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DIVISORS OF A(1,1,2,2)
4

PAOLA PORRU - SAMMY ALAOUI SOULIMANI

We construct two divisors in the moduli spaceA(1,1,2,2)
4 and we check

their invariance and non-invariance under the canonical involution intro-
duced by Birkenhake and Lange [3].

1. Introduction

The purpose of this paper is to study the geometry of the moduli spaceA(1,1,2,2)
4 ,

parametrizing isomorphism classes of 4-dimensional abelian varieties with po-
larization of type (1,1,2,2). More precisely, our aim is to study its Picard group
Pic(A(1,1,2,2)

4 ) in order to get information about its Kodaira dimension.
In general, the problem of computing the Kodaira dimension of the moduli

spaces A(d1,...dg)
g has been a topic of intense study in the last years. Since the

direct calculation of the Kodaira dimension κ(X) of a variety X (defined as the
maximum of the dimension of ϕmKX (X)1 for m ≥ 1, and −∞ if |mKX | = /0 for
all m) is often very hard to perform, the majority of results about κ(A(d1,...dg)

g )

have been obtained as a consequence of generality and rationality properties: it
is well known in fact that every variety of general type X has κ(X) = dim(X),
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1ϕmKX is the rational map from X to the projective space associated with the linear system
|mKX |.
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maximal, and that every variety X which is unirational (i.e. that admits a rational
dominant map P 99K X) has κ(X) =−∞.

The case Ag := A(1,...1)
g of principally polarized abelian varieties, has been

almost solved: it has been shown that the moduli spaceAg is unirational if g≤ 5,
that implies that its Kodaira dimension κ(Ag) = −∞ (see [5], [7]). Is has also
been shown that the moduli spaces Ag are of general type for g ≥ 7, so their
Kodaira dimension turns out to be maximal (see [10], [13]). The only unsolved
case is A6, whose Kodaira dimension is yet unknown.

Less is known about the Kodaira dimension of the case of non-principally
polarized abelian varieties. Concerning abelian surfaces, Hulek and Sankaran
have shown that the compactification of the moduli space of abelian surfaces
with a (1, p)-polarization and a level structure Āp (p a prime) is of general
type for p ≥ 41 [9] . We also recall the result of Tai, who proved that the
moduli space A(d1,...dg)

g is of general type when g ≥ 16 for every choice of the
polarization, and when g ≥ 8 but only for certain polarizations [13]. The only
result about unirationality of such moduli spaces is due to Bardelli, Ciliberto and
Verra [1], who proved that A(1,2,2,2)

4 is unirational. Moreover, since this space
is isomorphic to A(1,1,1,2)

4 (see Birkenhake and Lange [3]), this also implies
the unirationality of A(1,1,1,2)

4 . Nevertheless nothing is known about neither the
unirationality of A(1,1,2,2)

4 nor its Kodaira dimension.

In this paper, in order to better understand the geometry of A(1,1,2,2)
4 , we

try to get more information on its Picard group. In Section 3 we construct
explicit divisors of that moduli space following two different approaches: the
first divisor is constructed as the image of the Prym map P :R2,6→A(1,1,2,2)

4 ,
sending a cover π : D→ C in R2,6 to its Prym variety. The second divisor
is constructed from the map Ã4 → A(1,1,2,2)

4 , sending a principally polarized
abelian variety X of dimension 4 together with a fixed totally isotropic order 4
subgroup H of 2-torsion elements to the quotient X/H, and then considering the
image of the Jacobian locus by this map (see section 3 for a definition of Ã4).

In Section 4, to get more informations about these divisors, we check if they
are invariant under the natural involution defined on the moduli space A(1,1,2,2)

4
by Birkenhake and Lange, sending a polarized abelian variety (A,LA) to its
dual (A∨,L∨A) (see [3]). We almost immediately obtain that the divisor con-
structed with the Prym procedure is fixed by the involution, by using the result
of Pantazis stating that two bigonally related covers have dual Prym varieties
(see [12]). On the other hand, with a bit more work, we obtain that the second
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divisor is not invariant under the involution: the clue here is a Theorem due to
Bardelli and Pirola, stating that if there exists an isogeny between two Jacobians
JC and JC′ (JC generic, with dimension at least 4), then the two Jacobians have
to be isomorphic, and the isogeny is the multiplication by an integer (see [2]).
Since the involution does not preserve this divisor, we get a very explicit de-
scription of a different divisor in A(1,1,2,2)

4 , obtained by duality.

2. Notation and preliminaries

We work over the field C of complex numbers. We start by stating some well
known results about complex polarized abelian varieties and Pryms, then we
recall the main ideas of the bigonal construction, which will be used in the
next section. Our main reference for this preliminary section is Birkenhake and
Lange’s book [4].

2.1. Polarized abelian varieties

Let (A,H) be a polarized abelian variety. Fix a line bundle L∈ Pic(A) satisfying
c1(L) = H. The morphism λL : A−→ A∨ given by a 7→ τ∗a L⊗L−1 is an isogeny.
Here, A∨ = Pic0(A) is the dual of A, and τ∗a is the translation by a in A. We get
the following result describing the kernel K(L) of λL:

Theorem 2.1. If L is a polarization of type (d1, . . . ,dg) with di | di+1 for all
i = 1, . . . ,g, then

K(L)∼=
(
Z/d1Z× . . .×Z/dgZ

)2
.

It is useful to note that deg(λL) = |K(L)|= d2
1 × . . .×d2

g .
In order to understand better the relation between line bundles over isoge-

nous abelian varieties, we introduce the Riemann bilinear form associated to a
line bundle: if K(L) is the kernel of a line bundle L over A = V/Λ, we define
the Riemann bilinear form as the bilinear alternating form

eL : K(L)×K(L)−→ C∗

(x,y) 7−→ exp−2iπH(x̃,ỹ),

x̃, ỹ being lifting of respectively x, y to the vector space V . Also we recall
that H = c1(L) and we have K(L) = {x ∈ A |H(l, x̃) ∈ Z, for all l ∈ Λ} (see [6]
Chapter VI Section 4).
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Note that if the line bundle L is ample then the form eL is non-degenerate.
To appreciate the importance of this pairing, we state two useful results. whose
proofs can be found in Birkenhake and Lange’s book . Before stating them we
recall that a subgroup K < K(L) is totally isotropic with respect to eL if for all
x,y ∈ K we have eL(x,y) = 1.

Proposition 2.1. For an isogeny f : X→Y of abelian varieties and a line bundle
L ∈ Pic(X) the following statements are equivalent:

1. L = f ∗(M) for some M ∈ Pic(Y ),

2. ker( f ) is a totally isotropic subgroup of K(L) with respect to eL.

Proof. See ([4], Corollary 6.3.5).

Proposition 2.2. Let f : X → Y be a surjective morphism of abelian varieties,
and let M be a line bundle over Y . Then e f ∗M(x,x′) = eM( f (x), f (x′)) for all
x,x′ ∈ f−1(K(M)).

Proof. See ([4], Proposition 6.3.3).
To conclude this section we recall the construction of Birkenhake and Lange’s

involution: denote by A(d1,...,dg)
g the coarse moduli space parametrizing isomor-

phism classes of g-dimensional polarized abelian varieties of type (d1, . . . ,dg); it
is a quasi-projective variety of dimension g(g+1)

2 . In [3], Birkenhake and Lange
have shown that there is an isomorphism of coarse moduli spaces

A(d1,...,dg)
g

∼=−→A
(

d1dg
dg

,
d1dg
dg−1

...,
d1dg

d2
,

d1dg
d1

)

g .

In the case where g = 4 and (1,1,2,2) is the polarization type, we get an auto-
morphism ρ :A(1,1,2,2)

4 −→A(1,1,2,2)
4 , associating to a polarized abelian variety

(A,LA) its dual variety (A∨,LA∨). The polarization LA∨ on A∨ is constructed in
order to satisfy (LA∨)

∨ = LA (see [3], Proposition 2.3). Since (A∨)∨ = A we get
ρ2((A,LA)) = (A,LA), hence ρ is an involution on the moduli space A(1,1,2,2)

4 .
We remind that to give a polarization on an abilian variety A is equivalent to

give an isogeny λ : A−→ A∨ with λ = λ∨.

2.2. Prym maps and Prym varieties

Let C ∈Mg,D∈Mg′ , and let D π−→C be a finite morphism of degree d branched
on a divisor B= q1+ . . .+qr, with qi ∈C and qi 6= q j for all i 6= j. If B is nonzero,
we call the morphism π a branched covering of C of degree d.
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Even though what follows can be defined for a general degree d, we shall
focus on the case d = 2, which is of interest for us. In this case, the curve D is
obtained as Spec(OC⊕η−1) with η ∈ Pic(C) such that η⊗2 ∼=OC(B). Observe
that if π is a degree-2 cover which ramifies over r points of C, then the Riemann-
Hurwitz formula gives that the genus of D is 2g− 1+ r

2 (note that r has to be
even).

Let Nmπ : JD−→ JC be the norm map. We remind that it is surjective, and
it’s kernel is connected when the covering π is branched, otherwise it has two
components.

We are ready to define the Prym variety attached to a cover.

Definition 2.2. The Prym variety attached to the cover D π−→C is the connected
component containing the origin of the kernel of the norm map:

P(D,C) = ker(Nmπ)
0.

The Prym variety (P(D,C),Ξ) turns out to be a polarized abelian variety of
dimension g− 1+ r

2 : the polarization Ξ is obtained as the first Chern class of
the restriction on P(D,C) of the line bundleOJD(ΘD), where ΘD is the principal
polarization of JD. Note that in the case of d = 2, Ξ is of type (1, . . . ,1,︸ ︷︷ ︸

r
2−1

2, . . . ,2)︸ ︷︷ ︸
g

.

2.3. The bigonal construction

The bigonal construction is a procedure that associates to a tower of double
coverings D→C→K another tower of double coverings, whose Prym is dual to
P(D,C). Since the duality result of Pryms will be useful later in our discussion,
we give some details (see Pantazis for an accurate description [12]).

Let ϕ : C→ K be a covering of degree 2 (hence the ”bi” in bigonal) and
π : D→C be a branched covering of degree 2. The curve D is equipped with an
involution ι which exchanges the two elements of the fiber over a generic point
c ∈C. The two given coverings determine a degree 22 covering Γ−→ K, whose
fiber over a generic point k ∈ K consists of 4 sections sk of π over k :

sk : ϕ
−1(k)−→ π

−1
ϕ
−1(k), π ◦ sk = idK .

Now observe that there is an immersion of K in C(2) sending x ∈ K to
ϕ−1(x) ∈ C(2). The curve Γ is then defined as the pre-image of K by the map
ϕ(2) : D(2) −→C(2).
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Note that we can view a point p ∈ Γ which belongs to the fiber of some
k ∈ K as a section sk.

There is an involution on Γ defined by ι̃(sk) = ι ◦ sk, k ∈ K, which in turn
gives an equivalence relation where two points s1,s2 ∈ Γ are said to be equiv-
alent if s1 = ι̃(s2). Considering the quotient Γ0 = Γ/ι̃ we obtain a tower of
degree 2 coverings Γ−→ Γ0 −→ K.

The two towers D π−→ C
ϕ−→ K and Γ

π̃−→ Γ0
ϕ̃−→ K are said to be bigonally

related (see Donagi for details [8]). Since ϕ and π are branched, this implies
that ϕ̃ and π̃ are branched as well.

We have the following result, due to Pantazis [12], stating that bigonally
related Pryms are dual :

Theorem 2.3. Consider a pair of maps of degree 2, D → C → P1, and the
bigonally related tower Γ→ Γ0→ P1. Consider then the Pryms:

P(D,C) := ker(Nm : J(D)→ J(C))0,

P(Γ,Γ0) := ker(Nm : J(Γ)→ J(Γ0))
0.

Then (P(D,C), Ξ) and (P(Γ,Γ0), Ξ′ ) are dual as polarized abelian varieties.

We conclude this introductory section by briefly defining some notions and
fixing some notation which we shall use throughout the rest of this work :

• Xm < X is the kernel of ·m : X −→ X , the multiplication by m. We will
usually refer to Xm as the subgroup of m-torsion elements of X .

• Rg,r will denote the moduli space of double coverings of a curve of genus
g with r ramification points.

• we denote as P :Rg,r→Aδ

g−1− r
2

the Prym map, associating to a covering
its Prym variety.

• if C is a curve, ΘC will denote the principal polarization of the Jacobian
JC. If A is a polarized abelian variety, we will use the line bundle LA to
refer to the polarization of A, instead of the hermitian form H = c1(LA).

3. Construction of divisors in A(1,1,2,2)
4

In this section we construct two divisors of the moduli space A(1,1,2,2)
4 : the first

one will be constructed as the closure of the image of R2,6 by the Prym map P,
the other one will be obtained as the image of Mg in A(1,1,2,2)

4 via the Torelli
map and a quotient construction.
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3.1. Prym construction

The first construction of a divisor in A(1,1,2,2)
4 immediately follows from the

Prym map P :R2,6→A(1,1,2,2)
4 which sends a covering π : D→C inR2,6 to its

Prym variety. From the general theory of Pryms, we get that since the cover π

ramifies, the kernel of the norm map is connected, thus P(D,C) = ker{Nm(π) :
JD→ JC}. We obtain a Prym variety of dimension 4 and polarization of type
(1,1,2,2).

The Prym map P :R2,6→A(1,1,2,2)
4 has been studied in a recent work of J.

C. Naranjo and A. Ortega [11]: the two authors show that it is injective. Since
R2,6 has dimension 3g−3+ r = 9, the closure of its image by P is a divisor of
the 10-dimensional moduli space A(1,1,2,2)

4 . We name the obtained divisor P .

3.2. Quotient construction

First, we define the following moduli space of principally polarized abelian va-
rieties of dimension 4 with a fixed totally isotropic subgroup of 2-torsion ele-
ments:

Ã4 = {(X ,LX ,H)|(X ,LX) is a ppav of dimension 4,

H ⊂ X2 is a totally isotropic subgroup of four elements}/∼= .

For (X ,LX ,H) ∈ Ã4, let A := X/H. This gives a degree 4 isogeny f : X → A.
Thanks to Proposition (2.1), we can choose over A a polarization LA whose
pullback by f is L⊗2

X . Considering the isogenies induced by the polarizations,
we get the following diagram:

X
f //

2λX

��

A

λLA

��
X∨ A∨

f∨
oo

Observe that X2 = f−1(ker( f∨ ◦ λLA)). Computing the degree of the in-
volved maps we get that deg(2λX) = |X2|= 28 has to be equal to deg( f∨ ◦λLA ◦
f ) = 22 · |ker(λLA)| · 22, meaning that |ker(λLA)| = 24. Observe as well that
ker(λLA) is a commutative subgroup of A2 and therefore all of its elements have
order two. Then

ker(λLA)
∼= (Z/2Z×Z/2Z)2,
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meaning that (A,LA) ∈ A(1,1,2,2)
4 .

This construction gives a finite covering ϖ : Ã4 −→A(1,1,2,2)
4 which sends

a triple (X ,LX ,H) to (A,LA).
Now let us consider the Torelli map τ :Mg → Ag, associating to every

smooth curve of genus g ≥ 3 its Jacobian as a principally polarized abelian
variety. This map is well known to be injective (Torelli Theorem), so the closure
of its image, called the Jacobian (or Torelli) locus, is a subvariety of Ag of
dimension 3g− 3. Focusing on our case of interest, which is for g = 4, we
obtain that the Jacobian locus is actually a sub-variety of dimension 9 of A4.
Hence, we can consider the Jacobian locus inside Ã4 in the natural way and its
image by the finite covering ϖ defines a divisor in A(1,1,2,2)

4 . We shall call it J .

4. The main Theorem

In the previous section we have obtained the divisor P via the Prym construc-
tion, and the divisor J obtained from the Jacobian locus thanks to the quotient
construction. In this section we ask how do these two divisors behave under the
involution ρ . We state here our main result:

Theorem 4.1. Let P and J be the divisors of A(1,1,2,2)
4 constructed in Section

3. Let ρ :A(1,1,2,2)
4 →A(1,1,2,2)

4 be the Birkenhake and Lange’s involution. Then
we have the following:

1. P = ρ(P): P is invariant under the involution;

2. J 6= ρ(J ): J is not invariant under the involution.

Proof of point (1). To prove point (1) of Theorem (4.1), we need to show that
the dual of a Prym variety inside the Prym divisor P is also a Prym variety. This
follows from the bigonal construction and Theorem (2.3). In fact, let D π−→ C
be a general branched covering in R2,6. C is a hyperelliptic curve since has
genus two, so we get a degree two covering C

ϕ−→ P1. The ramification points
of ϕ are the six Weierstrass points on C, which by generality we can suppose
to be different than the branch locus of the covering D π−→ C. Applying the
bigonal construction to the tower D π−→C

ϕ−→ P1, we get a corresponding tower

Γ
π̃−→ Γ0

ϕ̃−→ P1, where Γ
π̃−→ Γ0 is a degree two covering with 6 branch points.

Now we need to see that P(Γ,Γ0) is in P . Let us count the genera of the curves
Γ and Γ0: the ramification divisor of the degree 4 covering Γ−→ P1 is

R = w1 + . . .+w6 +b1 + . . .+b6 +b′1 + . . .+b′6,
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where wi is in the fiber over kwi ∈ P1, which is the image of a Weierstrass point
by ϕ , whereas bi’s and b′i’s are the elements of the fiber over kbi ∈ P1 which is
the image by ϕ of a branch point in C. Hence deg(R) = 18, so by the Riemann-
Hurwitz formula, we get that the genus of Γ is 6. Now the ramification divisor
of the degree 2 covering Γ

γ−→ Γ0 is

R′ = w1 + . . .+w6,

the points wi are as described above and are those fixed by the involution ι̃ , so
deg(R′) = 6. Using the Riemann-Hurwitz formula we get that the genus of Γ0

is 2. Thus the covering Γ
π̃−→ Γ0 lives inR2,6, meaning that P(Γ,Γ0) is indeed in

the divisor P . Using Theorem (2.3), we get that P(D,C) and P(Γ,Γ0) are dual,
which concludes the proof of (1).

Part (2) of Theorem (4.1) requires more work.
From now on, let (X ,LX) = (JC,ΘC) for some curve C, and (A,LA) =

( JC
〈α1,α2〉 ,LA) where α1 and α2 are 2-torsion elements in JC satisfying

e2ΘC(α1,α2)= 1, e2ΘC being the Riemann bilinear form associated toOJC(2ΘC).
Recall that elements in J are polarized abelian varieties (A,LA) with an isogeny
of degree 4 from a Jacobian f : JC −→ A, such that f ∗(LA) = OJC(2ΘC). The
divisor J ′ = ρ(J ) has to be a variety whose elements are polarized abelian va-
rieties (A′,LA′) with an isogeny of degree 4 to a Jacobian f ′ : A′ −→ JC′, such
that f ′∗(ΘC′) = LA′ .

To find a more explicit description of J ′, the following Lemma will be
useful:

Lemma 4.1. The kernel K(LA) is given by :

K(LA) =
〈α1,α2〉⊥

〈α1,α2〉
⊂ JC
〈α1,α2〉

= A,

where orthogonality is considered in JC2 with respect to e2ΘC .

Proof. Since both groups have the same cardinality (16 elements), it is enough
to prove one inclusion. Let’s see that K(LA) is contained in

〈α1,α2〉⊥

〈α1,α2〉
.
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Let ã ∈ K(LA), then ã = f (a) for some a ∈ JC. Therefore:

1 = eLA( f (a),0) = eLA( f (a), f (αi)) = e2ΘC(a,αi),

where the last equality is obtained thanks to proposition 2.2. Hence ã∈ 〈α1,α2〉⊥

Let

Ã′4 = {(X ,LX ,H)|(X ,L) is a ppav of dimension 4,

H ⊂ X2 and H⊥ is an isotropic subgroup of four elements}/∼= .

We now define the new divisor J ′ using a construction analogous to the
quotient one: let (X ,LX ,H) ∈ Ã′4, and let us put A′ = X/H. This gives a degree
4 isogeny f ′ : A′ −→ X/X2 ∼= X . A′ is polarized by LA′ = f ′∗(LX), which is of
the desired type (1,1,2,2). The moduli space Ã′4 also gives a finite covering ϖ ′

for A(1,1,2,2)
4 . As before, the image of the Jacobian locus by ϖ ′ defines a divisor

which is in fact J ′.
Now for A= JC/〈α1,α2〉, we have that A∨= ρ(A). Recalling that by defini-

tion λLA : A→A∨, then by using Lemma 4.1 and the third isomorphism Theorem
we can write down A∨ explicitly as a quotient of JC:

A∨ ∼=
A

ker(λLA)
∼=

JC
/
〈α1,α2〉

〈α1,α2〉⊥
/
〈α1,α2〉

∼=
JC

〈α1,α2〉⊥
.

Moreover, (A′ = JC
〈α1,α2〉⊥

,LA′) is the image of (JC,ΘC,〈α1,α2〉⊥) by ϖ ′.
This duality argument leads to the fact that the two divisors J and J ′ are linked
by the following diagram:

Ã4 Ã′4

A(1,1,2,2)
4 A(1,1,2,2)

4

ϖ

⊥

ρ

ϖ ′

The map ⊥ takes the triple (X ,LX ,H) to (X∨,L∨X ,H
⊥); the maps ϖ , ϖ ′

are the two finite coverings of A(1,1,2,2)
4 defined above, and the map ρ is the

Birkenhake and Lange involution. We see that the diagram commutes thanks to
the following Lemma:
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Lemma 4.2. The pullback by f∨ : A∨−→ JC∨ of Θ∨C is algebraically equivalent
to LA∨ .

Proof. The statement is equivalent to f λ
−1
Θ

f∨ = λL∨A
. Let us first show that

f λ
−1
Θ

f∨λLA f is equal to λL∨A
λLA f = 2 f . We know that f∨λLA f = 2λΘ, therefore

f λ
−1
Θ

f∨λLA f = f λ
−1
Θ

2λΘ = 2 f .
To conclude that f λ

−1
Θ

f∨= λL∨A
, we use the fact that λLA f is an epimorphism

(since it is surjective as an isogeny).

A generic element of J ′ is a pair (A′ = JC/〈α1,α2〉⊥,LA′) together with a
degree 4 isogeny f ′ : A′ −→ JC such that LA′ = f ′∗(ΘC). The commutativity of
the above diagram means that ρ(J )=J ′: indeed, given (A= JC/〈α1,α2〉,LA)∈
J , we have ρ(A) = A∨ = JC/〈α1,α2〉⊥ = A′. To see that ρ(LA) = LA′ , we ob-
serve that f ′ = f∨ and use Lemma 4.2.

It is useful to note that we have the following result :

Lemma 4.3. The pullback by λLA of LA∨ is algebraically equivalent to L2
A.

Proof. The proof is analogous to the previous one: the statement is equivalent
to

(λLA)
∨ ◦λL∨A

◦λLA = 2λLA .

But since (λLA)
∨ : A→ A∨ is the same as λLA : A→ A∨, and λLA ◦λL∨A

= 2A the
equality is straightforward:

(λLA)
∨ ◦λL∨A

◦λLA = λLA ◦λL∨A
◦λLA = 2λLA .

Proof of Theorem (4.1) point (2). Suppose J = J ′. Since elements in J are
of the form JC

〈α1,α2〉 , for some curve C and some 2-torsion elements α1 and
α2, and elements in J′ are of the form JD/〈β1,β2〉⊥ for some curve D and
some 2-torsion elements β1 and β2, the equality would imply that for every pair
(JC,〈α1,α2〉) in J we can find another pair (JD,〈β1,β2〉) such that

JC
〈α1,α2〉

=
JD

〈β1,β2〉⊥
.
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Now consider the diagram

JC

2JC

��

fC // JC
〈α1,α2〉 =

JD
〈β1,β2〉⊥

λLA

��

JD
fDoo

2JD

��
JC∨ JC∨

〈α1,α2〉⊥
= JD∨
〈β1,β2〉

f∨Coo
f∨D

// JD∨

Composing f∨C ◦λLA ◦ fD, we obtain an isogeny from JD to JC∨∼= JC, where
the isomorphism is given using the principal polarization of JC. Computing the
degree of this map we find that it is 212, that is the product of the degree of the
three factorizing maps (deg fD = 26, degλLA = 24, deg f∨C = 22). Now we use
this result:

Theorem 4.2 (Bardelli, Pirola). If χ is an isogeny between two Jacobians of
dimension g≥ 4, and J is generic, than J ∼= J′ and χ is the multiplication by an
integer.

Applying Theorem 4.2 to our case, we get that necessarily the Jacobians
JC and JD have to be isomorphic as principally polarized abelian varieties, so,
using Torelli Theorem, we get that the curves C and D have to be isomorphic.
Moreover, we also get that the isogeny χ = f∨C ◦λLA ◦ fD has to be the multipli-
cation by an integer map. But this cannot be, since the multiplication by m map
has degree m2×4 = m8, thus can never be equal to 212. Hence J 6= J ′, which
completes the proof.
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