curve C6 is a sextic with the following properties:

• double points at p0 = L1∩L2 and at another point p6 ∈ P2,

• a tacnode at pi ∈ Li, i = 1,2, where Li is the tacnodal tangent,

• a further tacnode at p5, and denote by L5 the tacnodal tangent,

• passing simply through a given point p j, j = 3,4, with a given tangent L j,

the curve C4 is a quartic with the following properties:

• double points at p0 and at p6;

• passing simply through pi, i = 1, . . . ,5, with Li as tangent line;

and C2 is a conic passing simply through pi, i = 1, . . . ,5, with Li as tangent line.
We want B to be ι2-invariant, where ι2 is the involution (1) of P2. So we

assume that the equations of C2,C4,C6 are ι2-invariant and that ι2(L1) = L2.
Let us choose p0 = (0,0,1), p1 = (1,1,1), p3 = (−2,1,1), p5 = (1,0,0),

L5 : z = 0, and p6 = (0,1,0), hence L1 : x− y = 0, p2 = ι2(p1) = (1,−1,1),
L2 : x+ y = 0, and p4 = ι2(p3) = (2,−1,1). We will choose the line L3 passing
through p3 in a moment (and hence L4 = ι2(L3) will be determined as well).

If one imposes a ι2-invariant conic to pass through p1, with tangent line L1,
and to pass through p3, one finds the unique conic C2 with affine equation

2*x^2-3*y^2+2*x-1=0,

and we choose L3 to be the tangent line to C2 at p3, namely L3 : x+ y+1 = 0.
Quartic ι2-invariant polynomials in x,y,z depend on 9 homogenous param-

eters and we are imposing the following conditions:
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• 2 (and not 3) for p0 to be double;

• 1 (and not 3) for p6 to be double;

• 1 (and not 2) for passing through p5 with tangent line L5,

• 2 for passing through pi, i = 1 and 3, with tangent line Li,

so one expects to find one such quartic. This is indeed true and the quartic C4
has affine equation:

x^2*y^2+6*x^3-8*x*y^2+9*x^2-8*y^2=0.

Sextic ι2-invariant polynomials in x,y,z depend on 16 homogeneous param-
eters and we are imposing the following conditions:

• 2 (and not 3) for p0 to be double;

• 1 (and not 3) for p6 to be double;

• 3 (and not 6) for p5 to be a tacnode with tacnodal tangent L5;

• 6 for p1 to be a tacnode, with L1 as tacnodal tangent,

• 2 for passing through p3, with L3 as tangent line,

so one expects to find a pencil of such sextics. This is again true and the pencil
has irreducible general member, e.g. the curve C6 with affine equation written
in the appendix, see A.10.

Proposition 8.2. The smooth model Y of the double plane branched along the
curve B = C2 +C4 +C6 +L1 +L2 of Example 8.1 is a surface of general type
with pg = 0 and P2 = 4. Furthermore Tors2(S)∼= (Z/2Z)⊕3.

Proof. The branch curve B is reduced, of degree 14, with the following singu-
larities:

• a point of multiplicity 6 at p0,

• a [5,5] point pi ∈ Li, i = 1,2, where Li is the proper tangent,

• three further [3,3]-points p j, j = 3,4,5, where L j is the proper tangent,

• a further point p6 of multiplicity 4,
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or equivalently B ∈ |14L−6p0−∑
2
i=1 5(pi + p′i)−∑

5
j=3 3(p j + p′j)−4p6|. One

may check that there is no conic through p1, . . . , p6, therefore the double plane
branched along B is of type DV2;3,1.

In particular the first summand of the bicanonical linear system (5) is empty,
while the second summand of the bicanonical linear system (5) is

∣∣∣6L−2p0−
2

∑
i=1

2(pi + p′i)−
5

∑
i=3

(pi + p′i)−2p6

∣∣∣+L1 +L2

which has dimension 3, as expected.
It remains to show only the assertion about the 2-torsion. Following the

canonical resolution, one blows up P2 at p0, p1, . . . , p5 and at the points p′i, i =
1, . . . ,5, infinitely near to pi in the direction of the line Li. Let Ei, i = 0, . . . ,5,
be the irreducible exceptional curve corresponding to pi. By abusing notation,
let us denote by C2,C4,C6,L1,L2 also their proper transform in the blown-up
surface S. Then the smooth double cover Y of S branched along C2 +C4 +C6 +
L1 +L2 +E1 + · · ·+E5 is a smooth model of the double plane. In Pic(S) one
sees that the following three divisors are even:

C2 +E1 +E2 +E3 +E4, C6 +E3 +E4, L1 +E1 +L2 +E2,

and, setting ψ the map defined in Lemma 2.4, one sees that the inverse image
of these three divisors generate ker(ψ).

A. Explicit equations of the curves

As suggested by the referee, we collect in this appendix the equations of the
previously constructed curves in such a way that they can be copied and pasted
in a computer algebra system.

A.1. Curve C21 of Example 3.2:

C_21:=1024*x^20-8448*x^18*y-448*x^17*y^4+31680*x^16*y^2

+2624*x^15*y^5-704*x^15-71280*x^14*y^3-5984*x^13*y^6+3168*x^13*y

+336*x^12*y^9+108768*x^12*y^4+5280*x^11*y^7-5940*x^11*y^2

-2144*x^10*y^10-119856*x^10*y^5-4*x^10+1320*x^9*y^8+5940*x^9*y^3

+6160*x^8*y^11+96888*x^8*y^6+3*x^8*y-20*x^7*y^14-6072*x^7*y^9

-3322*x^7*y^4-9460*x^6*y^12-55935*x^6*y^7+4*x^5*y^15

+4356*x^5*y^10+992*x^5*y^5+8085*x^4*y^13+21560*x^4*y^8

+22*x^3*y^16-1056*x^3*y^11-128*x^3*y^6+7*x^2*y^19-3696*x^2*y^14

-4928*x^2*y^9-8*y^20+704*y^15+512*y^10.
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A.2. Curves C8 and C′8 of Example 3.6:

C_8:=295783*x^8-1774698*x^7*y+4876416*x^6*y^2-7674344*x^5*y^3

+7877724*x^4*y^4-5139288*x^3*y^5+1434672*x^2*y^6+1748212*x^7

-10489272*x^6*y+27275832*x^5*y^2-39174848*x^4*y^3+29327280*x^3*y^4

-8276256*x^2*y^5+4040394*x^6-24242364*x^5*y+54846504*x^4*y^2

-57770256*x^3*y^3+28144080*x^2*y^4-5393952*x*y^5+3232180*x^5

-19393080*x^4*y+42010920*x^3*y^2-38756480*x^2*y^3+12899040*x*y^4

+875875*x^4-5255250*x^3*y+11113200*x^2*y^2-9417800*x*y^3

+2410800*y^4.

C’_8:=2008759*x^8-12052554*x^7*y+33083520*x^6*y^2-51983720*x^5*y^3

+53278428*x^4*y^4-34729560*x^3*y^5+9692784*x^2*y^6+11844148*x^7

-71064888*x^6*y+184747128*x^5*y^2-265222592*x^4*y^3

+198459120*x^3*y^4-55979424*x^2*y^5+27348666*x^6-164091996*x^5*y

+371262456*x^4*y^2-391103184*x^3*y^3+190599120*x^2*y^4

-36570528*x*y^5+21876820*x^5-131260920*x^4*y+284371080*x^3*y^2

-262411520*x^2*y^3+87396960*x*y^4+5932675*x^4-35596050*x^3*y

+75264000*x^2*y^2-63749000*x*y^3+16287600*y^4.

A.3. Curves C6 and C14 of Example 4.1:

C_6:=-1056*x^5+1584*x^4*y^2+5884*x^4-9072*x^3*y^2-10680*x^3

+468*x^2*y^4+17113*x^2*y^2+6300*x^2-1266*x*y^4-11730*x*y^2

+9*y^6+754*y^4+2025*y^2.

C_14:=2993362257600*x^6*y^8-642416767200*x^4*y^10

+53053687800*x^2*y^12+184090725*y^14-7984819814400*x^7*y^6

-13919055703200*x^5*y^8+1958710231800*x^3*y^10-137141766900*x*y^12

+7035707257920*x^8*y^4+43389409117680*x^6*y^6

+32051705852520*x^4*y^8-2181287292570*x^2*y^10+84235458420*y^12

-2231066682240*x^9*y^2-39193561109760*x^7*y^4

-113572304790840*x^5*y^6t-46744118053860*x^3*y^8

+1424709059460*x*y^10+148737778816*x^10+10823053669520*x^8*y^2

+105313984353120*x^6*y^4+180069282386525*x^4*y^6

+40500724263940*x^2*y^8-591585025794*y^10-25399242379200*x^7*y^2

-172911772965600*x^5*y^4-167837539931100*x^3*y^6

-18759582044700*x*y^8-1800503781120*x^8+39870873162720*x^6*y^2

+165855228518880*x^4*y^4+83407878318870*x^2*y^6+4127537462580*y^8

+3352212864000*x^7-37472636232000*x^5*y^2-80588270196000*x^3*y^4

-18662023012500*x*y^6-1732665686400*x^6+14426591734800*x^4*y^2

+15283012348800*x^2*y^4+442001830725*y^6.

A.4. Curve C′14 of Example 5.1:

C’_14:=101101919688000*x^6*y^8-20383701645600*x^4*y^10
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+1922970034800*x^2*y^12+9006959025*y^14-266317230896640*x^7*y^6

-486603095289120*x^5*y^8+56665562170680*x^3*y^10

-5048029874340*x*y^12+222658777180224*x^8*y^4

+1506037113840816*x^6*y^6+1192179060770904*x^4*y^8

-51653930702994*x^2*y^10+3095088945444*y^12-59346373747584*x^9*y^2

-1291115775845376*x^7*y^4-4194787908295224*x^5*y^6

-1836667562583156*x^3*y^8+28991534124276*x*y^10

+279682303646608*x^8*y^2+3752974063291832*x^6*y^4

+7022592103892073*x^4*y^6+1627502363091332*x^2*y^8

-14576442803642*y^10+33912213570048*x^9-733773573809088*x^7*y^2

-6643492578764352*x^5*y^4-6735475699940748*x^3*y^6

-740600472575532*x*y^8-145302180401664*x^8

+1399619530052064*x^6*y^2+6645841686875376*x^4*y^4

+3348737123394654*x^2*y^6+151659358326756*y^8+205257431047680*x^7

-1503914467671360*x^5*y^2-3238350710693760*x^3*y^4

-728779344737220*x*y^6-95538066624000*x^6+620580855920400*x^4*y^2

+578900345347800*x^2*y^4+21625708619025*y^6.

A.5. Curve C10 of Example 6.1:
C_10:=1877040*x^6*y^4-8085420*x^4*y^6+1900665*x^2*y^8

+281952*x^7*y^2-5708304*x^5*y^4+20750886*x^3*y^6-4815108*x*y^8

-8169540*x^6*y^2+36190665*x^4*y^4-20938050*x^2*y^6+3049620*y^8

-447136*x^7+23773152*x^5*y^2-89122638*x^3*y^4+21071824*x*y^6

+8207472*x^6-50754384*x^4*y^2+69186141*x^2*y^4-14455128*y^6

-22631040*x^5+97402320*x^3*y^2-22612140*x*y^4+17031600*x^4

-72805500*x^2*y^2+17082900*y^4.

A.6. Curves C6 and C8 of Example 6.3:
C_6:=-32*x^5+76*x^4*y^2+184*x^4-512*x^3*y^2-312*x^3+124*x^2*y^4

+1000*x^2*y^2+144*x^2-356*x*y^4-588*x*y^2+25*y^6+166*y^4+81*y^2.

C_8:=373*y^6-90*x^2+276*x^2*y^6+63*y^2-369*y^4+90*x*y^2+444*x*y^4

-630*x*y^6-36*x^2*y^2-390*x^2*y^4-3*y^8+72*x^3+576*x^3*y^4

+48*x^3*y^2-40*x^6+48*x^5-300*x^4*y^4+216*x^5*y^2-348*x^4*y^2.

A.7. Curve C10 of Example 7.1:
C_10:=-20750886*x^3*y^6+72805500*x^2*y^2-17082900*y^4-3049620*y^8

+447136*x^7+50754384*x^4*y^2-69186141*x^2*y^4+20938050*x^2*y^6

+5708304*x^5*y^4-97402320*x^3*y^2+8169540*x^6*y^2+14455128*y^6

+4815108*x*y^8+22612140*x*y^4-8207472*x^6-281952*x^7*y^2

-23773152*x^5*y^2-21071824*x*y^6-36190665*x^4*y^4+22631040*x^5

-1900665*x^2*y^8-17031600*x^4-1877040*x^6*y^4+8085420*x^4*y^6

+89122638*x^3*y^4.
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A.8. Curves C8 and C6 of Example 7.3:

C_8:=25*x^6*y^2+704*x^6+2304*x^5*y^2-2304*x^5+2001*x^4*y^4

-4700*x^4*y^2+512*x^4-1536*x^3*y^4-1536*x^3*y^2+3072*x^3

-381*x^2*y^6-1128*x^2*y^4+4720*x^2*y^2-1024*x^2-768*x*y^6

+3840*x*y^4-3072*x*y^2-45*y^8+324*y^6-432*y^4-576*y^2.

C_6:=5*x^4*y^2-32*x^4-128*x^3*y^2+128*x^3-106*x^2*y^4+288*x^2*y^2

-128*x^2+128*x*y^4-128*x*y^2+21*y^6-96*y^4+48*y^2.

A.9. Curves C7 and C′6 in the proof of Proposition 7.4:

C_7:=729*x^7-1469*x^6*y+4108*x^5*y^2-2218*x^4*y^3+794*x^3*y^4

+2296*x^2*y^5-1635*x*y^6-1005*y^7+2198*x^6-2138*x^5*y+410*x^4*y^2

+6760*x^3*y^3-4518*x^2*y^4-2102*x*y^5+990*y^6-4157*x^5+10887*x^4*y

-16564*x^3*y^2-6196*x^2*y^3+9129*x*y^4+2101*y^5-11266*x^4

-2484*x^3*y+14256*x^2*y^2-2556*x*y^3-2750*y^4+13681*x^3-9031*x^2*y

-2485*x*y^2+2635*y^3+5380*x^2+2520*x*y-3100*y^2-3600*x+2000*y-1600

C’_6:=27*x^6-160*x^5*y+196*x^4*y^2-202*x^3*y^3+60*x^2*y^4

+148*x*y^5+11*y^6+214*x^5-320*x^4*y+286*x^3*y^2+118*x^2*y^3

-180*x*y^4+42*y^5+97*x^4+522*x^3*y-546*x^2*y^2-94*x*y^3-59*y^4

-714*x^3+522*x^2*y+74*x*y^2-202*y^3-181*x^2-214*x*y+315*y^2

+320*x-160*y+80.

A.10. Curve C6 of Example 8.1:

C_6:=17*x^2*y^4+68*x^3*y^2-136*x*y^4+84*x^4-278*x^2*y^2

+296*y^4+84*x^3-152*x*y^2+9*x^2+8*y^2.
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