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SOME OPEN PROBLEMS REGARDING THE

DETERMINATION OF A SET FROM ITS COVARIOGRAM

GABRIELE BIANCHI

We present and discuss some open problems related to the determination
of a set K from its covariogram, i.e. the function which provides the volumes
of the intersections of K with all its possible translates.

1. Introduction and motivation.

Let K be a convex body in R
n . The covariogram gK (x ) of K is the

function
gK (x ) = Vn(K ∩ (K + x )),

where x ∈ R
n and Vn denotes n-dimensional Lebesgue measure in R

n . This
functional was introduced by G. Matheron in 1965 in his book on random sets
[15]. In the literature the same notion appears also under different names, like
set covariance, or autocorrelation function of a set.

Some properties of the covariogram are immediate: the support of gK
coincide with the difference set of K

K − K = {k1 − k2 : k1, k2 ∈ K } .
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Moreover gK is unchanged by a translation or a reflection (in a point) of K . A
consequence of the Brunn-Minkowski inequality is the concavity of g1/nK on its
support [23], p. 410-411.

Matheron in 1986 [16] asked the following problem and conjectured a
positive answer for the case n = 2.

Covariogram problem. Does the covariogram determine a convex body,
among all convex bodies, up to translation and reflection?

[7] contains a very detailed introduction to this and related problems. In this note
we briefly recall the motivation of this problem, present some open problems
and update [7] with recent information. Matheron observed [15], p. 86, that, for
r > 0 and u ∈ Sn−1,

(1.1)
∂

∂r
gK (ru) = −Vn−1({y ∈ u⊥ : V1(K ∩ (lu + y)) ≥ r}),

where lu + y denotes the line parallel to u through y and u⊥ denotes the
orthogonal complement of u. This formula allows some interpretation of the
covariogram problem.

The right hand side of (1.1) coincides with the rearrangement of XuK , the
X−ray function of K in the direction u, see [9] for definitions. Thus while in
convex tomography it is required to determine K from its X−ray functions in a
finite number of directions, the covariogram problem asks for the determination
of K from the knowledge of the rearrangements of XuK , for all u.

The right hand side of (1.1) also gives the distribution of the lengths of the
chords of K which are parallel to u. There are many examples in stereology,
in statistical shape recognition and in image analysis where one tries to infer
some properties of an unknown body from chord length measurements, see [22]
and [8] as examples. Blaschke asked whether the chord length distribution
characterises a set and Mallows and Clark [17] presented examples which
provide a negative answer. Assume now to have the information about the
distribution of the chord lengths not in the “completely mixed” form, but
separated direction by direction: (1.1) shows that the problem of determining a
body from this data, the “orientation-dependent” chord length distributions, is
equivalent to the covariogram one, see [19].

The covariogram problem appear independently in other contexts. In the
setting of probability theory Adler and Pyke [2] asked whether the distribution
of the difference X − Y of two independent random variables X, Y that are
uniformly distributed over K determines K up to translation and reflection.
Since it is easily proved that

(1.2) gK = 1K ∗ 1−K ,
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and this convolution is, up to a multiplicative factor, the probability density of
X − Y , this problem is equivalent to the previous one. The same authors [3]
find the covariogram problem relevant also in the study of scanning Brownian
processes and of the equivalence of measures induced by these processes for
different base sets.

The covariogram problem also arises in Fourier analysis. The phase
retrieval problem involves determining a function f in R

n from the modulus
of its Fourier transform f̂ . It is of great relevance in many applications: as
an important example this problem arises in X−ray crystallography, where
one tries to determine the atomic crystal structure from X−ray diffraction
images. As Rosenblatt [21] explains “Here the phase retrieval problem arises
because the modulus of a Fourier transform is all that can usually be measured
after diffraction occurs”. We refer to the survey [14] or the book [12] for an
introduction to the vast literature on this problem.

Taking Fourier transforms in (1.2) and using the relation 1̂−K (ξ ) = 1̂K (ξ ),
we obtain

(1.3) ĝK (ξ ) = 1̂K (ξ )1̂−K (ξ ) = |1̂K (ξ )|2 .

Thus the phase retrieval problem reduces to the covariogram problem when
f is the characteristic function of a convex body. Or equivalently the phase
retrieval problem is equivalent to a generalisation of the covariogram problem
to functions, where one tries to determine a function f , in a suitable class, from
the knowledge of f (x ) ∗ f (−x ).

We also mention two recent papers on related problems. Gardner, Gronchi
and Zong [10] study the covariogram problem in a discrete setting and Jaming
and Kolountzakis [13] discuss the problem of determining a function f : R →
R from its k correlation function

gf,k (x1, . . . , xk−1) =
∫

R

f (t) f (t + x1) . . . f (t + xk−1) dt ,

for an integer k ≥ 3.

2. Complete solution to Matheron’s conjecture in the plane.

Even in R
2 the problem has not yet obtained a complete answer. The most

general result regarding plane convex bodies is the following one, proved by
this author in [5]. We say that two open arcs on the boundary of a convex body
K are opposite if there is a point in one arc and a point in the other arc which
have opposite outer normals.
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Theorem 2.1. ([5]) Let K be a plane convex body such that either

(1) K is not strictly convex or
(2) K is not C1 or
(3) ∂K contains two opposite open arcs which are C2 .

The covariogram determines K , up to translations or reflections.

A property of this problem which might be useful for its complete solution
is the fact that is “local”.

Proposition 2.2. ([5]) Let H , K be plane convex bodies with equal covari-
ogram and let us assume that ∂K ∩ ∂H contains an open arc. Then H is a
translation or a reflection of K .

In view of the last two results solving the following problem would yield
Matheron’s conjecture in the plane.

Problem 1. Let f1, f2, g1, g2 ∈ C1([−1, 1]). Assume that f1, f2 ≥ 0 are
strictly convex, g1, g2 ≤ 0 are strictly concave and f1(0) = f2(0) = g1(0) =
g2(0) = 0. Assume moreover that for each (x0, y0) in a neighbourhood of (0, 0)
it is

(2.1)
∫
[−1,1]∩[−1+x0,1+x0]

(
g1(x − x0)+ y0 − f1(x )

)+
dx =

∫
[−1,1]∩[−1+x0,1+x0]

(
g2(x − x0) + y0 − f2(x )

)+
dx

Does there exist an open neighbourhood I of 0 such that

either f1(x ) = f2(x ) and g1(x ) = g2(x ) ∀x ∈ I

or else f1(x ) = −g2(−x ) and g1(x ) = − f2(−x ) ∀x ∈ I?

Here f +(x ) = max( f (x ), 0) denote the positive part of f . The integrals in
(2.1) express the area above the graphs of fi and below the translated graph of
gi . We remark that in view of Theorem 2.1 it is interesting to study this problem
without any assumption on the second derivatives of the functions.

There are two points in the proof of Theorem 2.1 (3) where the regularity
of the boundary has a crucial role. To explain this let us sketch how Problem 1
can be solved under the assumption that f1 , f2 , g1 and g2 are C2 .

• Step 1. For c ∈ R in a neighbourhood of 0 let x fi c = (d fi /dx )−1(c) and
xgi c = (dgi/dx )−1(c). Fix c, consider translation vectors (x0, y0) such that(

g1(x − x0)+ y0 − f1(x )
)+
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is supported in a small neighbourhood J of x f1c and study the asymptotic
behaviour of the integrals in (2.1) as the translation vectors are changed
in such a way that J shrink to a point. The equality (2.1), due to the C2

regularity of the functions, implies the equality of the (non ordered) sets

(2.2)

{
d2 f1
dx 2

(x f1c), −d2g1
dx 2

(xg1c)

}
=

{
d2 f2
dx 2

(x f2c), −d2g2
dx 2

(xg2c)

}
.

This result is typical of the covariogram problem, where the asymptotic
behaviour of gK near the point of its support with outer normal u, for a
fixed u ∈ Sn−1, gives some information about the curvature of ∂K in the
points with outer normal u and −u. It is not clear how to substitute this
step when the regularity is missing.

• Step 2. If

(2.3)
d2 f1
dx 2

(x f1c) = −d2g1
dx 2

(xg1c) for all c in a neighbourhood of 0

then

f1(x ) ≡ −g1(−x ) ≡ f2(x ) ≡ −g2(−x ) in a neighbourhood of 0,

and the desired conclusion is obtained. This follows from (2.2) and the
fact that the four functions coincide at x = 0, together with their first
derivatives.

• Step 3. Assume now that in each neighbourhood of 0 there are c0 such that

d2 f1
dx 2

(x f1c0) �= −d2g1
dx 2

(xg1c0).

For those c0 there exists a neighbourhood W = W (c0) of c0 such that,
either

(2.4)
d2 f1
dx 2

(x f1c) = d2 f2
dx 2

(x f2c) and

d2g1
dx 2

(xg1c) =
d2g2
dx 2

(xg2c) ∀c ∈W
or else

(2.5)
d2 f1
dx 2

(x f1c) = −d2g2
dx 2

(xg2c) and
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d2 f2
dx 2

(x f2c) = −d2g1
dx 2

(xg1c) ∀c ∈W.

This is the second point where the C2 regularity of the functions comes
into play.

• Step 4. More work is needed to prove that the choice among (2.4) and
(2.5) is constant across adjacent different neighbourhoods W , work that
we do not describe here and which does not involve the regularity of the
functions. Once say (2.4) is established for all c in a neighbourhood of 0,
the desired conclusion follows as in Step 2.

3. Algorithms to reconstruct convex polygons.

The first contribution to the question posed by Matheron was made in 1993
by Nagel [19], who gave a positive answer when K is a planar convex polygon,
see also [4] for an alternative proof. Schmitt [22] gives an explicit reconstructive
procedure under the assumption that the convex polygon does not have any pair
of parallel edges.

Problem 2. Find an algorithm to reconstruct a convex polygon from its covari-
ogram, assuming to have either exact data or approximate data.

When K is a convex polygon gK has a peculiar structure, which might
be useful to answer Problem 2. In the interior of its support gK is a piecewise
polynomial of second degree in x and{

x ∈ int (supp gK ) : gK is not C2 at x
} =

⋃
p vertex of K

(
(∂K − p) ∪ (p − ∂K )

)

4. Joint covariogram problem for convex sets.

The positive result of Nagel for polygons has been recently much strength-
ened. Given two convex bodies K and L in R

2 we define their joint covari-
ogram gK ,L(x ) as the function

gK ,L(x ) = V2(K ∩ (L + x )),

where x ∈ R
2. It is evident that this function is invariant under a translation of

K and L by the same vector, and that gK ,L = g−L ,−K . If K , L , K ′ and L ′ are
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convex bodies such that, for some τ ∈ R
2, either (K ′, L ′) = (K + τ, L + τ )

or (K ′, L ′) = (−L + τ, −K + τ ) we say that (K ′, L ′) and (K , L) are trivial
associates. A. A. Volčič and R. Gardner a few years ago posed the following
question.

Joint covariogram problem. Does the joint covariogram of K ⊂ R
2 and

L ⊂ R
2 determine the pair (K , L), among all pairs of convex bodies, up to

trivial associates?

This problem restricted to the class of convex polygons has been com-
pletely solved by this author in [6].

Proposition 4.1. ([6]) Let K , L be convex polygons, K ′, L ′ ⊂ R
2 be convex

bodies with

gK ,L = gK ′,L ′ .

(1) There exists a family P of pairs of parallelograms such that if (K , L)∈ P
the answer to the joint covariogram problem is negative;

(2) Assume that (K , L) and (K ′, L ′) do not belong to P . Then (K , L) and
(K ′, L ′) are trivial associates.

This result can be interpreted as showing that the information provided by
the covariogram for convex polygons is so rich to be able to determine not only
one unknown polygon, but two of them, except for the “meager” family P of
exceptions.

In view of the previous results we pose the following problem. Let C2+
denote the class of convex bodies whose boundary is C2 and has strictly positive
Gaussian curvature.

Problem 3. Solve the joint covariogram problem in the class C2+ of convex
plane bodies. Are there negative examples in this class?

It is interesting to understand if the class of C2+ bodies and the class of
polygons behave differently with respect to this problem or to the ordinary
covariogram problem.

The first three steps of the proof of Theorem 2.1 (3) described in Section
2 carry over to the context of Problem 3. The step which corresponds to Step 4
however requires new ideas. It is not clear whether the ideas used to overcome
this difficulty in the case of polygons carry over to C2+ bodies.
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5. Higher dimensional bodies.

Very little is known regarding the covariogram problem when the space
dimension is larger than two.

It is known that centrally symmetric convex bodies, in any dimension, are
determined by their covariogram, up to translations. This is a consequence of
the fact that gK determines the volume of K (= gK (0)) and its difference body
K − K and of the Brunn-Minkowski inequality. This inequality implies that
among all convex bodies with the same difference body the centrally symmetric
one is the only set of maximal volume, see [9], Theorem 3.2.3 .

Goodey, Schneider and Weil [11] proves that, if P is an n−dimensional
simplicial polytope, and P and −P are in general relative position, the co-
variogram determines P . We explain this assumptions in the case of a three-
dimensional polytope P : P is simplicial if all its facets are triangles; P and
−P are in general relative position if (i) P has no pair of parallel facets, (ii) it
has no pair of parallel edges on “opposite sides” of P (i.e. contained in parallel
supporting planes), and (iii) has no edge parallel to a facet and “opposite” to it.

Averkov and this author [1] prove that it suffices to know the covariogram
in any open neighbourhood of the boundary of its support in order to determine
most (in the sense of Baire category) convex bodies in R

n , for any n ≥ 2, and
they also prove a more precise results for n = 2.

When the space has dimension n ≥ 4, this author [5] has given some
negative answers.

Theorem 5.1. ([5]) Let K ⊂ R
n and H ⊂ R

k be convex bodies and let L be
a nondegenerate linear transformation. Then the two convex bodies L(K × H )
and L(K × (−H )) in R

n+k have the same covariogram.
If neither K nor H are centrally symmetric then L(K × H ) cannot be

obtained from L(K × (−H )) through a translation or a reflection.
For each n ≥ 4 there exist pairs of convex polytopes in R

n which have the
same covariogram and which are not a translation or a reflection of each other.

We remark that the previous construction does not provide any example
with smooth boundary.

What does it happen for three-dimensional polytopes? The previous
construction does not apply because any one-dimensional convex set is centrally
symmetric. The next result provide a positive answer for dimension n = 3.

Theorem 5.2. ([6]) Let P ⊂ R
3 be a convex polytope with nonempty interior.

The knowledge of gP determines P , in the class of convex bodies in R
3 , up to

translations and reflections.
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Many questions are open here, and their answer might be quite deceived.
We mention two natural ones.

Problem 4. Understand which four dimensional polytopes are determined by
their covariogram and which are not.

Problem 5. Solve the covariogram problem in the class of three-dimensional
C2+ convex bodies.

Regarding Problem 5, a difference with it two-dimensional counterpart is
that “the proof does not even start” in the sense that it is not clear how to extract
from the covariogram the complete information, up to a reflection, about the
curvature of the boundary.

To clarify this point, let K be a C2+ convex body and, for u ∈ S2, let
x (u) ∈ ∂K denote the point with outer normal u. The asymptotic behaviour
of gK near the point of K − K with outer normal u determines, for each t ∈ u⊥,

(5.1)
1

k(x (u), t)
+ 1

k(x (−u), t) and {G∂K (x (u)),G∂K (x (−u))} .

Here k(x (u), t) and G∂K (x (u)) denote respectively the sectional curvature in
direction t and the Gaussian curvature of ∂K at x (u). This information does
not fully determine the second order behaviour of the boundary in x (u), up to a
reflection.

Some more information about the curvature can be obtained by the second
order derivatives of gK near 0. Assuming higher smoothness of ∂K , starting
from the formulas proved in [18] for pure and mixed second order derivatives
of gK , one can compute that

(5.2)
∂2

∂r2
gK (ru) = r

4

∫
w∈S2:<w·u>=0

< I I∂K (x (w))u, u >2

G∂K (x (w))
ds(w) + o(r),

as r → 0+ . Here I I∂K (x ) denotes the second fundamental form of ∂K at x .
With similar ideas and using mixed instead of pure derivatives one can compute
from gK

(5.3)
∫

w∈S2:<w·u>=0
< I I∂K (x (w))u, u >< I I∂K (x (w))t, t >

G∂K (x (w))
ds(w),

where t = t(w)∈ S2 ∩ w⊥ ∩ u⊥ .
Rataj [21] also presents a formula which is related to (5.2). It is not clear

how to extract information about the curvature of ∂K from the integrals in (5.2)
and (5.3).
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6. Substitute the volume with more general functionals.

Problem 6. What does it happen to the covariogram problem if we change the
definition of covariogram to

gK (x ) = F (K ∩ (K + x ))

where F is a functional different from the volume?

The following cases seem worth investigation: the perimeter; the (n −
1)−volume of the projection on a fixed hyperplane; more generally the mixed
volume with a fixed convex set.

G. Averkov and this author are investigating some aspects of Problem 6.
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