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NOTES ON SOLVABILITY OF CURVES ON SURFACES

ANANYO DAN - MOHAMAD ZAMAN FASHAMI - NATASCIA ZANGANI

In this article, we study subloci of solvable curves inMg which are
contained in either a K3-surface or a quadric or a cubic surface. We give a
bound on the dimension of such subloci. In the case of complete intersec-
tion genus g curves in a cubic surface, we show that a general such curve
is solvable.

1. Introduction

We consider the following classical question about solvability, which Enriques
stated as unsolved in 1897 during the Congress of Mathematicians in Zurich.

Problem 1.1. Given a complex curve C, we denote by K̃(C) the Galois clo-
sure of K(C). Is there a curve D and a covering π : C→ D such that the field
extension K(D) ↪→ K̃(C) is solvable?

When considering this problem, we restrict ourselves to considering the case
D = P1. Given a covering π : C � P1, we can consider the Galois group of the
splitting field of the extension K(C) : C(x), where K(C) is the function field of
the curve and C(x) is the rational function field over C. In particular, this Galois
group is the monodromy group of the covering M(π)(see [Har79, Proposition
pp. 189]).

For high genera we have the fundamental Zariski’s Theorem (see [Zar26]).
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Theorem 1.2 (Zariski’s Theorem). Let C be a very general smooth complex
projective curve of genus g ≥ 7, then for every π : C � P1 surjective of degree
d > 0, the monodromy group M( f ) is not solvable.

If we consider lower genera g ≤ 6, then gon(C) ≤ bg+3
2 c ≤ 4, hence there

exists a covering π : C→P1 of degree 4 and the monodromy group is a subgroup
of S4, thus it is solvable. By Zariski’s Theorem we have that if g ≥ 7, then
the sublocusMg,sol defined by the solvable curves in the moduli spaceMg, is
different from the whole space. We are interested into studying this sublocus.

In Section 4 we apply Zariski’s argument to estimate the codimension of
Mg,sol ⊆Mg. Since a general covering factors as a primitive covering C→ P1

and another covering P1 → P1, we reduce ourselves to the study of primitive
solvable covering, which we denote by PS–covering or PS–curves.

In Section 5 we focus on curves lying on a K3 surface and we prove that a
general element is not a PS–curve. We denote asMK3

g,sol\Mg,4 (closure taken in
Mg) the sublocus ofMg parametrizing PS–curves lying on a K3 surface which
are not four–gonal curves. Applying the Zariski’s argument, we give an estimate
on its codimension:

Theorem 1.3 (See Theorem 5.8). For g ≥ 7, a general element ofMK3
g is not

a PS–curve. Furthermore, for a maximal dimensional irreducible component L
ofMK3

g,sol\Mg,4 (closure taken inMg), we have

1. if 7≤ g≤ 9 and g = 11, the codimension of L inMK3
g is at least 7;

2. if g = 10 then the codimension of L inMK3
g is at least 12;

3. if g = 12 then the codimension of L inMK3
g is at least 14;

4. if g = 11 or g≥ 13 then the codimension of L inMK3
g is at least 15.

In the last section we apply Zariski’s argument to study the subloci of com-
plete intersection, primitive, solvable curves lying on cubic and quadric sur-
faces. Denote by g(a,b) the genus of a complete intersection curve in P3 ob-
tained by the intersection of two general surfaces of degree a and b, then it holds
([Har13, Remark IV.6.4.1]):

g(a,b) =
1
2

ab(a+b−4)+1.

Denote byMa
g(a,b) the subloci inMg(a,b) of genus g(a,b) curves contained in

a degree a hypersurface in P3. Denote by Ma
g(a,b),sol the sublocus of Ma

g(a,b)
parametrizing PS–curves.
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Theorem 1.4 (See Theorem 6.6). The codimension c(a,b) of an irreducible
component ofMa

g(a,b),sol inMa
g(a,b) satisfies the following:

1. If a = 2,b≥ 5 then c(a,b)> 0,

2. If a = 3,3≤ b≤ 5 then c(a,b)> 0,

3. If a = 2,2≤ b≤ 4 then c(a,b) = 0.

2. Notation and preliminaries

We work on the complex field k = C, all curves are considered to be complex
smooth projective curves.

We say that a property P is very general if it holds inMg \
⋃

n∈N Zn, where
Zn is a proper closed Zariski subset of Mg for any n. We call a curve very
general if there exists {Zn}n∈N as above such that [C] /∈

⋃
n∈N Zn.

Given a curve C, the gonality of C is defined as

gon(C) := min{d ∈ Z>0 : ∃π : C→ P1 s.t. deg(π) = d}
= min{d : ∃g1

d over C}.

The notion of gonality gives a measure on how far is the curve from being
rational. We denote as Mg,k the subspace defined by the curves C such that
gon(C)≤ k. The locusMg,k is known to be an irreducible subvariety of dimen-
sion 2g+2k−5 if k ≤ g+2

2 , and if k ≥ bg+3
2 c, thenMg,k =Mg. Thus bg+3

2 c is
called the general gonality.

We define k–gonal locus as Xk :=Mg,k\Mg,k−1, Xk is a quasi-projective
subvariety ofMg whose points correspond to k-gonal curves. We have that

dim(Xk) = min{2g−5+2k,3g−3}

for k ≤ g+2
2 , otherwiseMg,k =Mg and dim(Xk) = 0.

The gonality gives a stratification of the moduli spaces of curve Mg for
g≥ 3:

Mg,2 ⊆Mg,3 ⊆ ·· · ⊆Mg,k ⊆ ·· · ⊆Mg .

For further details we refer the reader to [AC81].
Given a covering π : C→ P1, we denote by {b1, . . . ,bk} the branch locus

and by F the generic fiber. We denote by M(π) the monodromy group of the
covering, i.e. the image of the monodromy map

µπ : π1
(
P1\{b1, . . . ,bk}

)
−→ Aut(F)∼= Sd

[γ] 7→ µπ ([γ])
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where µπ([γ])(pi) = γ̃pi(1) is defined by the lifted path γ̃pi with base point pi.
We recall that a group G is solvable if it admits a finite filtration of subgroups

{1}= Gt ⊆ ·· · ⊆ Gi+1 ⊆ Gi ⊆ . . .G1 = G,

such that Gi+1 /Gi is a normal subgroup and Gi\Gi+1 is abelian for any i. We
call a covering π undecomposable if it does not factor nontrivially; this is equiv-
alent to ask that M(π) is primitive, i.e. it does not have any block (see [Rot14,
Proposition 1.2.10]). We say that a curve C is solvable, resp. primitive, if it
admits a covering π : C→ P1 such that M(π) is solvable, resp. primitive. We
call a primitive and solvable curve a PS–curve.

Definition 2.1. We denote byMg,sol the sublocus ofMg defined by the curves
that admit a cover to P1 with solvable monodromy group.

Given a covering π : C→ P1 of degree d with l branch points, we consider
its monodromy group M(π) that is a subgroup of Sd . We can choose l conjugacy
classes in Sd , c1, . . .cl such that we have a natural map bi 7→ ci. We can consider
the Hurwitz space1 H(c1, . . . ,cl,d) which parametrizes the covering π : C →
P1 such that M(π) is of type (c1, . . . ,cl) and deg(π) = d. We can define the
configuration space Xl as

Xl :=

[(
P1×·· ·×P1)−⋃

i6= j

∆i j

]
/Syml,

where ∆i j = {(z1, . . . ,zl) ∈ P1×·· · × P1 : zi = z j}. If the Hurwitz space is
nonempty, then we have a surjective map given by associating to each cover-
ing its branch divisor:

H(c1, . . . ,cl,d)
h−→ Xl

π 7→ (b1 + · · ·+bl).

We have the following diagram

H(c1, . . . ,cl,d) Mg

Xl

µ

h

where µ sends a cover π : C→ P1 to the corresponding point [C] ∈Mg.

1For a nice and detailed introduction on Hurwitz spaces we refer to [RW06]
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3. Zariski’s argument

Here we briefly review the Zariski’s argument, for further details we refer the
reader to [Zar26] and [PS05]. First of all, we recall some preliminary result
about solvable groups.

Proposition 3.1 (Proposition 2.1,[PS05]). Let G ⊆ Sd be a primitive solvable
subgroup acting on a set X, and let x ∈ X. Then

1. there exists a unique minimal normal subgroup A/G;

2. A is an elementary abelian p–group for some p prime;

3. G = AGx and A∩G = 1G;

4. A acts regularly on X, i.e. for any x ∈ X the map a 7→ ax gives a bijection
from A to X.

In particular d = |A|= pk for a prime number p.

Proposition 3.2 ([Zar26]). Let d = pk with p prime and let G be a primitive
solvable subgroup of Sd acting on a set X. Then for any g ∈ G

|Xg|= |{x ∈ X : gx = x ∀x ∈ X}| ≤ pk−1.

The Zariski’s argument is a count of moduli obtained by applying the clas-
sical Riemann-Hurwitz formula (see [Har13, IV, Corallary 2.4]). If we consider
a d : 1 covering π : C→ P1, by means of the Riemann-Hurwitz formula we get

2g(C)−2 =−2d + r, (1)

where d = deg(π) and r is the degree of the ramification divisor

Rπ = ∑
p∈X

[multp(π)−1] · p.

We recall that the branch divisor is defined as π∗(Rπ). We denote by b(y) the
multiplicity of a branch point y ∈ P1, i.e.

b(y) = ∑
p∈π−1(y)

[multp(π)−1] .

The following bound on b(y) is the key result for the Zariski’s argument and the
proof if it is given for the reader’s convenience.
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Proposition 3.3 (Zariski’s argument [Zar26]). Let π : X→Y be a d : 1 primitive
and solvable covering of curves. Then, there exists a prime p such that d = pk

for some integer k and for any branch point y ∈ Y the following holds

b(y)≥ pk− pk−1

2
. (2)

Proof. Let M(π) be the monodromy group of π and let us consider the generic
fiber F . There is a natural action of M(π) defined on the fiber: M(π)y F . We
denote by orb(g) the number of orbits of < g > for g ∈M(π). By induction on
d one can prove that

b(y) = ∑
p∈π−1(y)

[multp(π)−1] = d−orb(g).

We denote by n the number of fixed points of g. Since b(y) ≥ orb(g)− n, we
have

2b(y)≥ b(y)+orb(g)−n = d−n

⇒ b(y)≥ d−n
2

.

Since M(π) is assumed to be primitive, then by Proposition 3.1 and Proposition
3.2: d = pk and n≤ pk−1.

4. Solvable locus in moduli of curves: the general case

We denote asMg,sol the sublocus ofMg defined by the solvable curves of genus
g. In 1991 Michael G. Neubauer proved thatMg,sol is not dense inMg in the
interesting case g > 6 (see [Neu92] ).

Theorem 4.1 ([Neu92, Theorem 1.11]). Let g > 6. Then Mg,sol is a quasi–
projective subvariety ofMg with strictly positive codimension.

We can give an estimate on the codimension of Mg,sol by applying the
Zariski’s argument (Proposition 3.3).

Proposition 4.2. Let g ≥ 7. Let Z ⊂Mg be an irreducible family of smooth
projective curves of genus g such that the general element in the family admits
a d : 1 solvable and primitive covering of P1 with d ≥ 5. Then, dimZ ≤ g+4.

Proof. We proceed by contradiction. Suppose that dimZ > g + 4. Take a
general curve C ∈ Z and let π : C → P1 be a d : 1 branched covering for
some d ≥ 5, such that the corresponding monodromy group is primitive and
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solvable. By Proposition 3.1, this implies d = pk for some positive integer
k and p ≥ 2. By Proposition 3.3, for any branched point y ∈ P1, it holds
b(y) ≥ (pk− pk−1)/2. We denote by l the number of branch points of π and
we consider Xl , the l-dimensional configuration space, which is a covering of
an open subscheme of (P1)l . Since C is chosen to be general, there exists a Hur-
witz space H(c1, . . . ,cl,d), parametrizing d : 1 covers of P1 by genus g curves
with monodromy group of type (c1, . . . ,cl) such that T := µ(H(c1, . . . ,cl,d))
contains Z (here µ is the forgetful map from H(c1, . . . ,cl,d) toMg).

As the map from H(c1, . . . ,cl,d) to the configuration space is generically
finite,

dimH(c1, . . . ,cl,d) = l.

Since the group of automorphism of P1 is 3-dimensional, dimT = l−3. By the
Riemann-Hurwitz formula and by Zariski’s argument (2),

2g−2≥−2pk + l · pk− pk−1

2
.

By assumption, l−3 = dimT ≥ dimZ > g+4, we have

2 · 2g−2+2pk

pk− pk−1 −3 > g+4.

Since d = pk ≥ 5, we get pk−1(p− 1) ≥ 4. Applying this to the previous in-
equality, we have

g−1+
4p

p−1
−3≥ 2

2g−2
pk− pk−1 +

4pk

pk− pk−1 −3 > g+4

which is equivalent to (4p)/(p−1)> 8. This implies p < 2, which contradicts
the assumption p≥ 2.

5. Curves on K3 surfaces

We consider the moduli of genus g curves contained in polarized K3 surfaces
and we study the sub-locus of solvable curves. Let us first recall the definition
of a K3 surface and some useful properties.

Definition 5.1. A K3 surface is a complete non-singular surface X such that the
canonical sheafKX is trivial and H1(OX) = 0. A polarization on X is an ample,
primitive2 invertible sheaf L on X . The pair (X ,L) is said to be a canonically
polarized K3 surface of genus g if L is a polarization on X satisfying

L2 = 2g−2,

2By primitive, we mean that L is not the power of any other invertible sheaf.
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where by L2 we mean the self-intersection of any curve C in the linear system
defined by L.

Definition 5.2. We say that two polarized K3 surfaces (X ,L) and (Y,L′) are
isomorphic if there exists φ : X →Y isomorphism of schemes satisfying φ ∗L=
L′.

The moduli functor

κ̃g : Schemes/C−→ {Sets},

is defined as the functor which associates (up to isomorphism) to a C-scheme S
the set of pairs ((π : XS→ S),L) where

1. π is a smooth, proper morphism;

2. L is an invertible sheaf on XS such that, for every geometric point s ∈ S,
the fiber (Xs,L|Xs) is a canonically polarized K3 surface of genus g.

Similarly, we can define the functor

P̃g : Schemes/C−→ {Sets},

which associates to a C-scheme S (up to isomorphism) the set of triples
((π ′ : CS→ S),(π : XS→ S), L) where

1. π ′,π are smooth, proper morphisms;

2. CS ⊂XS;

3. L is an invertible sheaf on XS such that, for every geometric point s ∈ S,
the fiber (Xs,L|Xs) is a canonically polarized K3 surface of genus g and
Cs ∈ |L|Xs |.

Theorem 5.3 ([CLM93]). There exists a coarse moduli spacesPg and κg corep-
resenting the moduli functors P̃g and κ̃g. The natural projection map induces
a Pg-bundle structure on Pg → κg. Moreover, dim(κg) = 19 and dim(Pg) =
19+g.

Morally, Pg parametrizes the pairs (C,S) where C is s smooth projective
curve, and S is a polarized K3 surface containing C.

Theorem 5.4 ([CLM93]). The natural forgetful map φg : Pg→Mg is dominant
if and only if 2≤ g≤ 9 and g = 11. Moreover, φg is generically finite if and only
if g = 11 and g≥ 13. For g = 10 the map φg has fiber dimension 3 and φ12 has
fiber dimension 1.
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Using the formula for the dimension of Pg in Theorem 5.3 and that of the
fiber of the forgetful map φg as in Theorem 5.4, we can directly prove that:

Corollary 5.5. The following hold:

1. if 2≤ g≤ 9 then dimImφg = 3g−3;

2. if g = 10 then dimImφg = 16+g;

3. if g = 12 then dimImφg = 18+g;

4. if g = 11 or g≥ 13 then dimImφg = 19+g.

Definition 5.6. We denote byMK3
g the image of φg and byMK3

g,sol the sublocus
ofMK3

g parametrizing PS–curves.

Definition 5.7. Given positive integers g,r,d, the Brill-Noether number, is

ρ(g,r,d) = g− (r+1)(g−d + r).

Given a curve C ∈Mg, denote by W r
d (C) ⊂Mg the space of all degree d in-

vertible sheaves L satisfying h0(L)≥ r+1.

Theorem 5.8. For g ≥ 7, a general element of MK3
g is not a PS–curve. Fur-

thermore, for a maximal dimensional irreducible component L ofMK3
g,sol\Mg,4

(closure taken inMg), we have

1. if 7≤ g≤ 9 and g = 11, the codimension of L inMK3
g is at least 7;

2. if g = 10 then the codimension of L inMK3
g is at least 12;

3. if g = 12 then the codimension of L inMK3
g is at least 14;

4. if g = 11 or g≥ 13 then the codimension of L inMK3
g is at least 15.

Proof. By [L+86] if ρ(g,1,d) < 0 then for a general curve C of genus g con-
tained in a K3 surface, W r

d (C) = /0, so in particular, there does not exist any d : 1
covering from C to P1. For g≥ 7, ρ(g,1,d)< 0 if and only if d ≤ 4. For d ≤ 4,
a d-gonal curve in solvable, so we want to exclude the sublocusMg,4 in which
the maximal gonality is reached by the four–gonals curves. Then

MK3
g,sol∩Mg,4 =MK3

g ∩Mg,4 6=MK3
g ,

with closure taken inMg. Let L be an irreducible component ofMK3
g,sol\Mg,4.

Since a general element in L is solvable, d-gonal for d ≥ 5, by Proposition 4.2,
dimL≤ g+4. Using Corollary 5.5 for g≥ 7, observe

dimImφg = dimMK3
g > g+4.
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By Theorem 4.1, there are finitely many irreducible components of MK3
g,sol.

Since there are finitely many irreducible components ofMK3
g,sol and every com-

ponent is of dimension strictly less than that ofMK3
g , a general element ofMK3

g
is not solvable. This proves the first part of the theorem.

The second part of the theorem follows directly using Proposition 4.2 and
Corollary 5.5. This completes the proof of the theorem.

6. Curves on quadric and cubic surfaces

In this section we study the subloci of solvable curves contained in quadric or
cubic surfaces. The first step is to compute the fiber dimension of the moduli
map (see Proposition 6.2). In order to compute the codimension of the solvable
subloci of the above mentioned curves, we need to use Proposition 4.2. To do
so, we need to know the gonality of such curves. This is done in Proposition 6.5.
We combine these steps in Theorem 6.6 to compute the required codimension.

Note 6.1. Given a Hilbert polynomial P of a curve C in P3, denote by HilbP

the Hilbert scheme parametrizing all subschemes in P3 with Hilbert polynomial
P. Let a,b be positive integers and b ≥ a. Denote by g(a,b) (resp. P(a,b)) the
genus (resp. Hilbert polynomial) of a complete intersection curve in P3 obtained
by the intersection of a general surface of degree a and another of degree b.

Proposition 6.2. Suppose a ≥ 2 and b ≥ 3. Let X be a smooth, projective
surface in P3 of degree a and C be the complete intersection of X with a general
degree b surface in P3. Then, the dimension of the fiber over [C] ∈Mg(a,b) of
the moduli map µ : HilbP(a,b)→Mg(a,b) is at most h0(T P3), where T P3 is the
tangent sheaf on P3.

Proof. Using deformation theory observe that the differential to the moduli map

dµ : T[C]HilbP(a,b)→ T[C]Mg(a,b)

is the boundary map H0(NC|P3)→ H1(T C) coming from the short exact se-
quence:

0→T C→T P3⊗OC→NC|P3 → 0.

Using the genus formula for complete intersection curves (see [Har13, Re-
mark IV.6.4.1]) one can check that g(a,b) > 1, and this implies degT C = 2−
2g(a,b)< 0. This means that the kernel of dµ is isomorphic to H0(T P3⊗OC).
Since T[C]µ

−1([C]) is isomorphic to kerdµ , it suffices to prove that

H0(T P3⊗OC)∼= H0(T P3).
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Consider now the following Koszul complex associated to the curve C:

0→OP3(−a−b)→OP3(−a)⊕OP3(−b)→OP3 →OC→ 0.

Tensoring by T P3 , we get the exact sequence:

0→T P3(−a−b)→T P3(−a)⊕T P3(−b)→T P3 →T P3 |C→ 0. (3)

Choose coordinates X ,Y,Z,W for P3 i.e., P3 = ProjC[X ,Y,Z,W ]. Recall, the
twisted Euler sequence:

0→Ω
1
P3(t)→OP3(t−1)⊕4 θ−→OP3(t)→ 0

where θ is defined by (P1,P2,P3,P4) maps to (P1X +P2Y +P3Z+P4W ) for Pi ∈
Γ(OP3(t−1)) for t ≥ 1. Hence,

H0(θ) : H0(OP3(t−1)⊕4)→ H0(OP3(t))

is surjective for all t ≥ 1. Observe, H1(OP3(t)) = 0 = H2(OP3(t)) for all t ∈
Z and H3(OP3(t)) = 0 for all t > −4. Hence, H1(Ω1

P3(t)) = 0 for all t ≥ 1,
H2(Ω1

P3(t)) = 0 for all t ∈ Z and H3(Ω1
P3(t)) = 0 for all t >−3. Dualizing, we

have H2(T P3(−t−4)) = 0 for all t ≥ 1, H1(T P3(−t−4)) = 0 for all t ∈ Z and
H0(T P3(−t−4)) = 0 for all t >−3. Expanding (3), we get the following exact
sequences:

0→T P3(−a−b)→T P3(−a)⊕T P3(−b)→M1→ 0 (4)

0→M1→T P3 →T P3 |C→ 0 (5)

The long exact sequence associated to (4) implies

H0(M1) = 0 = H1(M1).

Applying this to the long exact sequence associated to (5), we get

H0(T P3⊗OC)∼= H0(T P3).

Definition 6.3. Denote byMa
g(a,b) the subloci inMg(a,b) of genus g(a,b) curves

contained in a degree a hypersurface in P3. Denote byMa
g(a,b),sol the sublocus

ofMa
g(a,b) parametrizing PS–curves.

We recall a standard construction of a cubic surface obtained by blowing up
6 points. This description will be used to compute the gonality of a curve in a
cubic surface (see Proposition 6.5).
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Definition 6.4. Let X3 be a smooth cubic surface and π : X3→ P2 the blow-up
of P2 at six points p1, ..., p6 on the plane, no three collinear and not all six lying
on a conic. Denote by E1, ...,E6 the exceptional curves in X3 over p1, ..., p6,
respectively. Let l′ ⊂ P2 be a line and l := π∗([l′]).

Proposition 6.5. Let a≥ 2 and [C] ∈Ma
g(a,b). Then, the gonality gon(C) satis-

fies:

1. If a = 2 then gon(C) = b,

2. If a = 3 then gon(C) = 2b.

Proof. By [Bas96, Theorem 4.2], gon(C) = ab− l where l is the maximum
number of points of C on a line.

(1): Suppose a = 2. By definition,

C ∼

(
b

∑
i=1

pi×P1

)
+

(
b

∑
i=1

P1× pb

)
for any set of b points p1, ..., pb.

As X ∼= P1×P1, any line on X is of the form P1×{x} or {x}×P1 for x ∈ P1.
Since (P1×{x}) · (P1×{y}) = 0 = ({x}× P1) · ({y}× P1) and ({x}× P1) ·
(P1×{y}) = 1 for any x,y ∈ P1, C · l = b for any line l ⊂ X . For any line l not
contained in X , C · l ≤ X · l = 2. Hence, the gonality gon(C) = min{2b−b,2b−
2,2b−1,2b}= b. This proves (1).

(2): Suppose a = 3. Recall, X3 (see Definition 6.4) contains 27 lines, Ei

for i = 1, ...,6, Fi j, i 6= j and G j for j = 1, ...,6 where Fi j ∼ L−Ei−E j and
G j ∼ 2L−∑i 6= j Ei (see [Har13, Proposition V.4.8 and Theorem V.4.9]). By
[Har13, Proposition V.4.8], the hyperplane section H is linearly equivalent to
3L−∑Ei. Since C ∼ bH, we have C ·Ei = b,C ·L = 3b,C ·Fi j = 3b− 2b = b
and C ·G j = 6b−5b = b. Hence, the gonality of C is 2b.

Theorem 6.6. The codimension c(a,b) of an irreducible component of
Ma

g(a,b),sol inMa
g(a,b) satisfies the following:

1. If a = 2,b≥ 5 then c(a,b)> 0,

2. If a = 3,3≤ b≤ 5 then c(a,b)> 0,

3. If a = 2,2≤ b≤ 4 then c(a,b) = 0.

Proof. By Proposition 6.2, the dimension of the fiber of the moduli map µ :
HilbP(a,b)→Mg(a,b) is at most h0(T P3). It is easy to check that

dimHilbP(a,b) =

(
a+3

3

)
+

(
b+3

3

)
−
(

b−a+3
3

)
−2−h0(OP3(a−b)).
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So,

dimIm µ ≥ a3 +11a
3

+
b2a−ba2

2
+2ba−16−h0(OP3(a−b)).

By Proposition 6.5, the gonality of C ∈ Ma
g(a,b) is at least 5 in the case a =

3,b≥ a and when a = 2,b≥ 5. For these values of a and b, by Proposition 4.2,
the codimension c(a,b) ofMa

g(a,b),sol is at least

a3 +11a
3

+
2b2a−2ba2−b2a2

4
+3ba−21−h0(OP3(a−b)).

(1): Substituting a = 2 in the above equation, we observe that for b ≥ 5,
c(2,b)> 0.

(2): Substituting a = 3 in the above equation, we observe

c(3,b)≥ 18b−3b2

4
−1.

For 3≤ b≤ 5, we have c(3,b)> 0.
(3): Substituting a = 2, by Proposition 6.5, the gonality of C ∈ Ma

g(a,b)
is strictly less than 5 for 2 ≤ b ≤ 4. Hence, C is solvable. This implies that
Ma

g(a,b),sol coincides withMa
g(a,b).
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