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DIRICHLET PROBLEMWITH L p-BOUNDARY

DATA FOR REAL SUB-LAPLACIANS

ERMANNO LANCONELLI

Let L be a real sub-Laplacian on a stratified Lie group G . In this note
we present some results on the Dirichlet problem for L with L p -boundary
data, on domains � which are contractible with respect to the natural dilations
of G . One of the main difficulties we overcome is the presence of non-regular
boundary points for the usual Dirichlet problem for L. A potential theoretical
approach is followed.

Acknowledgement. The results presented in this note are contained in the paper
[2] with Andrea Bonfiglioli. It originates from a lecture given at the Accademia
delle Scienze dell’Istituto di Bologna, on October 26, 2004, during a commem-
oration of Gianfranco Cimmino. The lecture focused on the contribution given
by Cimmino to the Dirichlet problem for the classical Laplace equation.

1. Introduction.

In a paper dated 1937 G. Cimmino introduced a method to study the
Dirichlet problemwith L2 boundary data for the Laplace equation [3]. Cimmino
method, which is reminiscent the one used in the theory of Hardy spaces of
holomorphic functions, naturally extends to the more general setting of the real
sub-Laplacians on stratified Lie groups.
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In recent years these operators have received a considerable attention due to they
role in the theory of second order partial differential equationswith non-negative
characteristic form. Sub-Laplacian operators appear in many differet settings,
both theoretical and applied, including geometric theory of several complex
variables, Cauchy-Riemann and conformal geometry, Weyl formalization of
Quantum Mechanics, mathematical models of crystal materials.

The main ideas of Cimmino approach can be described as follows. Let �
be a bounded open subset of R

N with sufficiently smooth boundary. Assume �

is starlike with respect to the origin. More precisely assume that

λ(∂�) ⊂ �, for 0 < λ < 1.

Given a function u : � → R, define

uλ : ∂� → R, uλ(x ) = u(λx )

If u is harmonic in � and, for a suitable ϕ ∈ L2(∂�, dσ ), it satisfies

uλ −→ ϕ. as λ → 1

in L2(∂�, dσ ), then Cimmino says that u solves the Dirichlet problem

(D)

{
�u = 0 in �

u|∂� = ϕ in L2

Cimmino proves that this problem is well posed: it has one and only one
solution for every ϕ ∈ L2(∂�, dσ ). The uniqueness is proved by Cimmino as a
consequence of the following noteworthymonotonicity Lemma: the function

λ → |uλ|2L2(∂�) =
∫

∂�

|u(λx )|2 dσ (x )

is monotone increasing. Then, if u solves (D) with ϕ = 0, one has

0 ≤ |uλ|2L2(∂�) ≤ 0, for 0 < λ < 1,

which obviously implies u ≡ 0 in �.
To prove the existence, Cimmino uses what Caccioppoli called the com-

pletenessmethod. Define

R(∂�) := {ϕ ∈ L2(∂�) : (D) has a solution}.
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It easy to see that R(∂�) contains the space C(∂�) of the continuous
functions on the boundary of �. Then, since the closure of C(∂�) in the
L2(∂�, dσ ) norm is the whole L2(∂�, dσ ) one has

R(∂�) = L2(∂�, dσ )

Cimmino proves that R is closed with respect to the L2(∂�, dσ )-norm,
obtaining

R(∂�) = L2(∂�, dσ ),

that is the existence of a solution to (D) for every ϕ ∈ L2(∂�, dσ ).
The full strength of Cimmino method clearly appears by looking at the

Dirichlet problem from a potential theoretical point of wiew. Any sub-Laplacian
L endows R

N with a structure of β -harmonic space. This allows to ”solve” the
Dirichlet problem, with very general boundary data, by using the Perron-Wiener
method in the setting of the abstract harmonic spaces. Our main results shows
that the Cimmino solutions actually are the Perron-Wiener solutions.
The monotonicity lemma, needed by Cimmino method to get uniqueness , in
our paper is proved by using the Poisson-Jensen formula for theL-subharmonic
function contained in [1]. This formula suggests to replace the surfaces measure
dσ used by Cimmino, with the L-harmonic measure.

2. The sub-laplacians and their fundamental solutions.

A stratified Lie group is a connected and simply connected Lie group G
whose Lie algebra g admits a stratification, i.e. a direct sum decomposition
g = g1 ⊕ · · · ⊕ gr with

(2.1) [g1, gi] = gi+1 for i ≤ r − 1 , [g1, gr ] = {0}.
If {X1, . . . , Xm} is a basis of g1, the operator

L =
m∑
i=1

X 2i

is called a sub-Laplacian on G . Let us denote

di = dim(gi ) i = 1, . . . , r.

By means of the natural identification of G with its Lie algebra via the exponen-
tial map, it is non restrictive to suppose that G = R

N is equipped with a family
of dilations) (δλ)λ>0, which are automorfisms of G , of the following form

(2.2) δλ(x
(d1), . . . , x (dr)) = (λx (d1)1 , . . . , λr x (dr)),
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where x (di ) ∈ R
di , i = 1, . . . , r . With respect to these dilations the vector fields

X1, . . . , Xm are homogeneous of degree one, so that L is δλ-homogeneous of
degree two, i.e.,

(2.3) L(u ◦ δλ) = λ2 (Lu) ◦ δλ for every u ∈C∞(G, R).

The integer Q = ∑r
i=1 i di is called the homogeneous dimension of G .

Throughout the note we shall assume Q ≥ 3 (if Q = 2 then G = (R2, +)
and L is an elliptic operator with constant coefficients ).
The characteristic form of the sub-laplacian L is non-negative definte, and it is
strictly positive definite, if and only if r , the step of G , is equal to one. Hence,
if r > 1, L is not elliptic at any points. On the other hand, the stratification
condition (2.1) ensures that the Lie algebra generated by X1, . . . , Xm has rank
N at any points. Consequently, by a well known theorem of Hörmander [4],
L is hypoelliptic, i.e., any distributional solution to Lu = f is C∞ whenever
f is C∞ . Every smooth function u : � → R such that Lu = 0 in � will be
calledL-harmonic in�. We shall denote byH(�) the space of theL-harmonic
functions in �.

With respect to the cited logarithmic coordinates on G , L can be written
as

L = div
(
A(x )∇)

, ∇ = (∂x1 , . . . , ∂xN ),

where A(x ) is a non-negative definite matrix with polynomial entries.
A noteworthy property of L is the structure of his fundamental solution.

Indeed, there exists a homogeneous norm d on G such that

(2.4) 
(x , y) = d2−Q(y−1 ◦ x ), x , y ∈G
is a fundamental solution for L.
We call homogeneous norm on G any function d : G → [0, ∞) such that:
d ∈ C∞(G \ {0}) ∩ C(G), d(δλ(x )) = λ d(x ), d(x−1) = d(x ), d(x ) = 0 iff
x = 0.
This striking analogy between L and the standard Laplace operator allows to
develop a Potential Theory that parallels the classical one . A starting point of
this theory is the following Mean Value Theorem for L-harmonic functions,
that extends to this new setting the classical Gauss-Koebe Theorem.

For every x ∈ R
N and r > 0 let us define

D(x , r) := {y ∈ R
N : d(y−1 ◦ x ) < r}.

Then, for every L-harmonic functions u in an open set � ⊂ R
N , we have

(2.5) u(x ) = Mr (u)(x ) for every D(x , r) ⊂ �
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where

Mr (u)(x ) = CQ

rQ

∫
D(x,r)

K (x−1 ◦ y)u(y) dy

and

K =
m∑
j=1
(Xjd)

2.

Viceversa, if u is a continous function in � satisfying (2.5) then u ∈ C∞
and L-harmonic in �. The kernel K is δλ-homogeneous of degree zero. It is a
constant function if and only if G is the Euclidean group and L is, up to a linear
change of coordinates, the standard Laplace operator.

3. Potential Theory for the sub-laplacians .

In this section we still denote by L a sub-laplacian on a stratified Lie group
G . If � is an open subset of G , a function u : � → [−∞, ∞[ will be said
L-subharmonic if it is upper semicontinuos and satisifies

u(x ) ≤ Mr (u)(x ) for every D(x , r)∈ �.

The family of all L- subharmonic functions is a cone that will be denoted by
S(�) . If −u is L- subharmonic we will say that u is L- superharmonic. The
cone of all L- superharmonic functions in � will be denoted by S(�).

If � is a bounded open set and ϕ is an extended function on the boundary
of �, i.e.

ϕ : ∂� → [−∞, ∞],

one defines

H
�

ϕ := inf{u ∈ S(�) : lim inf
∂�

u ≥ ϕ, inf u > −∞}

and
H�

ϕ := sup{u ∈ S(�) : lim sup
∂�

u ≤ ϕ, supu < ∞}.

We say that ϕ is a risolutive functions iff the functions H
�

ϕ and H
�
ϕ are equal

and L-harmonic in �. In this case the function

H�
ϕ := H

�

ϕ ≡ H�
ϕ
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is called the Perron-Wiener solution to the Dirichlet problem

(D)

{
Lu = 0 in �

u|∂� = ϕ.

The classical Wiener’s Theorem for the standard Laplace operator extends
to this general setting. Indeed:

every continuous function is resolutive.

As well as in the classical case, we cannot expect that H�
ϕ is a true solution

of (D). However, if (D) is solvable in the classical sense, i.e. if there exists a
function u ∈C(�), L-harmonic in � and such that u|∂� = ϕ , then H�

ϕ = u.
A point y ∈ ∂� is called L-regular for � iff

lim
x→y

H�
ϕ (x ) = ϕ(y) for every ϕ ∈C(∂�).

The Dirichlet problem (D) is solvable in the classical sense if and only if
every point of ∂� is L-regular for �. As we can expect, due to the possible
high degeneracy of L, the set

∂irr� := {y ∈ ∂� : y is notL-regular for �}
is in general not empty, even if the boundary of � is C1,α . Nevertheless, ∂irr�
is negligible from a L-potential theoretical point of view. Indeed, for every
bounded open set �,

∂irr� is L-polar

A set E ⊂ G is called L-polar if there exists a L-superharmonic function u
such that

E ⊂ {x : u(x ) = ∞}.
For every fixed points x ∈ � the map

C(∂�) ϕ �−→ H�
ϕ (x ) ∈ R

is linear and non-negative. Then, there exists a unique Radon measure μ�
x such

that

H�
ϕ (x ) =

∫
∂�

u(y) dμ�
x (y)

μ�
x is called the L-harmonic measure related to � at x . From the Harnack

inequality for non negativeL-harmonic functions, if � is connected and x , x ′ ∈
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�, then μ�
x is absolutely continuous with respect to μ�

x ′ with bounded density
function.

The fundamental resolutive theorem states that a function ϕ : ∂� →
[−∞, ∞] is resoltive if and only if

ϕ ∈ L1(∂�, μ�
x )

for every x ∈ �. By the previous remark, if � is connected, this condition is
satisfied if (3.1) holds for just one point x ∈ �.

The set of the boundary points which are not L-regular is negligible also
with respect to the harmonic measures. Indeed

μ�
x (∂irr�) = 0 ∀x ∈ �.

4. Dirichlet problem with L p boundary data.

As in the previous sections L will denote a sub-Laplacian on a stratified
Lie group G whose dilations are denoted by δλ. A bounded open set � ⊂ G
will be said δλ-contractible if

δλ(∂�) ⊂ � for 0 ≤ λ < 1.

In this case, given a function u : � → [−∞, ∞], for every λ ∈ ]0, 1[ we set

uλ : ∂� → [−∞, ∞], uλ(x ) = u(δλ(x )).

In what follows we shall assume � is δλ-contractible and denote by μ the L-
harmonic measure related to � at x = 0:

μ := μ�
0 .

Given a function ϕ ∈ L p(∂�, μ), 1 ≤ p < ∞, we shall say that u solves the
Dirichlet problema

(Dp)

{
Lu = 0 in �

u|∂� = ϕ, in L p.

if u is L- harmonic in � and uλ → ϕ as λ → 1 in L p(∂�, μ).
Since ∂� is bounded, L p(∂�, μ) ⊂ L1(∂�, μ) so that every ϕ ∈ L p(∂�, μ) is
resolutive. Our main results is the following theorem
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Theorem. For every ϕ ∈ L p(∂�, μ), 1 ≤ p < ∞, the Dirichlet problem (Dp)
has a unique solution. It is given by

u := H�
ϕ

An outline of the proof of this theorem is as follows.

Uniqueness. Let u be a L- harmonic funcions in �. Then |u|p ∈ S(�) and
there exists a Radon measure ν such that L|u|p = ν in the weak sense of
distributions. Let us put v := |u|p . By the Poisson-Jensen formula in [1] we
obtain

v(0) =
∫

∂�λ

v(z) dμ
�λ

0 (z) −
∫

�λ

G�λ
(0, z) dν(z)

so that ∫
∂�

|u(δλ(z)|p dμ(z) = |u(0)|p +
∫

�λ

G�λ
(0, z) dν(z) .

Here �λ := δλ(�) and Gλ denotes the L-Green function of �λ .
It is quite obvious that this last right hand side ismonotone increasingwith

respect to λ. As a consequence, if u is a solution of (Dp) with boundary data
ϕ = 0, we have

0 ≤
∫

∂�

|u(δλ(z))|p dμ ↗ 0

Then, letting wλ(x ) = |u(δλ(x ))|p , x ∈ ∂�, we obtain

∫
∂�

wλ dμ�
0 = 0 .

This implies

0 ≤ H�
wλ
(x ) ≤ Cx H

�
wλ
(0) =

∫
∂�

wλ dμ�
0 = 0 .

Hence H�
wλ

≡ 0. Then,

wλ(z) = lim
x→z

H�
wλ
(x ) = 0, ∀ z ∈ � \ P

where P := ∂irr� is the L-polar subset of ∂� of the L-nonregular boundary
points. Then u(δx ) = 0 for every z ∈ � \ P and for every λ ∈ ]0, 1[, that is

u = 0 in � \ ∪0≤λ≤1δλ(P)
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At this point, in order to complete the proof of the uniqueness theorem,
we proved the following crucial results: if P is any L-polar subset of ∂�, then
� \∪0≤λ≤1δλ(P) has no interior points. As a consquence, since u is continuous
in �, we get u ≡ 0.

Existence. This part of the proof , even if not trivial, does not require particular
devices. First of all, one proves that the Perron-Wiener function H�

ϕ is a solution
of (Dp) if ϕ is continuos. Then, by using a standard approximation argument,
one shows that this also hold for every ϕ ∈ L p(∂�, μ) .

REFERENCES

[1] A. Bonfiglioli - C. Cinti, A Poisson-Jensen type representation formula for sub-
harmonic functions on stratified Lie groups, Pot. Analysis, 22 (2005), pp. 151–
169.

[2] A. Bonfigliolli - E. Lanconelli, Dirichlet problem with L p -boundary data and
Hardy spaces on Carnot groups, Preprint.

[3] G. Cimmino, Nuovo tipo di condizione al contorno e nuovo metodo di trattazione
per il problema generalizzato di Dirichlet, Rend. Circolo Mat. Palermo, 61 (1937),
pp. 177–221.
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