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THE LARGE SUM GRAPH RELATED TO
COMULTIPLICATION MODULES

HABIBOLLAH ANSARI-TOROGHY - FARIDEH MAHBOOBI-ABKENAR

Let R be a commutative ring and M be an R-module. We define the
large sum graph, denoted by Ǵ(M), as a graph with the vertex set of non-
large submodules of M and two distinct vertices are adjacent if and only
if N +K is a non-large submodule of M. In this article, we investigate the
connection between the graph-theoretic properties of Ǵ(M) and algebraic
properties of M when M is a comultiplication R-module.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z
will denote the ring of integers.

In 2009, the intersection graph of ideals was considered by Chakrabarty,
Ghosh, Mukherjee, and sen [8]. The intersection graph of ideals of rings and
submodules of modules have been investigated by several authors (e.g., [12],
[1], [13], and [9]).

The small intersection graph related to non-small ideals of a commutative
ring was introduced and studied by Ebrahimi Atani, Dolati Pish Hesari, and
Khoramdel [10]. This notion was generalized for multiplication modules over a
commutative ring by Ansari-Toroghy, Farshadifar, and Mahboobi-Abkenar [6].
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Let M be an R-module. We denote the set of all minimal submodules of
M by Min(M) and the sum of all minimal submodules of M by Soc(M). A
submodule N of M is called large in M and denoted by N EM in case for every
non-zero submodule L of M, N∩L 6= 0. A module M is called a uniform module
if every non-zero submodule of M is a large submodule of M.

A module M is said to be a comultiplication R-module if for every submod-
ule N of M there exists an ideal I of R such that N =AnnM(I). Also an R-module
M is comultiplication module if and only if for each submodule N of M, we have
N = (0 :M AnnR(N)) [3].

In this paper, we introduce and study the large sum graph Ǵ(M) of M, when
M is a comultiplication module. This notion can be regarded as a dual notion of
the small intersection graph considered in [6].

In section 2, we give the definition of Ǵ(M) and consider some basic re-
sults on the structure of this graph. In Theorems 2.5 and 2.7, we provide some
useful characterization about Ǵ(M). In Theorem 2.9, it is shown that if Ǵ(M)
is connected, then diam(Ǵ(M)) 6 2. Also we prove that if Ǵ(M) contains a
cycle, then g(Ǵ(M)) = 3 (Theorem 2.10). Moreover, it is proved that if Ǵ(M)
is a connected graph, then Ǵ(M) has no cut vertex (Theorem 2.11). Finally, in
section 3, we investigate the clique and dominating number of this graph.

Here we will include some basic definitions from graph theory as needed.
For two distinct vertices a and b, a− b means that a and b are adjacent. The
degree of a vertex a of graph G is the number of edges incident on a and denoted
by deg(a). A regular graph is r-regular (or regular of degree r) if the degree of
each vertex is r. If |V (G)|> 2, a path from a to b is a series of adjacent vertices
a−v1−v2− ...−vn−b. In a graph G, the distance between two distinct vertices
a and b, denoted by d(a,b), is the length of the shortest path connecting a and
b. If there is not a path between a and b, d(a,b) = ∞. The diameter of a graph
G is diam(G) = sup{d(a,b) | a,b ∈ V (G)}. A graph G is called connected if
for any vertices a and b of G there is a path between a and b. Otherwise, G
is disconnected. A cycle in a graph G is a path that begins and ends in a same
vertex. The girth of G, denoted by g(G), is the length of the shortest cycle in G.
If G has no cycle, we define the girth of G to be infinite. An r-partite graph is
one whose vertex set can be partitioned into r subsets such that no edge has both
ends in any one subset. A complete r-partite graph is one each vertex is joined to
every vertex that is not in the same subset. The complete bipartite (i.e, 2-partite)
graph with part sizes m and n is denoted by Km,n. A star graph is a complete
bipartite graph K1,n. A clique of a graph is its maximal complete subgraph and
the number of vertices in the largest clique of a graph G, denoted by ω(G), is
called the clique number of G. For a graph G = (V,E) an open neighbourhood
N(a) of a vertex a ∈ V is the set of vertices which are adjacent to a. For each
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S⊆V , we set N(S) :=
⋃

a∈S N(a) and N[S] := N(S)
⋃

S. A set of vertices S in G
is a dominating set, if N[S] = V . The dominating number, denoted by γ(G), of
G is the minimum cardinality of a dominating set of G ([11]). Note that a graph
whose vertices-set is empty is a null graph and a graph whose edge-set is empty
is an empty graph.

2. Basic properties of Ǵ(M)

Definition 2.1. Let M be an R-module. We define the large sum graph Ǵ(M)
of M with all non-large non-zero submodules of M as vertices and two distinct
vertices N,K are adjacent if and only if N +K is a non-large submodule of M.

Remark 2.2. Note that Ǵ(M) is a null graph if and only if M is a uniform
module.

A non-zero R-module M is said to be second if for each a ∈ R, the endo-
morphism M a.→ M is either surjective or zero. We recall that every minimal
submodule is second [15, Proposition 1.6].

An R-module M is said to be cocyclic if M ⊆ E(R/m) for some maximal
ideal m of R (Here E(R/m) denotes the injective envelop of R/m). M is cocyclic
if and only if Soc(M) is a large and a simple submodule of M [14].

We use the following lemma frequently.

Lemma 2.3. Let M be a non-zero comultiplication R-module.

(a) Every non-zero submodule of M contains a minimal submodule of M. In
particular, Min(M) 6=∅.

(b) Let N be a submodule of M. Then N is a large submodule of M if and only
if Soc(M)⊆ N.

(c) M is a uniform module if and only if M is a cocyclic module.

(d) Let N,K be submodules of M and let S be a second submodule of M with
S⊆ N +K. Then S⊆ N or S⊆ K.

(e) If |Min(M)|= 1, then M is a uniform module.

Proof. (a) [4, Theorem 3.2].

(b) and (c) are straightforward.

(d) See [5, Theorem 2.6].

(e) This is clear.
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From now on we suppose that |Min(M)| ≥ 2.

Proposition 2.4. Let M be a non-zero comultiplication R-module.

(a) Let Min(M) = {Si}i∈I , where |I| > 1, and let Λ be a non-empty proper
finite subset of I. Then ∑λ∈Λ Sλ is non-large submodule of M.

(b) Let M be an R-module. Then Ǵ(M) is a null graph if and only if M is a
cocyclic module.

Proof. Use Lemma 2.3.

In the rest of this paper we assume that M is a non-zero comultiplication
R-module and Ǵ(M) is a non-null graph.

Theorem 2.5. Let Min(M) = {S1,S2} such that M
S1

and M
S2

are cocyclic R-
modules. Then Ǵ(M) is an empty graph.

Proof. First we show Soc(M
S1
) is the only simple submodule which is contained

in every non-zero submodule of M
S1

. To see this, let N
S1

be a non-zero submodule
of M

S1
. Since Soc(M

S1
) is large and simple, we have N

S1
∩ Soc(M

S1
) 6= 0 and hence

N
S1
∩ Soc(M

S1
) = Soc(M

S1
). It follows that Soc(M

S1
) ⊆ N

S1
. Clearly, S1+S2

S1
is a min-

imal submodule of M
S1

and so Soc(M
S1
) = S1+S2

S1
. Similar arguments shows that

Soc(M
S2
) = S1+S2

S2
. Now we claim that there is no vertex K 6= S1,S2. To show

this, let K be vertex of Ǵ(M). Then by Lemma 2.3 (a), S1 ⊆ K or S2 ⊆ K.
We may assume that S1 ⊆ K. Consequently, we have S1+S2

S1
= Soc(M

S1
) ⊆ K

S1
.

Thus Soc(M)⊆ K, a contradiction by Lemma 2.3 (b). Hence Ǵ(M) is an empty
graph.

Remark 2.6. In Theorem 2.5, the condition “ M
S1

and M
S2

are cocyclic modules”
can not be omitted. For example, let M = Z18 (as Z-module). Then Min(M) =
{S1,S2}, where S1 = {6̄Z} and S2 = {9̄Z}. It is easy to see that M

S1
is not cocyclic

and Ǵ(M) is not empty.

Theorem 2.7. The following assertions are equivalent.

(i) Ǵ(M) is not connected.

(ii) |Min(M)|= 2

(iii) Ǵ(M) = Ǵ1∪ Ǵ2, where Ǵ1 and Ǵ2 are complete and disjoint subgraphs.
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Proof. (i)⇒ (ii) Assume to the contrary that |Min(M)|> 2. Since Ǵ(M) is not
connected, we can consider two components Ǵ1, Ǵ2 and N,K two submodules
of M such that N ∈ Ǵ1 and K ∈ Ǵ2. Choose S1,S2 ∈Min(M) such that S1 ⊆ N
and S2 ⊆ K. If S1 = S2, then N− S1−K is a path, a contradiction. So we can
assume that S1 6= S2. Since Min(M) > 2, S1 + S2 is a non-large submodule of
M by Proposition 2.4 (a). Thus N−S1−S2−K is a path between Ǵ1 and Ǵ2, a
contradiction. Therefore, |Min(M)|= 2.
(ii)⇒ (iii) Let Min(M) = {S1,S2}. Set Ǵ j := {N ≤M | N ⊇ S j and N 6E M},
where j = 1,2. Assume that N,K ∈ Ǵ1. We claim that N and K are adjacent.
Otherwise, if N +K E M, then S1 + S2 = Soc(M) ⊆ N +K by Lemma 2.3 (b).
So we have S2 ⊆ S1 + S2 ⊆ N +K. Thus S2 ⊆ N or S2 ⊆ K by Lemma 2.3
(d), a contradiction. By using similar arguments for Ǵ2, we can conclude that
Ǵ1, Ǵ2 are complete subgraphs of Ǵ(M). We claim that these two subgraphs are
disjoint. Assume to the contrary that N1 ∈ Ǵ1 and N2 ∈ Ǵ2 are adjacent. Then
Soc(M) = S1 + S2 ⊆ N1 +N2 which implies that N1 +N2 is a large submodule
of M by Lemma 2.3 (b), a contradiction.
(iii)⇒ (i) This is obvious.

Remark 2.8. The condition that “M is a comultiplication module” can not
be omitted in Theorem 2.7. For example, let M = Z2 ⊕Z4 be a Z-module
and let N1 := (0̄, 1̄)Z, N2 := (0̄, 2̄)Z, N3 := (1̄, 0̄)Z, N4 := (1̄, 1̄)Z, and N5 :=
(1̄, 2̄)Z. Then V (Ǵ(M)) = {N1,N2,N3,N4,N5} and Min(M) = {N2,N3,N5}.
Thus |Min(M)|> 2 but Ǵ(M) is not a connected graph.

Theorem 2.9. Let Ǵ(M) be a connected graph. Then diam(Ǵ(M))6 2.

Proof. Let N and K be two vertices of Ǵ(M) such that they are not adjacent. By
Lemma 2.3 (a), there exist two minimal submodules S1,S2 of M such that S1⊆N
and S2⊆K. If N+S2 5M, then N−S2−K is a path. So d(N,K) = 2. Similarly,
if K+S1 5 M, then d(N,K) = 2. Now assume that N+S2 E M and K+S1 E M.
By Theorem 2.7, |Min(M)| ≥ 3. Let S3 be a minimal submodule of M such that
S3 6= S1,S2. Thus by Lemma 2.3 (b), we have S3 ⊆ Soc(M) ⊆ N + S2 which
implies that S3 ⊆ N by Lemma 2.3 (d). Also we have S3 ⊆ Soc(M) ⊆ K + S1
which follows that S3 ⊆ K by Lemma 2.3 (d). Thus S3 ⊆ N and S3 ⊆ K. Hence
we have N−S3−K. Therefore, d(N,K) = 2.

Theorem 2.10. Suppose that Ǵ(M) contains a cycle. Then g(Ǵ(M)) = 3.

Proof. If |Min(M)|= 2, then Ǵ(M) = Ǵ1∪ Ǵ2, where Ǵ1 and Ǵ2 are complete
disjoint subgraphs by Theorem 2.7. Since Ǵ(M) contains a cycle and Ǵ1, Ǵ2 are
disjoint complete subgraphs, g(Ǵ(M)) = 3. Now assume that |Min(M)| ≥ 3 and
choose S1,S2, and S3 ∈Min(M). By Proposition 2.4 (a), S1− S2− S3− S1 is a
cycle. Hence g(Ǵ(M)) = 3.
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A vertex a in a connected graph G is a cut vertex if G−{a} is disconnected.

Theorem 2.11. If Ǵ(M) is a connected graph, then Ǵ(M) has no cut vertex.

Proof. Assume on the contrary that there exists a vertex N ∈ V (Ǵ(M)) such
that Ǵ(M) \ {N} is not connected. Thus there exist at least two vertices K,L
such that N lies in every path between them. By Theorem 2.9, the shortest
path between K and L has length two. So we have K −N − L. Firstly, we
claim that N is a minimal submodule of M. Otherwise, there exists a minimal
submodule S of M such that S⊂ N by Lemma 2.3 (a). Since S+K ⊆ N+K and
N +K 6E M, we have S+K 5 M. By similar arguments, S+L is a non-large
submodule of M. Hence K− S− L is a path in Ǵ(M) \ {N}, a contradiction.
Thus N is a minimal submodule of M. Now we claim that there is a minimal
submodule S1 6= N such that S1 * K. Suppose on the contrary that Si ⊆ K for
each N 6= Si ∈Min(M). So we have Soc(M)⊆ K +N. This implies that K +N
is a large submodule of M by Lemma 2.3 (b), a contradiction. Similarly, there
exists a minimal submodule S2 6= N of M such that S2 * L. Note that for each
St ∈Min(M), we have St ⊆ K+L because K+L is a large submodule of M. So
St ⊆ K or St ⊆ L by Lemma 2.3 (d). Now let N 6= S1,S2 ∈ Min(M) such that
S1 * K and S2 * L (Note that S1 6= S2). Hence we have S1 ⊆ L and S2 ⊆ K. This
implies that K−S1−S2−L is a path in Ǵ(M)\{N}, a contradiction.

Theorem 2.12. Ǵ(M) can not be a complete n-partite graph, where n≥ 2.

Proof. Suppose Ǵ(M) is a complete n-partite graph for some n ≥ 2, with parts
U1, ...,Un. In particular, Ǵ(M) is a connected graph. Hence by Theorem 2.7,
|Min(M)|= t ≥ 3. By Proposition 2.4 (a), for every Si,S j ∈Min(M), Si 6= S j, Si

is adjacent to S j. Hence each part Ui contains at most one minimal submodule
so that n ≥ 3. Now we claim that t = n. Suppose on the contrary that t <
n. Without loss of generality, we suppose that Si ∈ Ui, for i = 1, ..., t. Then
Ut+1 contains no minimal submodule of M. By Proposition 2.4 (a), Σ j 6=iS j is
a non-large submodule of M. Clearly, Σ j 6=iS j and Si are not adjacent. Hence
Σ j 6=iS j ∈Ui. Let N be a vertex in Ut+1. Then by Lemma 2.3 (a), there exists
Sk ∈Min(M) such that Sk ⊆ N. So N and Sk are adjacent, where Sk ∈Uk. Since
Ǵ(M) is a complete n-partite graph, N adjacent to all vertices in Uk. So N
and Σ j 6=kS j are adjacent. However, Soc(M) = Sk +Σ j 6=kS j which implies that
N +Σ j 6=kS j E M by Proposition 2.4 (a), a contradiction. Hence |Min(M)| = n.
Now set K := Σi≥3Si. By Proposition 2.4 (a), K is a non-large submodule of M.
Since K+S1 =Σi 6=2Si 5M, K and S1 are adjacent. Similarly, K is adjacent to S2.
Thus K 6∈U1,U2. Furthermore, K+Si = K 5 M for each i (3≤ i≤ n). Hence K
is adjacent to all minimal submodules Si of M. So for each i (1≤ i≤ n), K 6∈Ui,
a contradiction.
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Proposition 2.13. Assume that |Min(M)|< ∞. Then we have the following.

(i) There is no vertex in Ǵ(M) which is adjacent to every other vertex.

(ii) Ǵ(M) can not be a complete graph.

Proof. (i) Assume on the contrary that there exists a submodule N ∈V (Ǵ(M))
such that N is adjacent to all vertices of Ǵ(M). By Lemma 2.3 (a),
there is a minimal submodule Si ∈ Min(M) such that Si ⊆ N. Now set
K := Σ j 6=iS j, where S j, j 6= i, are all the other minimal submodules of
M. Clearly, K 5 M by Proposition 2.4 (a). Since N is adjacent to all
other vertices of Ǵ(M), N +K is a non-large submodule of M. However,
Soc(M) = Σ j 6=iS j +Si ⊆ N +K which shows that N +K E M by Lemma
2.3 (b), a contradiction.

(ii) This follows from (i).

A vertex of a graph G is said to be pendent if its neighbourhood contains
exactly one vertex.

Theorem 2.14. (i) Ǵ(M) contains a pendent vertex if and only if |Min(M)|=
2 and Ǵ(M)= Ǵ1∪Ǵ2, where Ǵ1, Ǵ2 are two disjoint complete subgraphs
and |V (Ǵi)|= 2 for some i = 1,2.

(ii) Ǵ(M) is not a star graph.

Proof. (i) Let N be a pendent vertex of Ǵ(M). Assume on the contrary that
|Min(M)| ≥ 3. Clearly, for each Si ∈ Min(M), Si is adjacent to every other
minimal submodules of M. So deg(Si)≥ 2. Thus N is not a minimal submodule
of M. By Lemma 2.3 (a), there exists a minimal submodule of S1 of M such that
S1 ⊆N. Note that the only vertex which is adjacent to N is S1 because deg(N) =
1. Hence there is no minimal submodule Si 6= S1 such that Si ⊆ N. Moreover,
N+S2 is a large submodule of M. So by Lemma 2.3 (b), S j ⊆ Soc(M)⊆N+S2,
for each S j 6= S1,S2. This implies that S j ⊆N by Lemma 2.3 (d), a contradiction.
Hence |Min(M)|= 2. By Theorem 2.7, Ǵ(M) = Ǵ1∪ Ǵ2, where Ǵ1 and Ǵ2 are
disjoint complete subgraphs. It is easy to see that |V (Ǵi)|= 2. The converse is
straightforward.

(ii) Suppose that Ǵ(M) is a star graph. Then Ǵ(M) has a pendent vertex. So
by part (i), we have |Min(M)| = 2. Thus Ǵ(M) is not a connected graph
by Theorem 2.7, a contradiction.
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Theorem 2.15. (i) Let N, K be two vertex of Ǵ(M) such that N ⊆ K. Then
deg(N)≥ deg(K).

(ii) Let Ǵ(M) be an r-regular graph. Then |Min(M)| = 2 and |V (Ǵ(M))| =
2r+2.

Proof. (i) Let N,K ∈V (Ǵ(M)) be such that N ⊆ K. Let L be a vertex of Ǵ(M)
such that L is adjacent to K. Thus K +L is a non-large submodule of M and so
that N +L is a non-large submodule of M. So L is adjacent to N. Therefore,
deg(N)≥ deg(K).

(ii) Suppose on the contrary that |Min(M)| ≥ 3. By using Proposition 2.4 (a)
and our assumption, Min(M) is a finite set. Next for S1,S2 ∈Min(M), we
have deg(S1) ≥ deg(S1 + S2) by part (i). We claim that deg(S1 + S2) <
deg(S1). In fact, Σ j 6=2S j is adjacent to S1 by Proposition 2.4 (a), but it is
not adjacent to S1 + S2. So deg(S1 + S2) < r, which is a contradiction.
Thus |Min(M)| ≤ 2. If |Min(M)|= 1, then Ǵ(M) is null graph, a contra-
diction. Thus |Min(M)| = 2 and so by Theorem 2.7, Ǵ(M) = Ǵ1 ∪ Ǵ2,
where Ǵ1, Ǵ2 are disjoint complete subgraphs. Set Min(M) = {S1,S2}
and Si ∈ Gi. Since Ǵ(M) is r-regular, |V (Ǵi)|= r+1 for i = 1,2. Hence
we have V (Ǵ(M)) = 2r+2.

3. clique and dominating number

In this section, we provide some information about the clique and dominating
number of Ǵ(M).

Proposition 3.1. (i) Let Ǵ(M) be a non-empty graph. Then ω(Ǵ(M))
≥ |Min(M)|.

(ii) If ω(Ǵ(M))< ∞, then ω(Ǵ(M))≥ 2|Min(M)|−1−1.

Proof. (i) If |Min(M)|= 2, then ω(Ǵ(M))≥ 2 by Theorem 2.7. Now let
|Min(M)| ≥ 3. Then by Proposition 2.4 (a), the subgraph of Ǵ(M) with the
vertex set of {Si}Si∈Min(M) is a complete subgraph of Ǵ(M). So ω(Ǵ(M)) ≥
|Min(M)|.

(ii) Since ω(Ǵ(M))<∞, we have |Min(M)|<∞ by part (i), (ii). Let Min(M)=
{S1, ...,St}. For each 1≤ i≤ t, consider
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Ai = {S1, ...,Si−1,Si+1,St}.

Now let P(Ai) be the power set of Ai and for each X ∈ P(Ai), set SX =⋂
S j∈X S j for 1≤ j ≤ t. The subgraph of Ǵ(M) with the vertex set
{SX}X∈P(Ai)\{ /0} is a complete subgraph of Ǵ(M) by Proposition 2.4 (a).
It is clear that |{SX}X∈P(Ai)\{ /0}| = 2|Min(M)|−1 − 1. Thus ω(Ǵ(M)) ≥
2|Min(M)|−1−1.

Remark 3.2. Note that the condition “M is a comultiplication module” is neces-
sary in Proposition 3.1. For example, let M = Z2⊕Z4 be as a Z-module which
is not a comultiplication module. Then ω(Ǵ(M)) = 2 but |Min(M)|= 3.

Theorem 3.3. We have γ(Ǵ(M)) ≤ 2. In particular, if |Min(M)| < ∞, then
γ(Ǵ(M)) = 2.

Proof. Clearly, |Min(M)| ≥ 2 because Ǵ(M) is a non-null graph. Consider S =
{S1,S2}, where S1,S2 ∈Min(M). Let N be a vertex of Ǵ(M). We claim that N
is adjacent to S1 or S2. If S1 ⊆ N or S2 ⊆ N, then the claim is true. Now assume
that S1 * N and S2 * N. In this case, we also claim that N is adjacent to S1
or S2. Without loss of generality, we can assume that N is not adjacent to S1.
So S2 ⊆ Soc(M) ⊆ N by Lemma 2.3 (b). This shows that S2 ⊆ N, which is a
contradiction. By similar arguments, we can show that N is adjacent to S2. Thus
γ(Ǵ(M))≤ 2. The last assertion follows from Theorem 2.13.
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