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THE FORMAL ANALOGY BETWEEN THE STATIONARY
AXISYMMETRIC EINSTEIN-MAXWELL EQUATIONS AND

THE EQUATIONS OF ELECTRICAL HEATING OF
CONDUCTORS

GIOVANNI CIMATTI

Two problems of the general theory of relativity and a problem in the
electrical heating of conductors (the so-called thermistor problem), lead to
the same set of partial differential equations. This permits a unified treat-
ment of these different problems. The related boundary value problems is
studied using a suitable transformation.

1. Introduction

In this paper we study the system of PDE

ψρρ +
1
ρ

ψρ +ψzz = e−2ψ
(
φ

2
ρ +φ

2
z
)

(1.1)

(
ρe−2ψ

φρ

)
ρ
+
(
ρe−2ψ

φz
)

z = 0 (1.2)

which is relevant in three different contests: (I) in the axially symmetric problem
of the general theory of relativity, (II) in the extension of the Weyl’s metric to the
case of steadily spinning sources and (III) last, but not least, to the completely
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different problem of the electrical heating of conductors. We start with problem
(I). The axially symmetric static Weyl metric reads (see [18], [1], [2], [4] and
reference therein)

ds2 = e2ψdt2− e−2ψ
[
e2γ
(
dz2 +dρ

2)+ρ
2dϕ

2], (1.3)

where ψ and γ are functions of ρ and z only. In terms of the antisymmetric
electromagnetic fields tensor Fik the Maxwell equations [10], [17] are

Fi j;k +Fjk;i +Fki; j = 0, F ik
;k = 0.

If φ is the electric potential, also depending on ρ and z only, and magnetic ef-
fects are neglected, the only non-vanishing components of Fik are F21 =−F12 =
φρ , F31 = −F13 = φz. Under these assumptions the system of the Einstein-
Maxwell equations reduces to (1.1) and (1.2), see [7], [8]. If ψ and φ are
known from (1.1) and (1.2), γ can be determined by integration up to an ad-
ditive constant [1], [11]. Problem (II) is closely related to (I). For, the metric
corresponding to axially symmetric rotating matter reads, [11], [1], [16]

ds2 = e2µ
(
dt +ωdϕ

)2− e−2µ
[
e2ν
(
dz2 +dρ

2)+ρ
2dϕ

2]. (1.4)

The vacuum field equations reduce to two for µ and ω , which are

µρρ +
1
ρ

µρ +µzz =−
1
2

e4µ

ρ2

(
ω

2
ρ +ω

2
z
)

(1.5)

(e4µ

ρ
ωρ

)
ρ

+
(e4µ

ρ
ωz

)
z
= 0, (1.6)

with ν determined by quadrature as in the previous case. The relationship be-
tween the solutions of (1.1), (1.2) and the solutions of (1.5), (1.6) is quite simple
and is given in Section 2. To prove that problem III can, in certain cases, be mod-
eled with (1.1), (1.2), let us consider an axially symmetric conductor of electric-
ity and heat under steady conditions. Suppose that the boundary conditions are
such that the temperature and the electric potential in cylindrical coordinates do
not depend on the angular variable. Let u(ρ,z) denote the temperature. Assume
the electrical conductivity σ to depend on the temperature according to the law
σ(u) = e2u 1 and take the thermal conductivity κ = 1. The heat flux density is
given by the Fourier’s law q =−∇u and the current density reads J =−e2u∇φ .
Thus the conservation of energy and charge, i.e. ∇ ·J = 0, ∇ ·q = E ·J, implies

∇ ·
(
e2u

∇φ
)
= 0, −∆u = e2u|∇φ |2. (1.7)

1This happens in certain technical devices called thermistors [9].
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On the other hand, the laplacian in cylindrical coordinates reads ∆u = uρρ +
1
ρ

uρ +uzz +
1

ρ2 uθθ . If u and φ do not depend on the angular variable and we set
ψ =−u, we obtain precisely (1.1), (1.2). The results of this paper apply to each
of these three physical situations.

Many papers have been devoted to the study of the system of (1.1), (1.2).
We quote in particular [12] where a simplified form of the system is studied
in which the electric field is so weak that its influence on the metric can be
neglected. Thus the right hand side in equation (1.1) is put equal to zero. An
orthogonal electrostatic conforming coordinates system is used in [3] to find
properties of the system (1.1), (1.2).

In Section 3 we introduce a transformation which permits to rewrite the
system (1.1), (1.2) in a more symmetric form. To single out a specific solution
of this system of PDE we need to prescribe boundary conditions. This is made
according to the specific nature of the problem. We prove that the solution
of this non linear boundary value problem depends only on the solution of an
auxiliary linear Dirichlet’s problem for a single equation.

2. Equivalence of the systems (1.1), (1.2) and (1.5), (1.6)

If
φ = ω, ψ = logρ−2µ (2.1)

the system

ψρρ +
1
ρ

ψρ +ψzz = e−2ψ
(
φ

2
ρ +φ

2
z
)

(2.2)

(
ρe−2ψ

φρ

)
ρ
+
(
ρe−2ψ

φz
)

z = 0 (2.3)

becomes

µρρ +
1
ρ

µρ +µzz =−
1
2

e4µ

ρ2

(
ω

2
ρ +ω

2
z
)

(2.4)

(e4µ

ρ
ωρ

)
ρ

+
(e4µ

ρ
ωz

)
z
= 0 (2.5)

and vice-versa. This is seen immediately, in fact from (2.1) we have

e−2ψ =
e4µ

ρ2 . (2.6)

Substituting (2.6) in (2.2) we obtain (2.5). Moreover, from (2.1) we obtain
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ψρρ +
1
ρ

ψρ +ψzz =−2
(
µρρ +

1
ρ

µρ +µzz
)
+

1
ρ

(
ρ

∂ logρ

∂ρ

)
ρ

= (2.7)

−2
(
µρρ +

1
ρ

µρ +µzz
)
.

Putting (2.6) and (2.7) into (2.2) we have (2.4). Hence every result for the
system (2.2), (2.3) translates, via (2.1), into a result for the system (2.4), (2.5).

3. The main transformation

It is useful to apply to (2.2), (2.3) the transformation

θ(ρ,z) =
φ 2(ρ,z)

2
+

1
2
(
1− e2ψ(ρ,z)), (3.1)

where (φ(ρ,z),ψ(ρ,z)) is a solution of (2.2), (2.3). We have

θρ = φφρ − e2ψ
ψρ , θz = φφz− e2ψ

ψz. (3.2)

From (2.3), (2.2) we have, using (3.2),

1
ρ

(
ρe−2ψ

θρ

)
ρ

+
(

e−2ψ
θz

)
z
= 0. (3.3)

Therefore, the system (1.1), (1.2) can be reformulated in the following more
symmetric form

1
ρ

(
ρe−2ψ

φρ

)
ρ

+
(

e−2ψ
φz

)
z
= 0 (3.4)

1
ρ

(
ρe−2ψ

θρ

)
ρ

+
(

e−2ψ
θz

)
z
= 0, (3.5)

where φ , ψ and θ are related by the functional relation (3.1). However, with
this approach (3.1) needs to be solved with respect to ψ if we want to return to
the physical quantities φ and ψ . This is possible only if

φ
2 +1−2θ > 0. (3.6)

To decide whether or not the condition (3.6) is satisfied we need to specify a
particular set of boundary conditions for the system (3.4), (3.5). On the other
hand, both systems are of little use without this particularization which only
permits to determine a definite solution out of the infinite set of solutions of
the indefinite systems. The problem of finding suitable boundary conditions for
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the Einstein-Maxwell equations is an old one. We refer in this respect to [5],
[11] and [15]. The boundary conditions in which we state our problem are quite
special, however, they permit a near complete solution of the corresponding
problem. Let D be an open and bounded subset of R2 homeomorphic to an
annulus, laying entirely in the half plane ρ > 0 and with a positive distance
from the z-axis. Let Γ1 and Γ2 be the two disjoint parts of the boundary of
D. Let Ω be the subset of R3 obtained rotating D around the z-axis and let
T be the toroidal surface obtained rotating Γ1 around the z-axis. Referring to
problem (I), we assume that all the matter and electric charges which give rise
to the potentials ψ and φ are contained inside the solid torus of boundary T
and determine the values of φ and ψ on Γ1 as two constants ψ̄ and φ̄ such that
ψ = ψ̄, φ = φ̄ on Γ1. The torus obtained rotating Γ2 around the z-axis will be
so-to-speak our ”horizon”. Thus we assume on Γ2 the values pertaining to the
flat space solution i.e. ψ = 0, φ = 0. For problem (III) with the present choice of
boundary conditions, we prescribe two different constant values of temperature
on the two part of the boundary. We arrive for the determination of φ and ψ to
the following boundary value problem

1
ρ

(
ρψρ

)
ρ
+ψzz = e−2ψ

(
φ

2
ρ +φ

2
z
)

in D (3.7)

ψ = ψ̄ on Γ1, ψ = 0 on Γ2 (3.8)

1
ρ

(
ρe−2ψ

φρ

)
ρ
+
(
e−2ψ

φz
)

z= 0 in D (3.9)

φ = φ̄ on Γ1, φ = 0 on Γ2. (3.10)

The case φ̄ = 0 is immediately dealt with, since we have φ(ρ,z) = 0 from (3.9)
and (3.10), and we obtain ψ(ρ,z) from (3.7), (3.8) which becomes a simple
linear Dirichlet’s problem. Thus there is no loss in generality if we assume
φ̄ 6= 0. In terms of φ and θ , see (3.1), the problem (3.7)-(3.10) becomes

1
ρ

(
ρe−2ψ

φρ

)
ρ
+
(
e−2ψ

φz
)

z= 0 in D (3.11)

φ = φ̄ on Γ1, φ = 0 on Γ2 (3.12)

1
ρ

(
ρe−2ψ

θρ

)
ρ
+
(
e−2ψ

θz
)

z= 0 in D (3.13)

θ =
φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
on Γ1, θ = 0 on Γ2, (3.14)
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where θ , φ and ψ are related by the functional relation

θ =
φ 2

2
+

1
2
(
1− e2ψ

)
. (3.15)

In the next Lemma we prove the equivalence between these two formulations.

Lemma 3.1. If
φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
<

1
2

(3.16)

every solution of the problem (3.7)-(3.10) is a solution of (3.11)-(3.15) and vice-
versa.

Proof. Let (φ(ρ,z),ψ(ρ,z)) be a solution of problem (3.7)-(3.10). Define

θ(ρ,z) =
φ 2(ρ,z)

2
+

1
2
(
1− e2ψ(ρ,z)). (3.17)

With direct calculation we have (3.13) using (3.7) and (3.9). Moreover θ(ρ,z),
defined by (3.17), satisfies the boundary condition (3.14). Vice-versa, let us
assume (φ(ρ,z),θ(ρ,z)) to be a solution of problem (3.11)-(3.15). In view of
the assumptions made on D it is possible to apply to (3.11), (3.12) the maximum
principle for elliptic equation ([13] page 61). Thus from (3.11), (3.12) we have
the ”a priori” bound

− φ̄ 2

2
≤−φ 2(ρ,z)

2
≤ 0. (3.18)

If
φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
> 0 (3.19)

we obtain from (3.13) and (3.14), by the maximum principle,

0≤ θ(ρ,z)≤ φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
in D. (3.20)

If, instead,

φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
≤ 0 (3.21)

holds, we have, again from (3.13) and (3.14),

φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
≤ θ(ρ,z)≤ 0 in D. (3.22)

Adding (3.20) and (3.18) we obtain, if (3.19) holds,
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− φ̄ 2

2
≤ θ(ρ,z)− φ 2(ρ,z)

2
≤ φ̄ 2

2
+

1
2
(
1− e2ψ̄

)
(3.23)

or, if we have (3.21),

−1
2
(
1− e2ψ̄

)
≤ θ(ρ,z)− φ 2(ρ,z)

2
≤ 0. (3.24)

By (3.15) we obtain

1
2
(
1− e2ψ

)
= θ − φ 2

2
. (3.25)

In view of (3.16) the functional relation (3.25) can be solved with respect to ψ

in both the cases (3.19) and (3.21). Therefore, the function

ψ(ρ,z) =
1
2

log
[
1+φ

2(ρ,z)−2θ(ρ,z)
]

(3.26)

is well-defined. We prove now that ψ(ρ,z) satisfies (3.7). For, from (3.25) we
have

ψρ(ρ,z) = e−2ψ
(
φφρ −θρ

)
, ψz(ρ,z) = e−2ψ

(
φφz−θz

)
. (3.27)

Using (3.11) and (3.13) we have, after simple calculations,

1
ρ

(
ρψρ

)
ρ
+ψzz = e−2ψ

(
φ

2
ρ +φ

2
z
)

i.e. (3.7). On the other hand, ψ(ρ,z) given by (3.26) satisfies also the boundary
condition (3.8). This proves the equivalence of problem (3.7)-(3.10) with (3.11)-
(3.15).

We show now that the problem (3.11)-(3.15) can be solved in terms of the
solution of an auxiliary Dirichlet’s and it is therefore advantageous with respect
to the formulation (3.7)-(3.10). For definiteness we assume hereafter φ̄ > 0.
From (3.15) we have

e−2ψ =
1

1+φ 2−2θ
. (3.28)

Thus, the problem (3.11)-(3.14) can be written in terms of θ and φ only as
follows:

1
ρ

(
ρ

1+φ 2−2θ
φρ

)
ρ

+
( 1

1+φ 2−2θ
φz

)
z
= 0 in D (3.29)



96 GIOVANNI CIMATTI

φ = φ̄ on Γ1, φ = 0 on Γ2 (3.30)

1
ρ

(
ρ

1+φ 2−2θ
θρ

)
ρ

+
( 1

1+φ 2−2θ
θz

)
z
= 0 in D (3.31)

θ =
φ̄ 2

2
+

1
2

(
1− e2ψ̄

)
on Γ1, θ = 0 on Γ2. (3.32)

Let us define

k =
φ̄ 2 +1− e2ψ̄

φ̄
(3.33)

and consider the problem for a single equation

1
ρ

(
ρ

1+φ 2− kφ
φρ

)
ρ

+
( 1

1+φ 2− kφ
φz

)
z
= 0 in D (3.34)

φ = φ̄ on Γ1, φ = 0 on Γ2. (3.35)

It is immediately seen that if φ(ρ,z) is a solution of the problem (3.34), (3.35)
then

(
φ(ρ,z),θ(ρ,z)) = (φ(ρ,z),

k
2

φ(ρ,z)
)

(3.36)

solves (3.29)-(3.32). Now, the solution of problem (3.34), (3.35) can be easily
found. To this end, let us define

w = F(φ) =:
∫

φ

0

dt
1+ t2− kt

. (3.37)

For the present method to work we need F(φ) to be invertible as a function from
[0, φ̄ ] to [0,F(φ̄)]. Since

t2− kt +1 =
1
4
(4− k2)+

1
4
(k−2t)2 (3.38)

to have invertibility we assume

|k|< 2. (3.39)

In view of (3.33), we can rewrite (3.39) in terms of φ̄ and ψ̄ as

(φ̄ −1)2 < e2ψ̄ < (φ̄ +1)2. (3.40)
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Hereafter we assume (3.40) in addition to (3.16). Computing the integral which
defines F(φ) we find

F(φ) =
2

4− k2

[
atan

( 2φ − k√
4− k2

)
−atan

( −k√
4− k2

)]
. (3.41)

In term of w the problem (3.34), (3.35) becomes

1
ρ

(
ρwρ

)
+wzz = 0 in D (3.42)

w = F(φ̄) on Γ1 (3.43)

w = 0 on Γ2. (3.44)

The solution w of the Dirichlet’s problem (3.42)-(3.44) exists and is unique, (see
[6]). Moreover φ = F−1(w) is given by

φ =

√
4− k2

2
tan
[(4− k2

2

)
w− atan

( k√
4− k2

)]
+

k
2
. (3.45)

By (3.36), (3.45) and (3.26) we find

φ(ρ,z) =

√
4− k2

2
tan
[(4− k2

2

)
w(ρ,z)− atan

( k√
4− k2

)]
+

k
2

(3.46)

and
ψ(ρ,z) =

1
2

log
[
1+φ

2(ρ,z)− kφ(ρ,z)
]

(3.47)

as solution of our starting problem (3.7)-(3.10).

REFERENCES

[1] W.B. Bonnor, Physical interpretation of vacuum solutions of Einstein’s equations.
Part I. Time-independent solutions, Gen. Rel. Grav. 24 (1992), 551-574.

[2] W.B. Bonnor, Exact solutions of the Einstein-Maxwell equations, Z. Phys. 161
(1961), 439-444.

[3] J. Carminati and F.I. Cooperstock, Coordinate modelling for static axially sym-
metric electrovac metrics, J. Phys. A: Math. Gen. 16 (1983), 3865-3878.

[4] K.C. Das and S. Banerji, Axially symmetric stationary solutions of Einstein-
Maxwell equations, Gen. Rel. Grav. 9 (1978), 845-855.



98 GIOVANNI CIMATTI

[5] A. Einstein, Kosmologische Betrachtungen zur allgemeinenen Relativitätstheorie
Sitz. Preuss. Akad. Wiss 78 (1917), 142-198.

[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of the Second
Order, Springer, 1989.
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