NEF VECTOR BUNDLES ON A PROJECTIVE SPACE WITH FIRST CHERN CLASS 3 AND SECOND CHERN CLASS 8

MASAHIRO OHNO

We describe nef vector bundles on a projective space with first Chern class three and second Chern class eight over an algebraically closed field of characteristic zero by giving them a minimal resolution in terms of a full strong exceptional collection of line bundles.

1. Introduction

This paper is a continuation of [Ohn16]. Throughout this paper, as in [Ohn16], we work over an algebraically closed field K of characteristic zero. Let \mathcal{E} be a nef vector bundle of rank r on a projective space \mathbb{P}^{n} with first Chern class c_{1} and second Chern class c_{2}. In [Ohn16, Theorem 1.1], we classified such \mathcal{E} 's in case $c_{1}=3$ and $c_{2}<8$, and in [Ohn16, Proposition 1.2], we also gave an example of such \mathcal{E} 's on a projective plane with $c_{1}=3$ and $c_{2}=8$. In this paper, we complete the classification of such \mathcal{E} 's with $c_{1}=3$ and $c_{2}=8$ by giving them a minimal resolution in terms of a full strong exceptional collection of line bundles. The precise statement is as follows.

Theorem 1.1. Let \mathcal{E} be as above. Suppose that $c_{1}=3$ and that $c_{2}=8$. Then $n=2$ and \mathcal{E} fits in an exact sequence

$$
0 \rightarrow \mathcal{O}(-2)^{\oplus 2} \rightarrow \mathcal{O}^{\oplus r+1} \oplus \mathcal{O}(-1) \rightarrow \mathcal{E} \rightarrow 0
$$

Entrato in redazione: 3 aprile 2017
AMS 2010 Subject Classification: Primary 14F05; Secondary 14J60
Keywords: nef vector bundles, Fano bundles, spectral sequences
This work was partially supported by JSPS KAKENHI (C) Grant Number 15K04810.

This implies that the example given in [Ohn16, Proposition 1.2] is nothing but the unique type of nef vector bundles with $c_{1}=3$ and $c_{2}=8$.

Note that, for a nef vector bundle \mathcal{E} with $c_{1}=3$, the anti-canonical bundle on $\mathbb{P}(\mathcal{E})$ is ample if $n \geq 3$ and nef if $n \geq 2$. Moreover, if $n=2$, it is big if and only if $c_{2} \leq 8$. So we can say that we have classified, except for the case (11) of [Ohn16, Theorem 1.1], weak Fano manifolds of the form $\mathbb{P}(\mathcal{E})$ where \mathcal{E} is a vector bundle on a projective space \mathbb{P}^{n} under the assumption that \mathcal{E} is nef and $c_{1}=3$. Recall here that a projective manifold M is called weak Fano if its anti-canonical bundle is nef and big, and that a vector bundle \mathcal{F} is called a weak Fano bundle if $\mathbb{P}(\mathcal{F})$ is a weak Fano manifold. We hope that the theorem above together with [Ohn16, Theorem 1.1] would be useful for some part of the classification of weak Fano bundles.

This paper is organized as follows. We first concentrate our attention to the case $n=2$. In $\S 2$, we recall and summarize results obtained in [Ohn16] by taking into account that we only consider nef vector bundles with $c_{1}=3$ and $c_{2}=8$. In $\S 3$, we show that \mathcal{E} does not contain $\mathcal{O}(1)$ as a subsheaf. In $\S 4$, we first observe that \mathcal{E} must fit in the exact sequence given in [Ohn16, Proposition 1.2] and then show that \mathcal{E} fits in the exact sequence in the theorem above. Finally, in $\S 5$, we show that the case $n \geq 3$ does not happen.

1.1. Notation and conventions

Basically we follow the standard notation and terminology in algebraic geometry. For a vector bundle $\mathcal{E}, \mathbb{P}(\mathcal{E})$ denotes $\operatorname{Proj} S(\mathcal{E})$, where $S(\mathcal{E})$ denotes the symmetric algebra of \mathcal{E}. For a coherent sheaf \mathcal{F} on a smooth projective variety X, we denote by $c_{i}(\mathcal{F})$ the i-th Chern class of \mathcal{F}. For coherent sheaves \mathcal{F} and \mathcal{G} on $X, h^{q}(\mathcal{F})$ denotes $\operatorname{dim} H^{q}(\mathcal{F})$. Finally we refer to [Laz04] for the definition and basic properties of nef vector bundles.

2. Set-up for the two-dimensional case

In the following, let \mathcal{E} be a nef vector bundle on a projective space \mathbb{P}^{n} with $c_{1}=3$ and $c_{2}=8$. In this section, we assume that $n=2$. It follows from [Ohn16, (3.10), (3.11) and (3.12)] that

$$
\begin{gather*}
h^{1}(\mathcal{E}(-2))=5 \tag{1}\\
h^{0}(\mathcal{E}(-1))-h^{1}(\mathcal{E}(-1))=-2 \tag{2}\\
h^{0}(\mathcal{E})=r+1 \tag{3}
\end{gather*}
$$

Note here that, for a nef vector bundle \mathcal{E}^{\prime} in general, unlike the case of globally generated vector bundles, an inequality $h^{0}\left(\mathcal{E}^{\prime}\right) \geq r-1$ does not necessarily
imply that \mathcal{E}^{\prime} fits in an exact sequence of the form

$$
0 \rightarrow \mathcal{O}^{\oplus r-1} \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{I}_{Z} \otimes \operatorname{det} \mathcal{E}^{\prime} \rightarrow 0
$$

for some closed subscheme Z of \mathbb{P}^{2}, where \mathcal{I}_{Z} denotes the ideal sheaf of Z (see [Ohn16, §13] for some examples). Set

$$
e_{0,1}=h^{0}(\mathcal{E}(-1))
$$

Then

$$
h^{1}(\mathcal{E}(-1))=e_{0,1}+2 \geq 2
$$

It follows from [Ohn16, (3.13)] that $5 \geq h^{1}(\mathcal{E}(-1))$. Therefore

$$
0 \leq e_{0,1} \leq 3
$$

We apply to \mathcal{E} the Bondal spectral sequence [OT14, Theorem 1]

$$
E_{2}^{p, q}=\mathcal{T o r}_{-p}^{A}\left(\operatorname{Ext}^{q}(G, \mathcal{E}), G\right) \Rightarrow E^{p+q}=\left\{\begin{array}{lll}
\mathcal{E} & \text { if } & p+q=0 \tag{4}\\
0 & \text { if } & p+q \neq 0
\end{array}\right.
$$

As we have seen in [Ohn16, $\S 3.1$ and Lemma 5.1], $E_{2}^{p, q}$ vanishes unless $(p, q)=$ $(-2,1),(-1,1)$ or $(0,0)$, and $E_{2}^{-2,1}$ and $E_{2}^{-1,1}$ fit in an exact sequence of coherent sheaves

$$
\begin{equation*}
0 \rightarrow E_{2}^{-2,1} \rightarrow \mathcal{O}(-3) \xrightarrow{v_{2}} \Omega_{\mathbb{P}^{2}}(1)^{\oplus e_{0,1}} \rightarrow E_{2}^{-1,1} \rightarrow k(w) \rightarrow 0 \tag{5}
\end{equation*}
$$

for some point w in \mathbb{P}^{2}, where $k(w)$ denotes the residue field of w. Note that this exact sequence is a consequence of the vanishing $H^{1}(\mathcal{E})=0$, and recall that $H^{1}(\mathcal{E})$ vanishes by the Kawamata-Viehweg vanishing theorem since $c_{2}<9$. Moreover we have the following exact sequences

$$
\begin{align*}
0 & \rightarrow E_{2}^{-2,1} \rightarrow E_{2}^{0,0} \rightarrow E_{3}^{0,0} \rightarrow 0 \tag{6}\\
0 & \rightarrow E_{3}^{0,0} \rightarrow \mathcal{E} \rightarrow E_{2}^{-1,1} \rightarrow 0 \tag{7}\\
0 \rightarrow \mathcal{O}^{\oplus 3 e_{0,1}} & \rightarrow \mathcal{O}(1)^{\oplus e_{0,1}} \oplus \mathcal{O}^{\oplus r+1} \rightarrow E_{2}^{0,0} \rightarrow 0 . \tag{8}
\end{align*}
$$

We shall divide the proof according to the value of $e_{0,1}$.

3. The case $n=2$ and $e_{0,1}>0$

Suppose that $n=2$ and $e_{0,1}>0$. Since $e_{0,1}>0$ and $h^{0}(\mathcal{E}(-2))=0$ by the argument in [Ohn16, §3], we have an exact sequence

$$
0 \rightarrow \mathcal{O}(1) \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0
$$

where \mathcal{F} is a torsion-free sheaf with $c_{1}(\mathcal{F})=2, c_{2}(\mathcal{F})=6$ and $h^{0}(\mathcal{F}(-1))=$ $e_{0,1}-1$. Denote by $\mathcal{F}^{\vee \vee}$ the double dual of \mathcal{F}, and consider the quotient \mathcal{Q} of the inclusion $\mathcal{F} \subset \mathcal{F}^{\vee \vee}$:

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\vee \vee} \rightarrow \mathcal{Q} \rightarrow 0
$$

The support of \mathcal{Q} has dimension zero, and its length is equal to $-c_{2}(\mathcal{Q})$. By [Ohn16, Lemma 12.1], $\mathcal{F}^{\vee \vee}$ is a nef vector bundle of rank $r-1$ with $c_{1}\left(\mathcal{F}^{\vee \vee}\right)=$ $2, c_{2}\left(\mathcal{F}^{\vee \vee}\right)=6+c_{2}(\mathcal{Q})$ and $h^{0}\left(\mathcal{F}^{\vee \vee}(-1)\right) \geq e_{0,1}-1$.

3.1. The case $e_{0,1}>1$

Suppose that $e_{0,1}>1$. Then it follows from [Ohn14, Theorem 6.5] that $\mathcal{F}^{\vee \vee}$ is isomorphic to either $\mathcal{O}(2) \oplus \mathcal{O}^{\oplus r-2}$ or $\mathcal{O}(1)^{\oplus 2} \oplus \mathcal{O}^{\oplus r-3}$, or $\mathcal{F}^{\vee \vee}$ fits in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O}(1) \oplus \mathcal{O}^{\oplus r-1} \rightarrow \mathcal{F}^{\vee \vee} \rightarrow 0 \tag{9}
\end{equation*}
$$

Suppose that $\mathcal{F}^{\vee \vee} \cong \mathcal{O}(2) \oplus \mathcal{O}^{\oplus r-2}$. Since $c_{2}\left(\mathcal{F}^{\vee \vee}\right)=0$, the length of \mathcal{Q} is 6. Let \mathcal{G} be the image of the composite of the inclusion $\mathcal{F} \rightarrow \mathcal{O}(2) \oplus \mathcal{O}^{\oplus r-2}$ and the projection $\mathcal{O}(2) \oplus \mathcal{O}^{\oplus r-2} \rightarrow \mathcal{O}^{\oplus r-2}$. Note that the kernel of the surjection $\mathcal{F} \rightarrow \mathcal{G}$ is a subsheaf of $\mathcal{O}(2)$. Hence it can be written as $\mathcal{I}_{Z}(2)$ where \mathcal{I}_{Z} is the ideal sheaf of some closed subscheme Z of \mathbb{P}^{2}. Now we have the following commutative diagram with exact lows and columns

where \mathcal{Q}_{1} is defined by the diagram above. Since $\mathcal{O}_{Z}(2) \rightarrow \mathcal{Q}$ is injective, we see that $\operatorname{dim} Z \leq 0$, and thus $\mathcal{O}_{Z}(2) \cong \mathcal{O}_{Z}$. If $\mathcal{Q}_{1} \neq 0$, then take a line L intersecting with the support of \mathcal{Q}_{1}. Then the kernel of the surjection $\left.\mathcal{O}_{L}^{\oplus r-1} \rightarrow \mathcal{Q}_{1}\right|_{L}$ has a negative degree line bundle as a direct summand, which implies that some negative degree line bundle is a quotient of $\left.\mathcal{G}\right|_{L},\left.\mathcal{F}\right|_{L}$ and $\left.\mathcal{E}\right|_{L}$. This contradicts
that \mathcal{E} is nef. Hence $\mathcal{Q}_{1}=0$. Thus $\mathcal{G} \cong \mathcal{O}^{\oplus r-2}, \mathcal{O}_{Z} \cong \mathcal{Q}$, and \mathcal{O}_{Z} has length 6. Since $h^{0}(\mathcal{G}(-1))=0$, we infer that $h^{0}\left(\mathcal{I}_{Z}(1)\right)=e_{0,1}-1>0$. Hence there exists a line L passing through Z. Since length $\mathcal{O}_{Z}=6$, this implies that the kernel of the restriction $\mathcal{O}_{L}(2) \rightarrow \mathcal{O}_{Z}$ to the line L of the surjection $\mathcal{O}(2) \rightarrow \mathcal{O}_{Z}$ is isomorphic to $\mathcal{O}_{L}(-4)$. By restricting the diagram above to the line L, we see that $\left.\mathcal{F}\right|_{L}$ has a negative degree line bundle as a quotient; this is a contradiction. Hence $\mathcal{F}^{\vee \vee}$ cannot be isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}^{\oplus r-2}$.

Suppose that $\mathcal{F}^{\vee \vee} \cong \mathcal{O}(1)^{\oplus 2} \oplus \mathcal{O}^{\oplus r-2}$. Since $c_{2}\left(\mathcal{F}^{\vee \vee}\right)=1$, the length of \mathcal{Q} is 5. Let \mathcal{G} be the image of the composite of the inclusion $\mathcal{F} \rightarrow \mathcal{O}(1)^{\oplus 2} \oplus$ $\mathcal{O}^{\oplus r-3}$ and the projection $\mathcal{O}(1)^{\oplus 2} \oplus \mathcal{O}^{\oplus r-3} \rightarrow \mathcal{O}^{\oplus r-3}$, and \mathcal{Q}_{1} the cokernel of the inclusion $\mathcal{G} \rightarrow \mathcal{O}^{\oplus r-3}$. Then there exists a surjection $\mathcal{Q} \rightarrow \mathcal{Q}_{1}$, and thus the support of \mathcal{Q}_{1} has dimension ≤ 0. If $\mathcal{Q}_{1} \neq 0$, we get a contradiction by the same argument as above. Therefore we may assume that $\mathcal{Q}_{1}=0$; thus $\mathcal{G} \cong \mathcal{O}^{\oplus r-3}$. Let \mathcal{H} be the kernel of the surjection $\mathcal{F} \rightarrow \mathcal{O}^{\oplus r-3}$. Then we have the following commutative diagram with exact lows and columns.

Since $h^{0}\left(\mathcal{O}^{\oplus r-3}(-1)\right)=0$, we infer that $h^{0}(\mathcal{H}(-1))=e_{0,1}-1>0$. Since $\mathcal{H}(-1)$ is a subsheaf of $\mathcal{O}^{\oplus 2}$, this implies that $\mathcal{H}(-1) \cong \mathcal{I}_{Z} \oplus \mathcal{O}$ and $\mathcal{Q}(-1) \cong$ \mathcal{O}_{Z} for some 0-dimensional closed subscheme Z of length 5 in \mathbb{P}^{2}. Now take a line L that intersect with Z in length $l \geq 2$. Then the kernel of $\mathcal{O}_{L}(1)^{\oplus 2} \rightarrow$ $\mathcal{O}_{Z \cap L}(1)$ is of the form $\mathcal{O}_{L}(1-l) \oplus \mathcal{O}_{L}(1)$. This implies that $\left.\mathcal{F}\right|_{L}$ has a negative degree line bundle as a quotient, which is a contradiction. Hence $\mathcal{F}^{\vee \vee}$ cannot be isomorphic to $\mathcal{O}(1)^{\oplus 2} \oplus \mathcal{O}^{\oplus r-3}$ either.

Suppose that $\mathcal{F}^{\vee \vee}$ fits in the exact sequence (9). Since $c_{2}\left(\mathcal{F}^{\vee \vee}\right)=2$, the length of \mathcal{Q} is 4. Define a torsion-free sheaf \mathcal{F}_{0} as a quotient of $\mathcal{F}^{\vee \vee}$ by an injection $\mathcal{O}(1) \rightarrow \mathcal{F}^{\vee \vee}$. Then \mathcal{F}_{0} fits in an exact sequence

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O}^{\oplus r-1} \rightarrow \mathcal{F}_{0} \rightarrow 0
$$

Let \mathcal{G} be the image of the composite of the inclusion $\mathcal{F} \rightarrow \mathcal{F}^{\vee \vee}$ and the projection $\mathcal{F}^{\vee \vee} \rightarrow \mathcal{F}_{0}$. Since $h^{0}\left(\mathcal{F}_{0}(-1)\right)=0$, we see that $h^{0}(\mathcal{G}(-1))=0$. Let \mathcal{H} be the kernel of the surjection $\mathcal{F} \rightarrow \mathcal{G}$. Then we have the following commutative diagram with exact lows and columns

where \mathcal{Q}_{1} and \mathcal{Q}_{2} are defined by the diagram above. Since $h^{0}(\mathcal{G}(-1))=0$, we see that $h^{0}(\mathcal{H}(-1))=e_{0,1}-1>0$. Since $\mathcal{H}(-1)$ is a subsheaf of \mathcal{O}, this implies that $\mathcal{H}(-1)$ is \mathcal{O} itself; thus $\mathcal{Q}_{2}=0, \mathcal{Q} \cong \mathcal{Q}_{1}$ and \mathcal{Q}_{1} has length 4 . As we have seen in the proof of [Ohn14, Theorem 6.4], \mathcal{F}_{0} is locally free outside at most one point, and if \mathcal{F}_{0} is not locally free at a point z, then \mathcal{F}_{0} is isomorphic to $\mathfrak{m}_{z}(1) \oplus \mathcal{O}^{\oplus r-3}$, where \mathfrak{m}_{z} is the ideal sheaf of z, since $n=2$. Suppose that \mathcal{F}_{0} is not locally free. Then take a line L passing through z and meeting the support of \mathcal{Q}_{1}. We see that the surjection $\mathcal{F}_{0} \rightarrow \mathcal{Q}_{1}$ induces a surjection $\left.\mathcal{O}_{L}^{\oplus r-2} \rightarrow \mathcal{Q}_{1}\right|_{L}$, whose kernel has a negative degree line bundle as a quotient, and thus so does $\left.\mathcal{G}\right|_{L},\left.\mathcal{F}\right|_{L}$ and $\left.\mathcal{E}\right|_{L}$. This is a contradiction. Suppose that \mathcal{F}_{0} is locally free. Then take a line L which intersects with \mathcal{Q}_{1} in length $l \geq 2$. Since $\left.\mathcal{F}_{0}\right|_{L} \cong \mathcal{O}_{L}(1) \oplus$ $\mathcal{O}^{\oplus r-3}$, we see that $\left.\mathcal{G}\right|_{L}$ admits a negative degree line bundle as a quotient; this is a contradiction. Hence $\mathcal{F}^{\vee \vee}$ cannot fit in the exact sequence (9).

Therefore we conclude that the case $e_{0,1}>1$ does not happen.

3.2. The case $e_{0,1}=1$

Suppose that $e_{0,1}=1$. If the morphism v_{2} in (5) is zero, then $\left.\left.E_{2}^{-1,1}\right|_{L} \cong \Omega_{\mathbb{P}^{2}}(1)\right|_{L} \cong$ $\mathcal{O}_{L}(-1) \oplus \mathcal{O}_{L}$ for a line L not containing w. By (7), this implies that $\left.\mathcal{E}\right|_{L}$ has $\mathcal{O}_{L}(-1)$ as a quotient; this is a contradiction. Hence $v_{2} \neq 0$, and thus $E_{2}^{-2,1}=0$, $E_{2}^{0,0} \cong E_{3}^{0,0}$ by (6), and $E_{2}^{-1,1}$ fits in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-3) \xrightarrow{v_{2}} \Omega_{\mathbb{P}^{2}}(1) \rightarrow E_{2}^{-1,1} \rightarrow k(w) \rightarrow 0 \tag{10}
\end{equation*}
$$

We see that $E_{2}^{-1,1}$ is a coherent sheaf of rank one. Since $E_{3}^{0,0}$ is torsion-free by (7), so is $E_{2}^{0,0}$, and thus $E_{2}^{0,0}$ has $\mathcal{O}(1)$ as a subsheaf and consequently is isomorphic to $\mathcal{O}(1) \oplus \mathcal{O}^{\oplus r-2}$ by (8). Hence the exact sequence (7) becomes an exact sequence

$$
0 \rightarrow \mathcal{O}(1) \oplus \mathcal{O}^{\oplus r-2} \xrightarrow{\varphi} \mathcal{E} \rightarrow E_{2}^{-1,1} \rightarrow 0
$$

By taking the dual of φ and $(r-1)$-th wedge product of the dual, we obtain a morphism $\wedge^{r-1} \mathcal{E}^{\vee} \rightarrow \mathcal{O}(-1)$. Let $\mathcal{I}_{Z}(-1)$ be the image of this morphism, where \mathcal{I}_{Z} is the ideal sheaf of a closed subscheme Z of \mathbb{P}^{2} of dimension ≤ 1. Note that Z is the degeneracy locus of φ and that if we denote by ψ the induced surjection $\mathcal{E} \cong \wedge^{r-1} \mathcal{E}^{\vee} \otimes \operatorname{det} \mathcal{E} \rightarrow \mathcal{I}_{Z}(-1) \otimes \operatorname{det} \mathcal{E} \cong \mathcal{I}_{Z}(2)$ then $\psi \circ \varphi=0$.

Suppose that the degeneracy locus Z of φ has codimension ≥ 2. Then $E_{2}^{-1,1}$ is torsion-free. This implies that $E_{2}^{-1,1} \cong \mathcal{I}_{Z}(2)$ and that \mathcal{E} fits in an exact sequence

$$
0 \rightarrow \mathcal{O}(1) \oplus \mathcal{O}^{\oplus r-2} \xrightarrow{\varphi} \mathcal{E} \rightarrow \mathcal{I}_{Z}(2) \rightarrow 0
$$

Note that length $Z=6$. Since \mathcal{E} is nef, length $(Z \cap L) \leq 2$ for any line L in \mathbb{P}^{2}; let us call this the basic property of Z. Let p be any point in Z. We may assume that Z is in an affine open subscheme $\operatorname{Spec} K[x, y]$ and that $p=(0,0)$. The local ring $\mathcal{O}_{Z, p}$ can be written as A / I, where $A=\hat{\mathcal{O}}_{\mathbb{P}^{2}, p}=K[[x, y]]$ and I the ideal of Z in the local ring A. Observe here that if length $(A / I) \leq 4$ and thus the support of Z contains another point $q \neq p$, then the basic property of Z implies $I \nsubseteq \mathfrak{m}^{2}$, where \mathfrak{m} denotes the maximal ideal of A. Based on this observation, we can deduce from the basic property of Z that $I \nsubseteq \mathfrak{m}^{2}$ without any assumption on length (A / I). Now that Z is curvilinear, after changing coordinates (x, y) if necessary, we may assume that $I=\left\langle y-\varphi(x), x^{l}\right\rangle$, where $\varphi(x)=a_{2} x^{2}+a_{3} x^{3}+\cdots \in K[[x]]$ $\left(a_{2} \neq 0\right)$ and $l=$ length (A / I). Local computation then shows that there exists a smooth conic C such that length $(Z \cap C) \geq 5$; e.g., if $l \geq 3$, we can take a defining equation of C to be $y=a_{2} x^{2}+d x y+e y^{2}$ for some $d, e \in K$. However this again contradicts that \mathcal{E} is nef. Therefore this case cannot happen.

Suppose that $\operatorname{dim} Z=1$. Then the ideal sheaf \mathcal{I}_{Z} of Z is decomposed as $\mathcal{I}_{Z} \cong \mathcal{I}_{Z_{d}}(-d)$, where d is the degree of the divisor contained in Z and $\mathcal{I}_{Z_{d}}$ is the ideal sheaf of a 0 -dimensional closed subscheme Z_{d} of \mathbb{P}^{2}. Consider the
following commutative diagram with exact lows and columns

where \mathcal{K} and \mathcal{T} are defined by the diagram above. We see that \mathcal{K} is a coherent sheaf of rank $r-1$ and thus \mathcal{T} is the torsion subsheaf of $E_{2}^{-1,1}$, and that $\operatorname{Supp} Z=$ $\operatorname{Supp} \mathcal{T} \cup \operatorname{Supp} Z_{d}$. Hence $E_{2}^{-1,1}$ has an associated point of codimension one. Now recall the exact sequence (10) and split this sequence into the following two exact sequences of coherent sheaves

$$
\begin{gather*}
0 \rightarrow \mathcal{O}(-3) \xrightarrow{v_{2}} \Omega_{\mathbb{P}^{2}}(1) \rightarrow \mathcal{C} \rightarrow 0 \tag{11}\\
0 \rightarrow \mathcal{C} \rightarrow E_{2}^{-1,1} \rightarrow k(w) \rightarrow 0 \tag{12}
\end{gather*}
$$

Note that \mathcal{C} has an associated point of codimension one since so does $E_{2}^{-1,1}$. Hence v_{2} passes through $\mathcal{O}(-1)$ or $\mathcal{O}(-2)$.

Suppose that v_{2} passes through $\mathcal{O}(-1)$. Then we have the following commutative diagram with exact lows and columns

where \mathcal{I}_{p} is the ideal sheaf of a point p, and D is a conic in \mathbb{P}^{2}. We also have the following commutative diagram with exact lows and columns

where \mathcal{D} is defined by the diagram above. Suppose that \mathcal{D} has an associated point other than the generic point. Then it must be w, and thus $\mathcal{D} \cong \mathcal{I}_{w} \oplus k(w)$, which also contradicts that \mathcal{E} is nef. Therefore \mathcal{D} is torsion-free. Since \mathcal{D} has rank one, $c_{1}(\mathcal{D})=0$ and $c_{2}(\mathcal{D})=0, \mathcal{D}$ is isomorphic to its double dual $\mathcal{O}_{\mathbb{P}^{2}}$. Moreover we see that $p=w$, that $\mathcal{O}_{D}(-1)$ is the torsion subsheaf \mathcal{T} of $E_{2}^{-1,1}$, that $Z_{d}=\emptyset$, and that $Z=D$. If $h^{0}\left(E_{2}^{-1,1}\right) \neq 0$, then $E_{2}^{-1,1} \cong \mathcal{O}_{D}(-1) \oplus \mathcal{O}_{\mathbb{P}^{2}}$, which contradicts that \mathcal{E} is nef. Hence $h^{0}\left(E_{2}^{-1,1}\right)=0$. Since $h^{1}\left(\mathcal{O}_{D}(-1)\right)=$ $h^{2}\left(\mathcal{O}_{\mathbb{P}^{2}}(-3)\right)=1$, this implies that $H^{0}(\mathcal{D})=H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}\right) \cong H^{1}\left(\mathcal{O}_{D}(-1)\right)$. Suppose that D is smooth. Consider the pull back $\left.\mathcal{O}_{D}(-1) \rightarrow E_{2}^{-1,1}\right|_{D} \rightarrow \mathcal{O}_{D} \rightarrow 0$ of the exact sequence above. Note that $\left.E_{2}^{-1,1}\right|_{D}$ has rank at least two since D is the degeneracy locus of φ. Hence we obtain an exact sequence

$$
\left.0 \rightarrow \mathcal{O}_{D}(-1) \rightarrow E_{2}^{-1,1}\right|_{D} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

Note that $D \cong \mathbb{P}^{1}$ and that $\mathcal{O}_{D}(-1) \cong \mathcal{O}_{\mathbb{P}^{1}}(-2)$ via this isomorphism. Since the sequence above does not split, this implies that $\left.E_{2}^{-1,1}\right|_{D} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$, which contradicts that \mathcal{E} is nef. Suppose that D is a double line. Then $D_{\text {red }} \cong \mathbb{P}^{1}$, and we have a surjection $\mathcal{O}_{D}(-1) \rightarrow \mathcal{O}_{D_{\text {red }}}(-1)$. The similar argument as above shows that there exists an exact sequence

$$
\left.0 \rightarrow \mathcal{O}_{D_{\text {red }}}(-1) \rightarrow E_{2}^{-1,1}\right|_{D_{\text {red }}} \rightarrow \mathcal{O}_{D_{\text {red }}} \rightarrow 0
$$

Hence $\left.E_{2}^{-1,1}\right|_{D_{\text {red }}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}$; this contradicts that \mathcal{E} is nef. Suppose that D is a union of two distinct lines: $D=L_{1}+L_{2}$. Then $\left.E_{2}^{-1,1}\right|_{L_{1}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}$ by the similar argument as above, and hence this case does not occur either.

Suppose that v_{2} passes through $\mathcal{O}(-2)$ and does not pass through $\mathcal{O}(-1)$. Then we have the following commutative diagram with exact lows and columns

where \mathcal{I}_{W} is the ideal sheaf of a 0 -dimensional locally complete intersection W of length three, and L is a line in \mathbb{P}^{2}. We also have the following commutative diagram with exact lows and columns

where \mathcal{D} is defined by the diagram above. If \mathcal{D} is not torsion-free, then $\mathcal{D} \cong$ $\mathcal{I}_{w} \oplus k(w)$, which contradicts that \mathcal{E} is nef. Therefore \mathcal{D} is a torsion-free coherent sheaf of rank one with $c_{1}(\mathcal{D})=1$ and $c_{2}(\mathcal{D})=2$. Hence $\mathcal{O}_{L}(-2)$ is the torsion subsheaf \mathcal{T} of $E_{2}^{-1,1}$, and we infer that $\mathcal{D} \cong \mathcal{I}_{Z_{1}}(1)$ with length $Z_{1}=2$. This also contradicts that \mathcal{E} is nef.

Therefore we conclude that the case $e_{0,1}=1$ does not happen.
4. The case $n=2$ and $e_{0,1}=0$

Suppose that $e_{0,1}=0$. Then $E_{2}^{-2,1} \cong \mathcal{O}(-3)$ and $E_{2}^{-1,1} \cong k(w)$ by (5), and $E_{2}^{0,0} \cong \mathcal{O}^{\oplus r+1}$ by (8). Thus we have the following two exact sequences by (6) and (7)

$$
\begin{gather*}
0 \rightarrow \mathcal{O}(-3) \rightarrow \mathcal{O}^{\oplus r+1} \rightarrow E_{3}^{0,0} \rightarrow 0 \tag{13}\\
0 \rightarrow E_{3}^{0,0} \rightarrow \mathcal{E} \rightarrow k(w) \rightarrow 0 \tag{14}
\end{gather*}
$$

These two exact sequences show that \mathcal{E} must fit in the exact sequence given in [Ohn16, Proposition 1.2]. We shall show that \mathcal{E} has a resolution in terms of a full strong exceptional sequence of line bundles as in Theorem 1.1 in accordance with the framework given in [Ohn14].

Since $h^{1}\left(E_{3}^{0,0}(1)\right)=0$, we have the following commutative diagram with exact rows and columns

where \mathcal{I}_{w} is the ideal sheaf of w, and \mathcal{J} and g are defined by the diagram above.

We also have the following commutative diagram with exact rows and columns

where f is defined by the diagram above. We claim here that the composite of f and the projection $\mathcal{O}(-3) \oplus \mathcal{O}(-2)^{\oplus 2} \rightarrow \mathcal{O}(-3)$ is non-zero. Suppose, to the contrary, that the composite is zero. Then $\mathcal{J} \cong \mathcal{O}(-3) \oplus \mathcal{I}_{w}(-1)$. By taking the double dual, the composite of the inclusion $\mathcal{I}_{w}(-1) \rightarrow \mathcal{J}$ and g extends to a splitting injection of the projection $\mathcal{O}^{\oplus r+1} \oplus \mathcal{O}(-1) \rightarrow \mathcal{O}(-1)$; we obtain the following commutative diagram with exact rows

Since the induced morphism $k(w) \rightarrow \mathcal{E}$ is a splitting injection of the surjection $\mathcal{E} \rightarrow k(w)$, we have an isomorphism $\mathcal{E} \cong E_{3}^{0,0} \oplus k(w)$, which is absurd. Hence the claim holds; thus $\mathcal{J} \cong \operatorname{Coker}(f) \cong \mathcal{O}(-2)^{\oplus 2}$. Therefore we obtain the desired exact sequence

$$
0 \rightarrow \mathcal{O}(-2)^{\oplus 2} \rightarrow \mathcal{O}^{\oplus r+1} \oplus \mathcal{O}(-1) \rightarrow \mathcal{E} \rightarrow 0
$$

5. The case $n \geq 3$

In this section, we shall show that the case $n \geq 3$ does not happen. By considering the restriction $\left.\mathcal{E}\right|_{L^{3}}$ to a 3-dimensional linear subspace $L^{3} \subseteq \mathbb{P}^{n}$, we may assume that $n=3$. We have

$$
\chi(\mathcal{E}(-1))=\frac{c_{3}}{2}-10
$$

by [Ohn16, (3.20)]. In particular, c_{3} is even. We also have

$$
c_{3} \geq 21
$$

by [Ohn16, (3.23)]. Since the equality in $c_{3} \geq 21$ does not hold, we infer that $H(\mathcal{E})$ is big, and thus $h^{q}(\mathcal{E}(-1))=0$ for all $q>0$ by [Ohn16, (3.3)]. Therefore $h^{0}(\mathcal{E}(-1)) \geq 1$. On the other hand, $H^{0}(\mathcal{E}(-2))=0$ by the argument in [Ohn16, $\S 3]$, and $h^{0}\left(\left.\mathcal{E}\right|_{H}(-1)\right)=0$ for any plane $H \subset \mathbb{P}^{3}$ as is shown in $\S 3$. Hence $h^{0}(\mathcal{E}(-1))=0$, which is a contradiction. Therefore the case $n \geq 3$ does not happen.

Acknowledgements

Deep appreciation goes to the referee for his careful reading the manuscript and invaluable comments.

REFERENCES

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals., volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2004.
[Ohn14] Masahiro Ohno. Nef vector bundles on a projective space or a hyperquadric with the first Chern class small. arXiv:1409.4191, 2014.
[Ohn16] Masahiro Ohno. Nef vector bundles on a projective space with first Chern class 3 and second Chern class less than 8. arXiv:1604.05847, 2016.
[OT14] Masahiro Ohno and Hiroyuki Terakawa. A spectral sequence and nef vector bundles of the first Chern class two on hyperquadrics. Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(2):397-406, 2014.

MASAHIRO OHNO
Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu-shi, Tokyo, 182-8585 Japan e-mail: masahiro-ohno@uec.ac.jp

