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INFINITELY MANY SOLUTIONS TO THE

DIRICHLET PROBLEM FOR QUASILINEAR

ELLIPTIC SYSTEMS

ANTONIO GIUSEPPE DI FALCO

In this paper we deal with the existence of weak solutions for the
following Dirichlet problem

⎧⎪⎨
⎪⎩

−�pu = f (u, v) in �

−�qv = g(u, v) in �

u = 0 on ∂�

v = 0 on ∂�

.

where � ⊂ R
N is a bounded open set. The existence of solutions is proved

by applying a critical point variational principle obtained by B. Ricceri as
consequence of a more general variational principle.

1. Introduction.

Here and in the sequel:
� ⊂ R

N is a bounded open set with boundary of class C1;
N ≥ 1; p > N ; q > N ;
f, g ∈C0(R2) such that the differential form f (u, v)du + g(u, v)dv be exact.

Entrato in redazione il 16 Novembre Novembre 2004.
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In this paper we are interested in the following problem:

(P)

⎧⎪⎨
⎪⎩

−�pu = f (u, v) in�

−�qv = g(u, v) in �

u = 0 on ∂�

v = 0 on ∂�

.

More precisely we are interested in the existence of infinitely many weak
solutions to such a problem.

Even though the problem (P) has been studied by some other authors (see
e.g. [7], [8], [3], [2], [1]) the hypotheses we use in this paper are totally different
from those ones and so are our results.

The existence of solutions to Problem (P) is proved by applying the
following critical point theorem. The proof of this theorem is very similar to
that of Theorem 2.5 of [6] and so it is omitted.

Theorem 1. Let X be a reflexive real Banach space, and let �, � : X →
R be two sequentially weakly lower semicontinuous and Gateaux differen-
tiable functionals. Assume also that � is strongly continuous and satisfies
lim‖x‖→∞ �(x ) = +∞. For each r > in fX� , put

ϕ(r) = inf
x∈�−1 (]−∞,r[)

�(x )− inf
(�−1(]−∞,r[))w

�

r − �(x )
,

where (�−1(]− ∞, r[))w is the closure of �
−1(]−∞, r[) in the weak topology.

Fixed λ > 0, then

(a) if {rn}n∈N is a real sequence with limn→∞ rn = +∞ such that ϕ(rn) < λ,
for each n ∈ N, the following alternative holds: either�+λ� has a global
minimum, or there exists a sequence {xn} of critical points of �+λ� such
that limn→∞ �(xn) = +∞.

(b) if {sn}n∈N is a real sequence with limn→∞ sn = (infX �)+ such that
ϕ(sn) < λ, for each n ∈ N, the following alternative holds: either there
exists a globalminimumof� which is a local minimumof�+λ� , or there
exists a sequence {xn} of pairwise distinct critical points of � + λ� , with
limn→∞ �(xn) = infX � , which weakly converges to a global minimum of
� .

Let G : R
2 → R be the differentiable function such that Gu(u, v) =

f (u, v), Gv(u, v) = g(u, v), G(0, 0) = 0. Then (P) can be written in the form⎧⎪⎨
⎪⎩

−�pu = Gu(u, v) in �

−�qv = Gv(u, v) in �

u = 0 on ∂�

v = 0 on ∂�

.
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and therefore it is a gradient system [4]. We first consider the space W 1,p
0 (�)

with the norm

‖u‖W 1, p
0 (�) =

(∫
�

|∇u(x )|p dx
) 1

p

and the space W 1,q
0 (�) with the norm

‖v‖W 1,q
0 (�) =

(∫
�

|∇v(x )|q dx
) 1

q

.

Since by hypotheses p > N and q > N , W 1,p(�) and W 1,q(�) are both
compactly embedded in C0(�). Then we put

c1 = sup
u∈W 1, p(�)\{0}

supx∈� |u(x )|
‖u‖

that is finite since W 1,p(�) is compactly embedded in C0(�) and

c2 = sup
u∈W 1,q(�)\{0}

supx∈� |u(x )|
‖u‖

that is finite since W 1,q(�) is compactly embedded in C0(�).
In order to apply the former theorem we set

�(u, v) = 1

p
‖u‖p + 1

q
‖v‖q

and

�(u, v) = −
∫

�

G(u(x ), v(x )) dx

for all (u, v) ∈ X . Since X = W 1,p
0 (�) × W 1,q

0 (�) ⊆ W 1,p(�) × W 1,q(�),
the functionals � and � are (well defined and) sequentially weakly lower
semicontinuous and Gateaux differentiable in X , the critical points of � + �

being precisely the weak solutions to Problem (P). Moreover � is coercive (and
strongly continuous as well). For the proofs of the previous statements, which
are not difficult but a little bit tedious, the reader is referred to the Author’s PHD
thesis [5].

If the following definitions are used

α = 1

pcp1
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β = 1

qcq2

and for each r > 0

A(r) = {(ξ, η)∈ R
2 such that α|ξ |p + β|η|q ≤ r}

S(r) = {(ξ, η)∈ R
2 such that |ξ |p + |η|q ≤ r}

then

S

(
r

max(α, β)

)
⊆ A(r) ⊆ S

(
r

min(α, β)

)

Moreover we put ω := πn/2

n
2�(

n
2 )
the measure of the n-dimensional unit ball.

2. Results.

We wish to establish two multiplicity results for Problem (P). Making use
of theorem 1, our results guarantee that Problem (P) has infinitely many weak
solutions.

Theorem 2. Assume that infR2 G ≥ 0. Moreover, suppose that there exist two
real sequences {an} and {bn} in ]0, +∞[ with an < bn, limn→∞ bn = +∞,
such that

lim
n→+∞

bn
an

= +∞
max
S(an)

G = max
S(bn)

G > 0

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< lim sup

(ξ,η)→∞
G(ξ, η)

|ξ |p + |η|q < +∞

where D = supx∈� d(x , ∂�). Then Problem (P) admits an unbounded se-
quence of weak solutions.

Proof. Fix (ξn, ηn)∈ S(an) such that

max
S(bn)

G = G(ξn, ηn)

Put δ = min{α, β} and rn = δbn for each n ∈ N. Then {rn}n∈N is a real sequence
with rn > 0 for each n ∈ N and limn→∞ rn = +∞ such that

lim
n→∞

rn
|ξn |p + |ηn |q = +∞
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Moreover
max
A(rn )

G = G(ξn, ηn)

In our case the function ϕ of theorem 1 is defined by setting

ϕ(r) = inf
(u,v)∈�−1(]−∞,r[)

�(u, v)− inf
(�−1(]−∞,r[))w

�

r − �(u, v)
=

= inf
(u,v)∈�−1(]−∞,r[)

�(u, v)− inf�−1(]−∞,r])�

r − �(u, v)

for each r ∈ ]0, +∞[. We have

ϕ(rn) = inf
(u,v)∈�−1(]−∞,rn [)

�(u, v)− inf�−1(]−∞,rn ])�

rn − �(u, v)

We wish to prove that ϕ(rn ) < 1 provided that n ∈ N is large enough; in
order to get the previous inequality we show that there exists (un, vn)∈ X , with
�(un, vn) < rn , such that

�(un, vn)− inf�−1(]−∞,rn ])�

rn − �(un, vn)
< 1

From

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< lim sup

(ξ,η)→∞
G(ξ, η)

|ξ |p + |η|q < +∞

we can choose a constant h such that

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< h < lim sup

(ξ,η)→∞
G(ξ, η)

|ξ |p + |η|q < +∞

and so there exists a x0 ∈ � such that

max

{(2p(2N − 1)

ph

) 1
p
,
(2q(2N − 1)

qh

) 1
q

}
< d(x0, ∂�) ≤ D

Therefore we can fix γ satisfying

max

{(2p(2N − 1)

ph

) 1
p
,
(2q(2N − 1)

qh

) 1
q

}
< γ < d(x0, ∂�) ≤ D
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from which

max
{2p(2N − 1)

pγ p
,
2q(2N − 1)

qγ q

}
< h

Now,fix n ∈ N and consider the functions un ∈ W 1,p
0 (�) and vn ∈ W 1,q

0 (�)
defined by setting

un(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ξn if x ∈ B(x0,

γ

2 )
2ξn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

vn(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ηn if x ∈ B(x0,

γ

2 )
2ηn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

Obviously

�(un, vn) = 1

p
‖un‖p + 1

q
‖vn‖q =

= 1

p

∫
�

|∇un(x )|p dx + 1

q

∫
�

|∇vn(x )|q dx =

= 1

p

∫
B(x0 ,γ )\B(x0 , γ

2 )
|∇un(x )|p dx + 1

q

∫
B(x0 ,γ )\B(x0 , γ

2 )
|∇vn(x )|q dx =

= 1

p

∫
B(x0 ,γ )\B(x0, γ

2 )

2p|ξn |p
γ p

dx + 1

q

∫
B(x0 ,γ )\B(x0, γ

2 )

2q |ηn|q
γ q

dx =

=
(2p|ξn |p

pγ p
+ 2q |ηn|q

qγ q

)∣∣∣B(x0, γ ) \ B
(
x0,

γ

2

)∣∣∣ =

=
(2p|ξn |p

pγ p
+ 2q |ηn |q

qγ q

)
ωγ N 2

N − 1

2N
=

=
(2p(2N − 1)

pγ p
|ξn |p + 2q(2N − 1)

qγ q
|ηn|q

)ωγ N

2N
<

< (|ξn |p + |ηn|q )hωγ N

2N

thus �(un, vn) < rn if n ∈ N is large enough.
Moreover we have the inequality:

(2p|ξn |p
pγ p

+ 2q |ηn|q
qγ q

)
ωγ N 2

N − 1

2N
< (|ξn |p + |ηn|q )hωγ N

2N



INFINITELY MANY SOLUTIONS TO THE. . . 169

whence

rn − (|ξn |p + |ηn|q)hωγ N

2N
< rn −

(
2p|ξn |p
pγ p

+ 2q |ηn|q
qγ q

)
ωγ N 2

N − 1

2N

Next, since

lim sup
(ξ,η)→∞

G(ξ, η)

|ξ |p + |η|q < +∞

there exists L > 0 such that for all n ∈ N

G(ξn, ηn)

|ξn |p + |ηn |q < L

and since
lim
n→∞

rn
|ξn |p + |ηn |q = +∞

we have for n ∈ N large enough,

rn
|ξn |p + |ηn|q > L

(
|�| − ω

γ N

2N

)
+ hωγ N

2N

|�| − ω
γ N

2N
<

[
rn

|ξn |p + |ηn|q − hωγ N

2N

]
1

L
,

hence
�(un, vn)− inf

�−1(]−∞,rn ])
� =

= sup
�−1(]−∞,rn ])

∫
�

G(u(x ), v(x )) dx −
∫

�

G(un(x ), vn(x )) dx ≤

≤ G(ξn, ηn)|�| −
∫

�

G(un(x ), vn(x )) dx ≤

≤ G(ξn, ηn)|�| −
∫
B(x0 ,

γ

2 )
G(un(x ), vn(x )) dx =

= G(ξn, ηn)|�| −
∫
B(x0 ,

γ

2 )
G(ξn, ηn) dx =

= G(ξn, ηn)|�| − G(ξn, ηn)

∣∣∣∣B(
x0,

γ

2

)∣∣∣∣ =
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= G(ξn, ηn)

(
|�| −

∣∣∣B(
x0,

γ

2

)∣∣∣) =

= G(ξn, ηn)

(
|�| − ω

γ N

2N

)
<

< G(ξn, ηn)

[
rn

|ξn |p + |ηn|q − hωγ N

2N

]
1

L
=

= 1

L

[
rn − {|ξn|p + |ηn|q}hωγ N

2N

]
G(ξn, ηn)

|ξn |p + |ηn|q <

<
1

L

[
rn − {|ξn |p + |ηn|q }hωγ N

2N

]
L =

= rn − {|ξn |p + |ηn|q}hωγ N

2N
<

< rn −
(
2p|ξn |p
pγ p

+ 2q |ηn|q
qγ q

)
ωγ N 2

N − 1

2N
=

= rn −
(
1

p

∫
�

|∇un |p dx + 1

q

∫
�

|∇vn|q dx
)

= rn − �(un, vn)

Bearing in mind that limn→∞ rn = +∞, the previous inequality assures that
the conclusion (a) of theorem 1 can be used and either the functional � + �

has a global minimum or there exists a sequence {(un, vn)}n∈N of solutions to
Problem (P) such that limn→∞ ‖(un, vn)‖X = +∞.

The other step is to verify that the functional � + � has no global
minimum. Taking into account

h < lim sup
(ρ,σ )→∞

G(ρ, σ )

|ρ|p + |σ |q < +∞

one has, for each n ∈ N

h < inf
n∈N

(
sup√

ρ2+σ 2≥n

G(ρ, σ )

|ρ|p + |σ |q
)
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and so there exists (ρn, σn)∈ R
2 such that

√
ρ2n + σ 2n ≥ n and

G(ρn, σn)

|ρn|p + |σn |q > h

that is G(ρn, σn) > (|ρn |p + |σn |q)h.
Now if we consider functions wn ∈ W 1,p

0 (�), zn ∈ W 1,q
0 (�) defined by

setting

wn(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ρn if x ∈ B(x0,

γ

2 )
2ρn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

zn (x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
σn if x ∈ B(x0,

γ

2 )
2σn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

one has
(� + �)(wn , zn) =

= 1

p

∫
�

|∇wn |p dx + 1

q

∫
�

|∇zn |q dx −
∫
�

G(wn(x ), zn (x )) dx =

= ωγ N

2N

{
2p(2N − 1)

pγ p
|ρn|p + 2q (2N − 1)

qγ q
|σn |q

}
−

∫
�

G(wn(x ), zn(x ))dx ≤

≤ ωγ N

2N

{
2p(2N − 1)

pγ p
|ρn |p + 2q(2N − 1)

qγ q
|σn |q

}
−

∫
B(x0 ,

γ

2 )
G(ρn, σn)dx =

= ωγ N

2N

{
2p(2N − 1)

pγ p
|ρn |p + 2q (2N − 1)

qγ q
|σn |q

}
− ω

γ N

2N
G(ρn, σn) <

<
ωγ N

2N

{
2p(2N − 1)

pγ p
|ρn|p + 2q(2N − 1)

qγ q
|σn|q

}
− ω

γ N

2N
(|ρn|p + |σn |q

)
h =

= ωγ N

2N

{(
2p(2N − 1)

pγ p
− h

)
|ρn |p +

(
2q (2N − 1)

qγ q
− h

)
|σn |q

}
The previous inequality shows that the functional � + � is not bounded

from below and then it has no global minimum.
Therefore theorem 1 assures that there is a sequence (un, vn) of critical

points of � + � such that limn→∞ ‖(un, vn)‖X = +∞. �
We point out that, as a consequence of the former theorem, the following

corollary holds:
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Theorem 3. Assume that infR2 G ≥ 0. Moreover, suppose that there exist two
real sequences {an} and {bn} in ]0, +∞[ with an < bn, limn→∞ bn = +∞,
such that

lim
n→+∞

bn
an

= +∞
max
S(an)

G = max
S(bn)

G > 0

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< μ lim sup

(ξ,η)→∞
G(ξ, η)

|ξ |p + |η|q < +∞

where D = supx∈� d(x , ∂�) and μ > 0. Then the problem⎧⎪⎨
⎪⎩

−�pu = μ f (u, v) in �

−�qv = μg(u, v) in �

u = 0 on ∂�

v = 0 on ∂�

.

admits an unbounded sequence of weak solutions.

The proof of the following Theorem is almost the same as that of Theorem
2 and so it is only sketched.

Theorem 4. Assume that infR2 G ≥ 0. Moreover, suppose that there exist two
real sequences {an} and {bn} in ]0, +∞[ with an < bn , limn→∞ bn = 0, such
that

lim
n→+∞

bn
an

= +∞
max
S(an)

G = max
S(bn)

G > 0

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< lim sup

(ξ,η)→(0,0)

G(ξ, η)

|ξ |p + |η|q < +∞

where D = supx∈� d(x , ∂�). Then Problem (P) admits a sequence of non-zero
weak solutions which strongly converges to θX in X .

Proof. Fix (ξn, ηn)∈ S(an) such that

max
S(bn)

G = G(ξn, ηn)

Put δ = min{α, β} and sn = δbn for each n ∈ N. Then {sn}n∈N is a real sequence
with sn > 0 for each n ∈ N and limn→∞ sn = 0 such that

lim
n→∞

sn
|ξn |p + |ηn |q = +∞
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Moreover
max
A(sn )

G = G(ξn, ηn)

In our case the function ϕ of theorem 1 is defined by setting

ϕ(r) = inf
(u,v)∈�−1(]−∞,r[)

�(u, v)− inf�−1(]−∞,r])�

r − �(u, v)

for each r ∈ ]0, +∞[. We have

ϕ(sn) = inf
(u,v)∈�−1(]−∞,sn[)

�(u, v)− inf�−1(]−∞,sn]�

sn − �(u, v)

We wish to prove that ϕ(sn) < 1 provided that n ∈ N is large enough; in
order to get the previous inequality we show that there exists (un, vn)∈ X , with
�(un, vn) < sn , such that

�(un, vn)− inf�−1(]−∞,sn])�

sn − �(un, vn)
< 1

From

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< lim sup

(ξ,η)→(0,0)

G(ξ, η)

|ξ |p + |η|q < +∞

we can choose a constant h such that

max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}
< h < lim sup

(ξ,η)→(0,0)

G(ξ, η)

|ξ |p + |η|q < +∞

and so there exists a x0 ∈ � such that

max

{(2p(2N − 1)

ph

) 1
p
,
(2q(2N − 1)

qh

) 1
q

}
< d(x0, ∂�) ≤ D

Therefore we can fix γ satisfying

max

{(2p(2N − 1)

ph

) 1
p
,
(2q(2N − 1)

qh

) 1
q

}
< γ < d(x0, ∂�) ≤ D

from which

max
{2p(2N − 1)

pγ p
,
2q(2N − 1)

qγ q

}
< h
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Now, fix n ∈ N and consider the functions un ∈ W 1,p
0 (�) and vn ∈ W 1,q

0 (�)
defined by setting

un(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ξn if x ∈ B(x0,

γ

2 )
2ξn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

vn(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ηn if x ∈ B(x0,

γ

2 )
2ηn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

Obviously

�(un, vn) < (|ξn |p + |ηn |q)hωγ N

2N

thus �(un, vn) < sn if n ∈ N is large enough.
Moreover we have, for n ∈ N large enough,

�(un, vn)− inf
�−1(]−∞,sn])

� < sn − �(un, vn)

Bearing in mind that limn→∞ sn = 0, the previous inequality assures that
the conclusion (b) of theorem 1 can be used and either there exists a global
minimum of � which is a local minimum of � + � or there exists a sequence
{(un, vn)}n∈N of pairwise distinct weak solutions of Problem (P) such that
limn→∞ ‖(un, vn)‖X = 0.

The other step is to verify that (0, 0) is not a local minimum of � + � .
Taking into account

h < lim sup
(ρ,σ )→(0,0)

G(ρ, σ )

|ρ|p + |σ |q < +∞

one has, for each n ∈ N

h < inf
n∈N

(
sup√

ρ2+σ 2≤ 1
n

G(ρ, σ )

|ρ|p + |σ |q
)

and so there exists (ρn, σn)∈ R2 such that
√

ρ2n + σ 2n ≤ 1
n and

G(ρn, σn)

|ρn|p + |σn |q > h
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that is G(ρn, σn) > (|ρn |p + |σn |q)h.
Now if we consider functions wn ∈ W 1,p

0 (�), zn ∈ W 1,q
0 (�) defined by

setting

wn(x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
ρn if x ∈ B(x0,

γ

2 )
2ρn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

zn (x ) =
⎧⎨
⎩
0 if x ∈ � \ B(x0, γ )
σn if x ∈ B(x0,

γ

2 )
2σn
γ
(γ − |x − x0|N ) if x ∈ B(x0, γ ) \ B(x0, γ

2 )
.

one has

(� + �)(wn, zn ) <
ωγ N

2N

{(2p(2N − 1)

pγ p
− h

)
|ρn |p+

+
(2q(2N − 1)

qγ q
− h

)
|σn|q

}
< 0

The sequence (wn, zn) strongly converges to θX in X and �(wn, zn) +
�(wn, zn ) < 0 for all n ∈ N. Since �(θX ) + �(θX ) = 0, this means that θX is
not a local minimum of � + � . Then, since θX is the only global minimum of
� , the part (b) of theorem 1 ensures that there is a sequence {(un, vn)}n∈N ⊆ X
of critical points of�+� such that limn→∞ ‖(un, vn)‖X = 0 and this completes
the proof. �

We point out that, as a consequence of the former theorem, the following
corollary holds:

Theorem 5. Assume that infR2 G ≥ 0. Moreover, suppose that there exist two
real sequences {an} and {bn} in ]0, +∞[ with an < bn , limn→∞ bn = 0, such
that

lim
n→+∞

bn
an

= +∞
max
S(an)

G = max
S(bn)

G > 0

max
{2p(2N − 1)

pDp
,
2q (2N − 1)

qDq

}
< μ lim sup

(ξ,η)→(0,0)

G(ξ, η)

|ξ |p + |η|q < +∞

where D = supx∈� d(x , ∂�) and μ > 0. Then the problem⎧⎪⎨
⎪⎩

−�pu = μ f (u, v) in �

−�qv = μg(u, v) in �

u = 0 on ∂�

v = 0 on ∂�

.
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admits a sequence of non-zero weak solutionswhich strongly converges to θX in
X .

3. Examples.

Let A be a positive number such that

A > max
{2p(2N − 1)

pDp
,
2q(2N − 1)

qDq

}

Let b0 = 0. The sequences {an}n∈N and {bn}n∈N with an = (n + 1)! and
bn = (n+1)(n+1)! satisfy the hypotheses of Theorem 2 and besides bn−1 < an
for all n ∈ N.

Moreover the sequences {an}n∈N and {bn}n∈N with an = 1
(n+1)(n+1)! and

bn = 1
(n+1)! satisfy the hypotheses of Theorem 4 and besides bn+1 < an for all

n ∈ N.

Here is an example of application of Theorem 2 :

Example 1. Let b0 = 0 and let {an} and {bn} be two sequences satisfying the
hypotheses of Theorem 2 and such that bn−1 < an for all n ∈ N. Let us consider
the countable family of pairwise disjoint closed bounded intervals

{[bn−1, an]}n∈N

Then for each n ∈ N the function

t → 2π t − (an + bn−1)π
an − bn−1

is an homeomorphism between the interval [bn−1, an] and the interval [−π, π ].
For each n ∈ N the function

fn (t) = 1

2

{
1+ cos

(2π t − (an + bn−1)π
an − bn−1

)}

satisfies

• fn ∈C1([bn−1, an])
• 0 ≤ fn(t) ≤ 1
• fn (bn−1) = fn (an) = 0
• f ′

n (bn−1) = f ′
n (an) = 0
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For each n ∈ N let

αn(t) =
{
fn (t) if t ∈ [bn−1, an]
0 if t /∈ [bn−1, an] .

and let

α(t) =
∞∑
n=1

αn(t) for each t ∈ R

Let t0 ∈ R. If there exist n ∈ N such that t0 ∈ [bn−1, an] then α(t0) = αn(t0) =
fn (t0). Else, if t0 ∈ R \ ∪∞

n=1[bn−1, an] then αn(t0) = 0 for each n ∈ N so
α(t0) = 0.

The function G : R
2 → R

G(ξ, η) = A(|ξ |p + |η|q)α(|ξ |p + |η|q)

satisfies the hypotheses of Theorem 2. Infact G(ξ, η) ≥ 0 for each (ξ, η) ∈ R
2

and G(0, 0) = 0. Moreover A > 0, |ξ |p +|η|q ≥ 0 and α(t) ≥ 0 for each t ∈ R

therefore
inf
R2
G ≥ 0

From an ≤ t ≤ bn it follows that α(t) = 0, so if an ≤ |ξ |p + |η|q ≤ bn then
G(ξ, η) = 0, whence

max
S(an)

G = max
S(bn)

G

Finally

lim sup
(ξ,η)→∞

G(ξ, η)

|ξ |p + |η|q = A

Here is an example of application of Theorem 4 :

Example 2. Let {an} and {bn} be two sequences satisfying the hypotheses of
Theorem 4 and such that bn+1 < an for all n ∈ N. Let us consider the countable
family of pairwise disjoint closed bounded intervals

{[bn+1, an]}n∈N

Then for each n ∈ N the function

t → 2π t − (an + bn+1)π
an − bn+1
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is an homeomorphism between the interval [bn+1, an] and the interval [−π, π ].
For each n ∈ N the function

fn (t) = 1

2

{
1+ cos

(2π t − (an + bn+1)π
an − bn+1

)}

satisfies

• fn ∈C1([bn+1, an])
• 0 ≤ fn(t) ≤ 1
• fn (bn+1) = fn (an) = 0
• f ′

n (bn+1) = f ′
n (an) = 0

For each n ∈ N let

αn(t) =
{
fn (t) if t ∈ [bn+1, an]
0 if t /∈ [bn+1, an] .

and let

α(t) =
∞∑
n=1

αn(t) for each t ∈ R

Let t0 ∈ R. If there exist n ∈ N such that t0 ∈ [bn+1, an] then α(t0) = αn(t0) =
fn (t0). Else, if t0 ∈ R \ ∪∞

n=1[bn−1, an] then αn(t0) = 0 for each n ∈ N so
α(t0) = 0.

It is easy to see that the function G : R2 → R

G(ξ, η) = A(|ξ |p + |η|q)α(|ξ |p + |η|q)

satisfies the hypotheses of Theorem 4.
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