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COVERING OF ELLIPTIC CURVES AND
THE KERNEL OF THE PRYM MAP

FILIPPO F. FAVALE - SARA TORELLI

Motivated by a conjecture of Xiao, we study families of coverings
of elliptic curves and their corresponding Prym map Φ. More precisely,
we describe the codifferential of the period map P associated to Φ in
terms of the residue of meromorphic 1-forms and then we use it to give
a characterization for the coverings for which the dimension of Ker(dP)
is the least possibile. This is useful in order to exclude the existence of
non isotrivial fibrations with maximal relative irregularity and thus also in
order to give counterexamples to the Xiao’s conjecture mentioned above.
The first counterexample to the original conjecture, due to Pirola, is then
analysed in our framework.

1. Introduction

Hurwitz spaces were classically introduced and studied by Clebsh and Hurwitz
(see [Cle72] and [Hur91]) as spaces parametrizing branched coverings of P1.
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Nowadays, the term Hurwitz space refers to a variety which parametrizes, up to
equivalence, coverings π : F → E of curves with some geometric restrictions. In
this article we will use a local version of Hurwitz spaces, namely a local family
of coverings, whose seminal idea can be found in [Kan04]. Roughly, given a
fixed covering π : F → E where E is an elliptic curve, one is able to construct a
map p : F → E of curves over H, where H is a contractible open set. Then H
is a parameter space for smooth coverings which share the same degree and the
same ramification indices with π .

Attached to a local family of coverings p : F → E with parameter spaceH there
is the Prym map Φ, which associates to a b ∈H the generalized Prym variety of
πb = π|Fb : Fb→ Eb, i.e. the connected component containing 0 of the kernel
of the norm map Nm(πb). The Prym map is, in some sense, the analogous of
the Torelli map T fromMg, the moduli space of curves of genus g, to Ag, the
moduli space of principally polarized abelian varieties of dimension g.

A celebrated theorem, the infinitesimal Torelli theorem, states that the differential
of the Torelli map is injective outside the hyperelliptic locus ofMg and it should
be interesting to have a similar theorem also for Prym maps or, at least, to their
lifting P to a period domain. We will show that, in our case, i.e. when the
base E is an elliptic curve, the dimension of the kernel of doP∨ is at least 1 as a
consequence of how the local families that we will use are constructed. Roughly,
by composing a covering with a traslation of the base we always have coverings
with the same Prym, so there is a tangent direction in the parameter space along
which the Prym map is constant. Hence a question analogous to the one answered
by the infinitesimal Torelli is

Given a family of coverings with central fiber π , which conditions
can we put on π in order to have that Ker(doP) has dimension 1?

It is already known that an infinitesimal Torelli-like theorem for the Prym map
cannot hold without restrictions as there are examples of coverings π : F →
E (moreover with F non hyperelliptic) for which there are two independent
directions along which doP is 0. One of these examples, due to Pirola, will
be analyzed in Section 5. This paper is devoted to the study of the Prym map
Φ : H→ A in the cases for which H parametrizes coverings over an elliptic
curve.

A further motivation to study this kind of problems comes from a conjecture
about fibered surfaces. Recall that, given a fibration f : S→ B of a smooth
compact surface S over a smooth compact curve B, the relative irregularity q f is
defined to be the difference q(S)−g(B). A modified version of a conjecture of
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Xiao states that, if f is not isotrivial, then

q f ≤
⌈

g+1
2

⌉
. (1)

The original conjecture was without the round up and has been modified after
a counterexample of Pirola, the one that we will present in Section 5. To have
an insight of what is known about the relative irregularity and about recent
results about an upper bound a good reference is [BGN15]. The link between
the world of non isotrivial fibrations and the one of the families of coverings
we will define is broadly given as follows. The fibration f induces a surjective
map alb( f ) : Alb(S)→ Alb(B) = J(B) with dim(Ker(alb( f ))) = q f , which has
a connected component containing 0. We shall denote it with K f . If B0 is the
open subset of B over which the fibration has smooth fibers, we denote by Fb
the fiber over b ∈ B0. Via the map Fb ↪→ S we have a map JFb→ Alb(S) whose
image is, up to translation, exactly K f . Dualizing we have a map

K∨f
� � // JF∨b = JFb

Note that K∨f doesn’t depend on b whereas Fb strongly depends on it. In particular
we have proved that the Jacobian of every smooth fiber of a non isotrivial fibration
contains a fixed abelian variety of dimension q f . Assume now that we are in
an extreme case, i.e., assume that q f = g−1. Since in this article we are only
interested in non isotrivial fibrations, we will call fibration with maximal relative
irregularity those with q f = g−1. In fact, every fibration satisfies 0≤ q f ≤ g
and the equality q f = g holds if and only if the fibration is trivial (this follows
from a result of Beauville: see the appendix of [Deb82] for details). In this case
dim(K∨f ) = q f = g−1 and we can consider the quotient JFb/K∨f which will be
an abelian variety of dimension g−q f = 1: an elliptic curve Eb.

Φ(πb) = K∨f
� � // JFb

pb // // Eb

Fb

πb

>>OO

πb
// Eb

Moreover, in this case K∨f is the connected component through the origin of the
kernel of the norm map associated to the ramified covering πb : Fb→ Eb, i.e. the
Prym variety Φ(πb). Hence, an eventual counterexample to the modified version
of the conjecture of Xiao, under the additional assumption q f = g− 1, would
give a family of coverings of elliptic curves with constant Prym variety. At the
moment the question
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Is there a non isotrivial fibration (with maximal relative irregularity q f or not)
giving a counterexample to the modified Xiao’s conjecture?

is still completely open but, by answering precisely to our first question one
should be able to construct counterexamples or to prove that, at least for the
case of maximal relative irregularity, such examples cannot exist. It is worth to
mention that, by the original work of Xiao (see [Xia87]), a non isotrivial fibration
with maximal relative irregularity can exist only if g≤ 7.

The paper is organized as follows. In Section 2 we recall some definitions and
facts about Prym varieties associated to ramified coverings and Prym maps that
we are going to use extensively in what follows. In Section 3 we will extend the
techniques developed in [Kan04] for coverings with simple ramification to the
case of arbitrary one. The main result is this theorem

Theorem 1.1 (3.3). With the notations of section 3, if ϕ ∈ Sym2(H0(ωF)
−) we

have

doP∨(ϕ) =
n∑

j=1

Resa j

(
m(ϕ)

π∗α

)
dt j +

(
n∑

k=0

m(ϕ)

π∗α2 (xk)

)
ds. (2)

that describe the (dual of the) differential of the Period map in terms of residues of
some meromorphic forms. In Section 4, given a covering π : F→E and assuming
that F is not hyperelliptic, we prove Theorem 4.4, a geometric criterion on the
canonical model F that is a sufficient condition in order to have dim(Ker(doP)) =
1. Finally, in Section 5, we analyze in our framework the family that was
constructed in [Pir92]. We will prove, using our framework, that the existence of
the family is consistent with our Theorem as well as other interesting geometric
aspects that may suggest a different way to approach, in the future, the problem
of finding an answer to the second question by starting from the geometry of
canonical models.

2. Some preliminaries

In this section we recall some definitions that we are going to use in the following
sections.

Let F,E be two smooth curves of genus g≥ 2 and 1 respectively and consider
the covering π : F → E. One can consider the Albanese variety associated to F ,
which coincides with its Jacobian, because F is a curve. Namely

J(F) =
H0(ωF)

∨

H1(F,Z)
= Alb(F) =

H1(OF)

H1(F,Z)
. (3)
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This is a principally polarized abelian variety of dimension g. As E has genus
1 we have E = J(E) = Alb(E). By the universal property of Alb(F) there is a
map alb(π) such that the diagram

F π // //

��
	

E

=
��

JF
alb(π)
// // JE

commutes, where the map F → JF is the Albanese map of F , also called the
Abel-Jacobi map. The map alb(π) is also called the norm map of π , Nmπ , and it
is surjective. The generalized Prym variety associated to π : F → E (or simply
Prym variety) is the connected component of Ker(alb(π)) that contains the 0, i.e.

P(π) = Ker(alb(π))0. (4)

P(π) is an abelian variety of dimension g− 1 with a natural polarization ΘP

given by ΘJF |P via the embedding

P(π) �
� // JF.

The map π : F → E induces a map trπ : H0(ωF)→ H0(ωE) called the trace of
π (see Appendix A of [Kan04] for the definition). The trace satisfies

trπ ◦π
∗ = Deg(π) IdH0(ωE ) .

If we define
H0(ωF)

− = Ker(trπ) (5)

we have a canonical splitting

H0(ωF) = π
∗H0(ωE)⊕H0(ωF)

− (6)

and we can identify the quotient H0(ωF)/π∗H0(ωE) with H0(ωF)
−. In particu-

lar, the tangent bundle of P(π) can be described as

T P(π) =
(

H0(ωF)

π∗H0(ωE)

)∨
⊗OP(π) = (H0(ωF)

−)∨⊗OP(π). (7)

Now we will introduce the families of coverings of elliptic curves we are inter-
ested in. Fix a smooth curve F of genus g≥ 2 and consider a degree d covering
π : F → E, where E is an elliptic curve. Denote with

R =
n∑

j=1

(n j−1)a j
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the ramification divisor and call b j the branch point corresponding to the ramifi-
cation point a j, i.e. π(a j) = b j. Thus n j is the degree of π when restricted to a
suitable neighborhood of a j.

Fix a generator α of H0(ωE). Choose a suitable set {∆ j} of coordinate neighbor-
hoods centered in the points b j and call w j the corresponding coordinate on E.
This is not needed at the moment but observe that we can assume that α|∆ j = dw j.
We can chose a collection of pairwise disjoint coordinate neighborhoods (U j,z j)
centered in a j in such a way that w j = π|U j(z j) = zn j

j .

Denote by HE the polydisc Πn
j=1∆ j and consider the coordinates t = (t j)

n
j=1

defined by the relation
t j(P1, · · · ,Pn) = w j(Pj).

We can consider, as in Section 4.1 of [Kan04], a family

(Ψ, f ) : F → E×HE

of d-sheeted branched coverings deforming π parametrized byHE such that

w j = Ψ|U j(z j, t) = zn j
j + t j. (8)

In this way, to each b′ ∈HE , it is associated a covering πb′ : Fb′ → E which is a
deformation of π , the central fiber. Note that (8) forces the ramification orders to
remain costant and allows different branch points to move indipendently. This is
what we will call in the following local family of coverings over E with central
fiber π parametrized byHE .
The tangent space toHE in b = (b1, . . . ,bn) ∈HE is

TbHE '
n⊕

j=1

Tb j E '
n⊕

j=1

C
∂

∂ t j
,

where the tangent vectors on the right are evaluated in 0.

We can also take into account the deformation of the elliptic curve. Indeed,
following [ACG11], if one chooses c ∈ E not among the b j and considers a
small coordinate neighborhood (N,v) of c (eventually shrinking ∆ j in such a way
that for all j they are disjoint from N), one can consider the associated Schiffer
variation E → N of E with coordinate s. Observe that we can assume α|N = dv.
Taking into account also the movement of the branch points one has a family
f : F →HE ×N of curves of genus g that fits into the diagram

F
f
��

p // E

��
HE ×N // N

(9)
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For a choice (b′,s′) ∈H=HE ×N we have an elliptic curve Es′ , the fiber of the
map E → N over s′, a curve F(b′,s′) of genus g and a covering

π(b′,s′) = p|F(b′,s′) : F(b′,s′)→ Es′ .

For this reason, the map p is what we will call local family of coverings with
central fiber π parametrized by H or, simply, local family of coverings. The
tangent space toH in (b,s) is

T(b,s)H'

 n⊕
j=1

C
∂

∂ t j

⊕C
∂

∂ s
.

and, clearly, containts TbHE in a natural way. We stress that, through the whole
article, unless otherwise stated, we will always refer to the families of coverings
constructed in this sections.

If we have a family of coverings parametrized by H, for each (b,s) we can
construct the Prym variety associated to the covering. Moreover, the type of
polarization remains constant. Hence we can consider the Prym map

H Φ // Ag−1

(b,s) � // [P(π(b,s))]

(10)

where Ag−1 is the moduli space of abelian varieties with polarization (which
will be omitted) equal to the one of the central fiber. In the same way one has the
Prym map ΦE associated to a local family of coverings over E.

To avoid technical subtleties around singular points ofAg−1, we will consider the
period map P :H→D (or PE :HE→D) instead of the Prym map Φ (respectively
ΦE), where D is a suitable period domain for Ag−1. The interested reader is
referred to [Kan04, Section 3] for technical details.

Through the whole article, giving two sections s1,s2 ∈H0(OX(D)) we will write
s1 ⊗̂s2 to mean their symmetric product, i.e.

1
2
(s1⊗ s2 + s2⊗ s1) ∈ Sym2(H0(OX(D))).

If si ∈ H0(OX(Di)), s1 · s2 will mean the evaluation of s1⊗ s2 in H0(OX(D1 +
D2)) under the multiplication map.
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3. A direct formula for the codifferential of the Prym map

In this section we will prove an explicit formula for the codifferential of the
period map in terms of the residue at the ramification points of some forms. The
framework is similar to the one in [Kan04] with the main difference being that
we don’t restrict ourselves to the case of simple ramification. First of all we
introduce some notations.

Fix an elliptic curve E and let π : F → E be a covering of E with F of genus g.
Consider

(Ψ, f ) : F → E×HE ,

the local family of coverings with fixed base E, central fiber π and parameter
spaceHE constructed in Section 2. By construction, it induces a family f : F →
HE with central fiber Fo = F . If we consider a minimal versal deformation
f ′ : F ′ → M of F then the previous family is induced by f ′ by means of a
pullback. More precisely there exists a holomorphic map hE :HE →M such that

F
f
��

// F ′

f ′

��
HE hE

// M

(11)

is commutative. Being f ′ a minimal versal deformation we have

ToM ' H1(TF)' H0(ω⊗2
F )∨.

Moreover, under this identification, if we take a tangent vector v in ToHE and
evaluate dhE in v we get the Kodaira-Spencer map KSE associated to F →HE

evaluated in v.

We are able to prove the first important part of Theorem 3.3.

Proposition 3.1. Using the identifications introduced above, we have that

dh∨E : T∨o M→ T∨o HE

can be written as

dh∨E(ϕ) =
n∑

j=1

γ jdt j where γ j = 2πiResa j

(
ϕ

π∗α

)
(12)

and ϕ ∈ T∨o M = H0(ω⊗2
F ).



COVERING OF ELLIPTIC CURVES AND THE KERNEL OF THE PRYM MAP 163

Proof. For every ϕ ∈ H0(ω⊗2
F ) we have that dh∨E(ϕ) is identified, as cotangent

vector on M in o, by the complex numbers γ j such that

dh∨E(ϕ) =
n∑

j=1

γ jdt j.

By construction, we can obtain these numbers simply by pairing dh∨E(ϕ) against
∂

∂ t j
:

γ j = dh∨E(ϕ)
(

∂

∂ t j

)
= ϕ

(
dhE

(
∂

∂ t j

))
= ϕ

(
KSE

(
∂

∂ t j

))
.

In order to develop the computation we may proceed using a description of KSE

in terms of the Čech cohomology (details of this can be found in [Hor73]). To
do it consider the exact sequence

0 // TF
dπ // π∗TE

ψ // R // 0 (13)

and let δ be the coboundary map H0(R)→ H1(TF). Then KSE factors as
δ ◦τ = KSE where τ : TbH→H0(R) is the characteristic map of the family (see
[Hor73] for the definition and the proof of this fact). Hence we can unfold the
calculation using these exact sequences.

If one restricts the exact sequence (13) on U j (or some sufficiently small subset
of this coordinate neighborhood), it can be identified with

0 // OU j
∂

∂ z j

dπ // OU j
∂

∂w j

ψ // R|U j
// 0. (14)

The first map sends ∂

∂ z j
to n jz

n j−1
j

∂

∂w j
while the second one is simply the restric-

tion to the ramification locus. Let U = {U0,U1, . . . ,Un} where U j for j = 1, . . . ,n
are the neighborhoods defined above and U0 = F \{a j}. Let, as usual, Uα,β , be
a shorthand for Uα ∩Uβ with α < β . If η = [η j] ∈ H0(U ,R) with η0 = 0 and
η j = p j(z j)

∂

∂w j
we have

δ (η) =
[
λα,β

]
with λ0, j =

p j(z j)

n jzn j−1
∂

∂ z j

for j > 0 and λα,β = 0 if α,β > 0. Following [Hor73] and using Equation (8)
we have

τ

(
∂

∂ t j

)
= [τ

( j)
k ] with τ

( j)
k =

{
0 k 6= j

∂

∂w j
k = j.

(15)
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Hence we have

KSE

(
∂

∂ t j

)
= δ

(
τ

(
∂

∂ t j

))
= [χ

( j)
α,β ]

where

χ
( j)
α,β =

{
1

n jz
n j−1

∂

∂ z j
(α,β ) = (0, j)

0 otherwise.

If ϕ ∈ H0(ω⊗2
F ) we can represent it as Čech-cocycle as [φ j] where

φ0 = φ |U0 and φ j = q j(z j)dz2
j

are the local expressions of ϕ in coordinates around a j. The numbers we are
interested in are simply the ones obtained by considering the perfect pairing

H0(ω⊗2
F )⊗H1(TF) // H1(ωF)

' // C (16)

applied to KSE

(
∂

∂ t j

)
and ϕ . Using Čech cohomology, the image in H1(ωF) of

our product is given by the Čech class [ε( j)
α,β ] with

ε
( j)
α,β =


q j(z j)

n jz
n j−1 dz j (α,β ) = (0, j)

0 otherwise.

What remains to be proven is the analogous to the calculation of [Kan04] for the
case of simple ramification: roughly, one can adapt the techniques of [ACG11,
pag. 14-15] to develop the last isomorphism of (16) in order to finally get

γ j = 2πiRes0
q j(z j)dz2

j

n jz
n j−1
j dz j

= 2πiResa j

ϕ

π∗α
.

Consider now the family p : F → E with central fiber π : F → E and parameter
space H = HE ×N as defined in Section 2. As before, we have an induced
deformation f : F →H of F , its associated Kodaira-Spencer map KS and, when
a minimal versal deformation f ′ : F ′→M of F is chosen, an holomorphic map
h :H→M such that

F
f
��

// F ′

f ′

��
H

h
// M

(17)

is commutative. Again, as ToM ' H1(TF), we can identify dh with KS. We
will denote by x1, . . . ,xd the points of the fiber of π over the point c which, by
construction, are all different.
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Proposition 3.2. Using the identifications introduced above, we have that

dh∨ : T∨o M→ T∨o H

can be written for any ϕ ∈ H0(ω⊗2
F ) = T∨o M as dh∨(ϕ) =

∑n
j=1 γ jdt j + γds

where

γ j = 2πiResa j

(
ϕ

π∗α

)
and γ = 2πi

d∑
k=1

ϕ

π∗α
(xk). (18)

Proof. As before, by duality,

dh∨(ϕ) = ϕ ◦dh = ϕ ◦KS.

It is then clear that the formula for γ j follows directly from Proposition 3.1. The
one that gives γ , as it involves calculations done far from the ramification points,
doesn’t depend on the type of the ramifications. Hence, the one given in [Kan04]
when π as only simple ramification is still valid.

Recall that we have a decomposition of H0(ωF) given by H0(ωF)
−⊕π∗H0(ωE)

where the first space is the vector space of 1-forms on F with trivial trace.
This induces a decomposition on Sym2(H0(ωF)). Unless otherwise specified,
consider Sym2(H0(ωF)

−) as a subspace of Sym2(H0(ωF)) in the natural way.
Let m : Sym2(H0(ωF)

2)→ H0(ω⊗2
F ) be the multiplication map. Denote by

P :H→ D the period map associated to the Prym map Φ :H→Ag−1 where D
is a suitable period domain. We are ready to prove Theorem 3.3.

Theorem 3.3. With the notation introduced in this section, for any
ϕ ∈ Sym2(H0(ωF)

−) we have

doP∨(ϕ) =
n∑

j=1

Resa j

(
m(ϕ)

π∗α

)
dt j +

(
d∑

k=1

m(ϕ)

π∗α2 (xk)

)
ds. (19)

Proof. Theorem 3.21 of [Kan04] expresses the codifferential of the period map
calculated in ϕ ∈ Sym2(H0(ωF)

−) and paired with ∂

∂ t j
as

ϕ

(
KS
(

∂

∂ t j

))
without any restriction on the ramification type. In particular, this formula,
together with Proposition 3.2 ends the proof of the Theorem.
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Remark 3.4. As a consequence of the last Theorem we can conclude that, if we
fix E, the codifferential doP∨E : Sym2(H0(ωF)

−)→ T∨o HE factors as

H0(ω⊗2
F )

dh∨E
��

Sym2 (H0(ωF)
)dT∨oo

T∨o HE Sym2(H0(ωF)
−)

?�

σ

OO

doP∨E

oo

(20)

where T is the Torelli map (so that m = dT∨) and σ is the lifting of the projection
of Sym2(H0(ωF))→ Sym2(H0(ωF)

−) induced by the decomposition H0(ωF) =
H0(ωF)

−⊕π∗H0(ωE). The commutativity of the diagram is a consequence of
Proposition 3.1 as, for any ϕ ∈ H0(ωF)⊗̂π∗H0(ωE), we have that ϕ/π∗α is
holomorphic and hence has residue zero everywhere.

4. A geometric approach via the canonical embedding

In this section we will use the technical result of the previous section in order to
prove that dim(Ker(doPE)) = 1 for arbitrary ramification types and a geometric
criterion to determine whether dim(Ker(doP)) = 1 or not. First we fix some
notation and facts about the canonical curves that we are going to use extensively
in the following.

As F has genus g ≥ 3 and is not hyperelliptic, we may identify it with its
canonical model in P = PH0(ωF)

∨. This is a non-degenerate curve of degree
2g−2, which is also projectively normal by a classical result of Max Noether
(see, for example, [ACGH85]). One of the consequences of this fact is that the
multiplication map mk : Symk H0(ωF)→ H0(ω⊗k

F ) is surjective. As before we
will denote m2 simply by m. We will use frequently the natural identifications
H0(OP(d)) = Symd H0(ωF) which enable us to identify P(Ker(md)) with the
space of hypersurfaces of degree d in PH0(ωF)

∨ that contain F . By abuse of
notation we will simply say that an element in Symd H0(ωF) is an hypersurface
of degree d if no confusion arises. In particular, if IF is the ideal sheaf of F in
PH0(ωF)

∨, then Ker(m) = H0(IF(2)) gives the set of all quadrics in PH0(ωF)
∨

containing the curve F , and has dimension (g−2)(g−3)
2 .

Recall that the decomposition

H0(ωF) = H0(ωF)
−⊕π

∗H0(ωE)

where the first space is the space of forms with zero trace.

Since elements in H0(ωF) are linear equations on PH0(ωF)
∨, all the hyperplanes

defined by elements in H0(ωF)
− intersect in a single point q− of P which is a
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point really important in what will follows. We have also a particular hyperplane,
the one defined by the subspace π∗H0(ωE) which will be denoted by H−. More
precisely,

q− = P((H0(ωF)
−)⊥) and H− = P((π∗H0(ωE))

⊥)

As before, we will fix a generator α of H0(ωE) so that

Sym2(H0(ωF)) = Sym2(H0(ωF)
−)⊕

(
π
∗
α ⊗̂H0(ωF)

)
. (21)

Given a quadric Q in P we will denote by GQ ∈ Sym2(H0(ωF)) one of its
equations and by G−Q ∈ Sym2(H0(ωF)

−) and ωQ ∈ H0(ωF) the only elements
such that

GQ = G−Q +π
∗
α ⊗̂ωQ

under the decomposition (21). Finally, given a quadric Q, we will denote by Q−

the cone given by the equation G−Q , i.e. the quadric such that GQ− = G−Q− = G−Q .

In order to prove Theorem 4.2 we will need the following result:

Lemma 4.1. We have a natural inclusion of H0(IF(2)) in Ker(doP∨E).

Proof. Recall that, fixed a family of coverings with base E and central fiber
π : F → E, by fixing a minimal versal deformation F ′ → M of F , we can
construct hE :H→M like in diagram (11). As observed in Remark 3.4 we have
a commutative diagram

0

0 // KerdoP∨E
� � j // Sym2(H0(ωF)

−)

OO

doP∨E // T∨o HE

0 // H0(IF(2))
?�

γ

OO

� � ι // Sym2(H0(ωF))

pr
OOOO

m // // H0(ω⊗2
F )

dh∨E

OO

// 0

H0(ωF)⊗̂π∗H0(ωE)
?�

OO

0

OO

(22)

It is easy to see that the image of pr ◦ ι lives in Ker(doP∨E) so we have a well
defined map γ : H0(IF(2))→ Ker(doP∨E). We want to prove that this map is
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indeed injective. This follows from the geometry of the problem. Indeed, if a
quadric Q contains F , i.e. if the quadric has equation

GQ = G−Q +π
∗
α ⊗̂ωQ ∈ H0(IF(2)),

and if γ(GQ) = 0 then we have that the quadric has equation π∗α ⊗̂ωQ. But this
is impossible because such a quadric the union of two planes (one of which is
H−) and the canonical curve is non-degenerate. Hence γ is injective.

Theorem 4.2. Let π : F → E be a covering with F non-hyperelliptic, consider a
local family of coverings with base E and parameter spaceHE constructed in
Section 2. Let PE be the period mapping associated to the Prym map ΦE . Then
dim(Ker(doPE)) = 1.

Proof. First of all, observe that for dimensional reasons, one has

dim(Ker(doPE)) = 1

if and only if

dim(Ker(doP∨E)) =
g(g−1)

2
−n+1.

From the splitting H0(ωF) = H0(ωF)
−⊕π∗H0(ωE) we have the commutative

diagram

0 // H0(ωF)
⊗̂π∗α // Sym2(H0(ωF))

pr //

Ψ ))

Sym2(H0(ωF)
−) //

doP∨E
��

0

ToHE

with Ψ defined by extending the formula in Theorem 3.3 to Sym2(H0(ωF)). This
can be done because, as previously observed (see Remark 3.4),

doP∨E(H
0(ωF)⊗̂π

∗
α) = {0}.

In particular, we have the relation

dim(Ker(doP∨E)) = dim(Ker(Ψ))−dim(Ker(pr)) = dim(Ker(Ψ))−g. (23)

By definition, Ψ factors through the multiplication map m as Ψ = Ψ̄◦m. The
map Ψ̄ is well defined as, by Lemma 4.1, Ker(m)⊂ Ker(Ψ).

0 // H0(ωF)
⊗̂π∗α // Sym2(H0(ωF))

pr //

Ψ

((
m
��

Sym2(H0(ωF)
−) //

doP∨E
��

0

H0(ω⊗2
F )

Ψ̄ // ToHE
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Being m surjective (as F is non-hyperelliptic) we obtain the further relation

dim(Ker(Ψ)) = dim(Ker(Ψ̄))+dim(Ker(m)) =

= dim(Ker(Ψ̄))+
(g−2)(g−3)

2
. (24)

As the divisor associated to π∗α is exactly R, the ramification divisor, we have
that ωF =OF(R) and there is an exact sequence

0 // ωF
·π∗α // ω⊗2

F
// ω⊗2

F |R // 0 (25)

which yields, denoting with V the quotient H0(ω⊗2
F )/(H0(ωF) ·π∗α), the exact

sequences

0 // H0(ωF)
·π∗α // H0(ω⊗2

F )
ε // V // 0

0 // V
ζ // H0(ω⊗2

F |R) // H1(ωF) // 0

(26)

Let η ∈ Ker(ε). We want to prove that Ψ̄(η) = 0. This is easily proven: write η

as ω ·π∗α and observe that

Ψ̄(η) = (Ψ̄◦m)(ω ⊗̂π
∗
α) = (doP∨E ◦pr)(ω ⊗̂π

∗
α) = 0

because ω ⊗̂π∗α ∈ Ker(pr). In particular, Ker(ε)⊂ Ker(m) and we can define
a map λ : V → T∨o HE such that Ψ̄ = λ ◦ ε . Moreover

dim(Ker(Ψ̄)) = dim(Ker(λ ))+g. (27)

Using the second exact sequence in 26 we can also define a map

µ : H0(ω⊗2
F |R)→ ToHE

such that µ ◦ζ = λ .

H0(IF(2))� _

��
H0(ωF)

� � ⊗̂π∗α //
� t

·π∗α

&&

Sym2(H0(ωF))
pr // //

Ψ

**

m
����

Sym2(H0(ωF)
−)

doP∨E
��

H0(ω⊗2
F )

Ψ̄ //

ε
%% %% **

T∨o HE

V

λ

99

��
ζ

// H0(ω⊗2
F |R)

µ

OO

// // H1(ωF)

(28)
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Note that we have several ways to define µ . Since ω
⊗2
F |R = ωF(R)|R the global

sections of ω
⊗2
F |R are just collections of meromorphic tails on the points of

ramification, i.e. elements 
nk−1∑
j=1

β jk
dzk

z j
k


ak∈R

where nk is the ramification index of the point ak. In particular, we can define µ

as the map which gives the residue in the corresponding point of the meromorphic
tail. This ensures that the diagram is commutative. In addition, µ is surjective
(this because the image of a collection of meromorphic tails {sk}, one for each
point of ramification, with β1m = δkm, generates the image), and as a consequence,
ζ |Ker(λ ) is an isomorphism between Ker(λ ) and Ker(µ). Hence,

dimKer(doP∨E) = dim(Ψ)−g = dim(Ψ̄)+dim(Ker(m))−g =

= dim(λ )+dim(Ker(m)) = dim(µ)+dim(Ker(m)) =

= h0(ωF(R)|R)−dimT∨o HE +dim(Ker(m)) =
g(g−1)

2
−n+1 (29)

as wanted.

Now we will prove the first main theorem:

Theorem 4.3. Let π : F → E be a covering with F non-hyperelliptic, consider
the local family of coverings with parameter spaceH constructed in Section 2.
Let P be the period mapping associated to the Prym map Φ :H→Ag−1. Using
the same notations of Theorem 3.3 we have

dim(Ker(doP))) = 1 ⇐⇒ ∃β ∈ Ker(doP∨E) |
d∑

k=1

m(β )

π∗α2 (xk) 6= 0.

Proof. First of all consider the diagrams

ToH
doP // TP(o)D

ToHE

doPE

99

?�

OO T∨o H

����

T∨P(o)D
doP∨oo

doP∨Ezz
T∨o HE

and observe that one always has

Ker(doPE)⊆ Ker(doP) Ker(doP∨)⊆ Ker(doP∨E).
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Moreover, the codimensions are at most 1. If one considers the exact sequences

0 // Ker(doPE) // ToHE // TP(o)D // Ker(doP∨E)
∨ // 0

0 // Ker(doP) // ToH // TP(o)D // Ker(doP∨)∨ // 0

it is clear that Ker(doPE) = Ker(doP) if and only if Ker(doP∨) ( Ker(doP∨E).
Hence we have

dim(Ker(doP))) = 1⇐⇒ Ker(doP∨)( Ker(doP∨E).

This is true if and only there exists an element β ∈ Ker(doP∨E) on which doP∨

doesn’t vanish. This can only be possible if doP∨(β ) is not zero on ∂

∂ s , where s
is the parameter taking into account the moduli of the elliptic curve. By using
Theorem 3.3 we have

doP∨(β ) =
d∑

k=1

m(β )

π∗α2 (xk)

and this concludes the proof.

This result improves the one in [Kan04] where it is proved only for simple
ramification. In the same work is proved that, for simple ramification, having the
sum in Theorem 4.3 different from zero for some β ∈ Ker(doP∨E) is equivalent
to ask that the intersection of the quadrics that contain the canonical model of
F doesn’t contain the point q− defined before. Unfortunately, in the case of
arbitrary ramification, we are not able to prove this equivalence but only one
implication.

Theorem 4.4. With the same hypotesis of Theorem 4.3, if we identify F with its
canonical model in PH0(ωF)

∨, then we have

q− 6∈
⋂

F⊂Q

Q =⇒ dim(Ker(doP)) = 1, (30)

where Q ranges in the set of quadrics of PH0(ωF)
∨ containing F.

The proof of the theorem uses some arguments developed in [Kan04] that we
have summarized in the following Lemma.

Lemma 4.5. Let Q be a quadric of PH0(ωF)
∨ containing F and denote by

GQ = G−Q +π∗α ⊗̂ωQ one of its equations. Then

d∑
k=1

m(G−Q)

π∗α2 (xk) = 0⇐⇒ GQ(q−) = 0⇐⇒ q− ∈ Q.
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Proof. The last statement is clear by definition so we really need to prove
only the first one. First of all observe that we can choose the coordinate s in
such a way that α is locally given by ds. Then, as G−Q = GQ−π∗α ⊗̂ωQ and
Q ∈ H0(IF(2)) = Ker(m) by hypotesis, one has

d∑
k=1

m(G−Q)

π∗α2 (xk) =−
d∑

k=1

m(π∗α ⊗̂ωQ)

π∗α2 (xk) =−
Trπ(ωQ)

α
(c).

But Trπ(ωQ) is an element of H0(ωE) so it is equal to r ·α for some r. Thus we
have

d∑
k=1

m(G−Q)

π∗α2 (xk) =−r

which is zero if and only if ωQ has trace 0, i.e. if and only if ωQ ∈ H0(ωF)
−.

This happens if and only if (π∗α)⊗2 doesn’t appear in the equation of Q, i.e. if
and only if q− ∈ Q.

Using Lemma 4.1 and Lemma 4.5 the proof of Theorem 4.4 is straightforward.

Proof of Theorem 4.4. Assume that

q− 6∈
⋂

F⊂Q

Q.

Then, there exists a quadric which cointains F but doesn’t contain q−. Denote
by GQ its equation. By Lemma 4.1 we know that β = γ(GQ) = G−Q ∈Ker(doP∨E)
and by Lemma 4.5 we have that

d∑
k=1

m(β )

π∗α2 (xk) 6= 0.

Hence, using Theorem 4.3 we have the thesis.

Remark 4.6. In [Kan04], with different methods, it is proved that H0(IF(2)) =
Ker(doP∨E) if the ramification is simple. This fact is exactly what allows to prove
the converse implication of Theorem 4.4.

Remark 4.7. Notice that H0(IF(2)) = Ker(doP∨E) if and only if all the ramifi-
cation indices are equal to 2. Indeed, denote by Rred the reduced divisor whose
support equals the support of the ramification divisor. Let R̄ be R−Rred . From
Riemann-Hurwitz we have

2g−2 = deg(R) = deg(Rred)+deg(R̄) = n+deg(R̄).
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Hence, from Equation (29) one has

dimKerdoP∨E = h0(IF(2))+deg(R̄).

As R̄≥ 0 and is trivial if and only if all the ramification indices are equal to 2
the claim follows. In particular, the converse implication of (30) in Theorem 4.4
holds for coverings whose ramification indices are all equal to 2.

We conclude this section by proving the existence of an exact sequence which
should help to measure, in a more intrinsic way, how much H0(IF(2)) and
Ker(doP∨E) differ.

Proposition 4.8. Under the hypotesis of Theorem 4.4 there is an exact sequence

0 // H0(IF(2))
� � γ // Ker(doP∨E) // Ker(dh∨)

H0(ωF)⊗̂π∗H0(ωE)
// 0.

(31)

Proof. Starting from diagram (22) it is easy to see that the composition of the
inclusion of H0(ωF)⊗̂π∗H0(ωE) with m has image in H0(ω⊗2

F ) but also in the
kernel of dh∨. Hence there is a map

ε : H0(ωF)⊗̂π
∗H0(ωE)→ Ker(dh∨),

which is easily proven to be injective as we have done with γ . We can also
complete the diagram on the right by adding two (trivial) vertical arrows. The
complete diagram looks like this

0

0 // KerdoP∨E
� � j // Sym2(H0(ωF)

−)

OO

doP∨E // T∨o HE // (KerdoPE)
∨ // 0

0 // H0(IF(2))
� � ι //

?�

γ

OO

Sym2(H0(ωF))

pr
OOOO

m // // H0(ω⊗2
F )

dh∨

OO

// 0

OO

0

OO

// H0(ωF)⊗̂π∗H0(ωE)
� � ε //

?�

OO

Kerdh∨

OO

// Cokerε //

OO

0

0

OO

0

OO

(32)

By using the snake lemma on the central columns one obtain the wanted sequence.
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5. An interesting family of curves

In this section we review the first example, due to Pirola, of a non-trivial family
of coverings of elliptic curves with 2 independent directions along which the
Prym map Φ is constant. Hence the kernel of the differential of the Period map
associated to Φ has dimension greater than 1. The existence of the family is
proved in [Pir92] but the proof is not constructive and uses a framework different
form ours. After some notations and a brief idea of how to prove the existence of
this family (for details, see [Pir92]), we will prove that q− belongs to the only
quadric that contains F and that for all the elements of Ker(doP∨E) the sum in
Theorem 4.3 is 0.

In order to prove the existence of such a family, let G ' Z3 and consider the
spaceHG of Galois coverings π : F → E of degree 3 with ramification given by
3 points (so the number of branch points is exactly 3 and the genus of F is 4)
modulo the identifications given by a commutative diagram like

F1

π1

��

' // F2

π2

��
E1 '

// E2

With this type of identification of two coverings the dimension ofHG is 3. Note
that, with this definition, a covering π : F → E and the covering obtained by
composing π with a translation of E are equivalent: they represent the same
point inHG.

Fix a generator g of G and ρ , a primitive root of 1 of order 3. If V is a vector
space on which G acts, we will denote by Vρk the subspace where g acts as the
multiplication by ρk. As π is the quotient by the group G, the G-action on F
induces several other G-actions. We will do now a small list of the one that we
are going to use in this section.

a) The canonical action on H0(ωF) via pullback: by changing, if necessary, g
with g2, we have

H0(ωF) = H0(ωF)1⊕H0(ωF)ρ ⊕H0(ωF)ρ2 = π
∗H0(ωE)⊕C2

ρ ⊕C1
ρ2 .
(33)

b) A canonical G-action on H0(ωF)
− which is simply the restriction of the

canonical representation on H0(ωF).

c) An action on Sym2(H0(ωF)), whose decomposition in irreducible subrepre-
sentations is given by

Sym2(H0(ωF)) = C3
1⊕C3

ρ ⊕C4
ρ2 .
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d) an action on H0(ω⊗2
F ) using the surjectivity of m by imposing that m becomes

a morphism of G-vector spaces and hence on its dual H1(TF).

e) An action on H0(IF(2)) as the kernel of m.

f) An action on the Prym Φ(π): this is induced at level of tangent spaces (as the
tangent space T0Φ(π) is H0(ωF)

−) and it is compatible with the quotient by
the periods’ lattice.

g) An action of G on PH0(ωF)
∨ = P as every automorphism of F , seen as a

canonical curve in P lifts to an automorphism of the whole space.

All these actions, by construction, are compatible via the usual identification.
For example, if we interpret H0(ωF) as the space of equations of hyperplanes of
P an invariant hyperplane in P has an equation which is an eigenvector of g in
H0(ωF).

One has a Prym map Φ̃ :HG→Ag−1 and a period map P̃ :HG→ D. We stress
that, by construction, if we prove that dim(Ker(doP̃))> k then, the period map
P associated to the Prym map of a local family of coverings with π as central
fiber will have kernel of dimension at least k+1.

The rough idea to prove that there exists a family of coverings inHG which gets
contracted by Φ̃ is to observe, as we have done in f), that the Prym map Φ̃ factors
through the inclusion of AG

g−1, the space of abelian varieties of dimension g−1
with an action of G, in Ag−1. If we denote by DG a period domain for AG

g−1 we
have an analogous period map P̃G :HG→ DG. We want to get a bound on the
dimension of the image dP̃G.

Clearly, the image of dP̃G has dimension at most the dimension of

TDG = Sym2(H0(ωF)
−)G

and the same bound holds, by construction, for the dimension of the image of
dP̃. As Sym2(H0(ωF)

−)G is isomorphic, by b), to

H0(ωF)ρ ⊗̂H0(ωF)ρ2 ,

we have that its dimension is 2. As T[π]HG has dimension 3 this implies that the
kernel of dP̃ has dimension at least 1 and the existence of the family is proved.

Proposition 5.1. Let π : F → E with [π] ∈ HG, identify F with its canonical
model and let Q be the only quadric containing F. Then q− ∈ Q and either

H0(IF(2))⊂ Sym2(H0(ωF))ρ or H0(IF(2))⊂ Sym2(H0(ωF))ρ2 .
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Proof. There exists only a quadric containing F because g(F) = 4. More pre-
cisely F is the complete intersection of a quadric Q and a cubic surface C. Let
GQ ∈ H0(IF(2)) be an equation for Q. Being F invariant under the G-action
introduced in g), we have that the orbit of GQ under the action given in e), is
simply given by itself plus, possibly, some of its multiple by elements in C∗. The
key point now is to see that H0(IF(2))1 = 0. In order to prove this observe that,
by construction, we have an exact sequence of G-vector spaces given by

0 // H0(IF(2)) // Sym2(H0(ωF)) // H0(ω⊗2
F ) // 0

Hence, by taking invariant parts and dimensions we have

dim(H0(IF(2))G) = dim(Sym2(H0(ωF))
G)−dim(H0(ω⊗2

F )G).

As claimed in [Pir92], we can identify T[π]HG with

H1(TF)
G = (H0(ω⊗2

F )∨)G.

Hence, we have dim(H0(ω⊗2
F )G) = 3. Using c) we have that also

dim(Sym2(H0(ωF))
G) = 3

so, as claimed, H0(IF(2))1 = 0.

As consequence we have either

GQ ∈ Sym2(H0(ωF))ρ or GQ ∈ Sym2(H0(ωF))ρ2 .

Note that, in both cases, as π∗H0(ωE)
2 ⊂ Sym2(H0(ωF))1, we have GQ(q−) = 0

so q− ∈ Q.

Lemma 5.2. Let π : F→ E with [π]∈HG and assume that F is not hyperelliptic.
Denote by a1,a2 and a3 the 3 ramification points of π . Let L be a g1

3. Then:

• L is G-invariant, i.e. g∗L = L;

• h0(OF(3ai)) = 1;

• If L′ is a g1
3 then L' L′, i.e. there is only one g1

3 on F.

Proof. Recall that every curve of genus 4 is trigonal and moreover, the number
of g1

3 is at most 2. If there is only one g1
3 clearly it is G-invariant. If there are 2,

as G has order 3 and acts on a set of two elements, it has to fix both of them.

Now let’s prove that h0(OF(3ai)) = 1. The Riemann-Roch formula for OF(3ai)
is

h0(OF(3ai))−h1(OF(3ai)) = deg(h0(OF(3ai)))−4+1 = 0
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so, by Serre duality, we have

h0(OF(3ai)) = h0(ωF(−3ai)).

From
0→ ωF(−3ai)→ ωF(−2ai)→ ωF(−2ai)|ai → 0

one has H0(ωF(−3ai))≤ H0(ωF(−2ai)). In particular, as F is not hyperelliptic
we obtain that the dimension of H0(ωF(−3ai)) is either 1 or 2. Moreover,
h0(ωF(−3ai)) = 2 if and only if H0(ωF(−3ai)) = H0(ωF(−2ai)). But this
cannot happen as the pullback η of a non-zero holomorphic form on E has a zero
of multiplicity 2 exactly in the ramification points so there is at least one element
in H0(ωF(−2ai))\H0(ωF(−3ai)). Hence h0(OF(3ai)) = 1 as claimed.

Recall that on F there are at most two g1
3 and they are related by

L⊗L′ = ωF =OF(2a1 +2a2 +2a3).

Hence we will conclude by proving that L = OF(a1 + a2 + a3). Let A,B in F
such that L'OF(a1 +A+B). As a1 is invariant and the same holds for L, we
have that OF(g(A)+g(B)) =OF(A+B). Therefore, as F is not hyperelliptic,
also the equality of divisors g(A)+ g(B) = A+B has to hold. Moreover, as
g has order 3, it cannot exchange A and B: we have proved that A and B are
ramification points. If we assume that L 6= OF(a1 +a2 +a3) there are several
possibilities:

A = a1 = B This is impossible as we would have

2 = h0(L) = h0(OF(3a1)) = 1.

A = a1 6= B Assume that A = a1 and B = a2 so that L ' OF(2a1 + a2). Let
C,D ∈ F such that OF(2a1 +a2)'OF(a3 +C+D). As before, we have
that C and D are ramification points and as F is not hyperelliptic the
only possible option is to have C = D = a3. But then, again, we have a
contradiction

2 = h0(OF(L)) = h0(OF(2a1 +a2)) = h0(OF(3a3)) = 1.

A 6= a1 = B This case is analogous to the previous one.

A = B 6= a1 This case is analogous to the second one.

Hence, we have proved that L =OF(a1 +a2 +a3) and thus that L' L′ and there
is only a g1

3 on F .
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Proposition 5.3. Let π : F→ E with [π] ∈HG and assume that F is not hyperel-
liptic. Denote by Q be the only quadric containing the canonical curve F. Then
Q is a quadric cone with vertex V and V 6∈ F. Moreover, the hyperplane H− is
tangent to the cone and the 3 ramification points of π lie on a line on the cone.

Proof. Recall that if the quadric Q containing F is smooth, then F can be seen
as a curve of bidegree (3,3) in P1×P1 and the projections on each factor give
two different g1

3. If, instead, Q is a cone (these are the only possible cases as
F is non degenerate) there exists only one g1

3. Hence, by Lemma 5.2, we can
conclude that Q is a cone. If V is the vertex, it is clear that V 6∈ F as, otherwise
F would be singular.

Now we will prove that the ramification points are on a line in the canonical
model of F . By what we have seen in this section we have a decomposition of
H0(ωF) into subrepresentations with H0(ωF)1 = π∗H0(ωE). We can assume, as
before, that H0(ωF)ρ has dimension 2. Denote respectively with {u0}, {u1,u2}
and {u3} a basis for π∗H0(ωE), H0(ωF)ρ and H0(ωF)ρ2 . By abuse of notation
we will write uiu j to mean ui ⊗̂u j. With these coordinates, the hyperplane H−

has equation u0 = 0 and q− = (1 : 0 : 0 : 0). As

Sym2(H0(ωF)) = 〈u2
0,u1u3,u2u3〉1⊕〈u0u1,u0u2,u2

3〉ρ ⊕〈u0u3,u2
1,u

2
2,u1u2〉ρ2

(34)
We know by Proposition 5.1 that an equation GQ of Q is either an element of
Sym2(H0(ωF))ρ or of Sym2(H0(ωF))ρ2 . In the first case the generic element of
Sym2(H0(ωF))ρ is a quadric cone and has equation

u2
3 +u0(au1 +bu2) = 0.

Moreover, it is easy to see that H− is tangent to the cone along the line L1 =
{u3 = u0 = 0}. In the second case the generic element of Sym2(H0(ωF))ρ2 is a
smooth quadric but it is easy to see that the generic singular element is a cone
with equation

u3u0 +(au1 +bu2)
2 = 0.

As before, H− is a plane tangent to Q along the line L2 = {u0 = au1 +bu2 = 0}.
So, in both cases, as the ramification points of the canonical curve F are given
exactly as H−∩F , they are on a line as claimed.

Now we are going to calculate the sum in Theorem 4.3 and to see that it is zero
for each element in Ker(doP∨E).

Proposition 5.4. Let π : F → E be a Galois covering of degree 3 as before and
consider a local family of coverings with central fiber π . Then, if

ν(β ) =
3∑

k=1

m(β )

π∗α2 (xk),
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one has ν(β ) = 0 for all β ∈ Ker(doP∨E).

Proof. Ker(doP∨E) is a subspace of Sym2(H0(ωF)
−). If β ∈ Ker(doP∨E) we can

decompose it as
β = β1 +βρ +βρ2

with βµ ∈ Sym2(H0(ωF)
−)µ . First of all we will prove that ν(βρ) = ν(βρ2) = 0.

As c is not a branch point, we have that the fiber π−1(c) = {x1,x2,x3} over c is
equal to the orbit of each of its points: π−1(c) = {x1,g(x1),g2(x1)}. Hence

ν(β ) =
3∑

k=1

m(β )

π∗α2 (xk) =

2∑
k=0

m(β )

π∗α2 (g
k(x1)) =

2∑
k=0

m(β ◦gk)

π∗α2 (x1).

If we assume that β is in the eigenspace Sym2(H0(ωF))µ of g∗ then

ν(β ) =
m
(∑d

k=1(g
∗)k(β )

)
π∗α2 (x1) =

m
(∑2

k=0 µkβ

)
π∗α2 (x1) =

(
2∑

k=0

µ
k

)
m(β )

π∗α2 (x1).

Hence, if µ 6= 1, we have λ (β ) = 0 as claimed.

Hence we have that ν(β ) = ν(β1) so it is enough to prove that

ker(doP∨E)⊆ Sym2(H0(ωF)
−)ρ ⊕Sym2(H0(ωF)

−)ρ2

i.e., that β1 = 0.

Let a be a ramification point and consider holomorphic coordinates (U,z) cen-
tered in a and (V,w) centered in π(a) = b. Assume, moreover, that α|V = dw,
the relation w = z3 holds and the action of g ∈ G near a is given by z 7→ ρz for
ρ 6= 1 such that ρ3 = 1. By changing ρ with ρ2 we can assume, moreover, that
the decomposition of H0(ωF) in invariant subspaces with respect to the action of
G is the one given in Equation (33). Consider η ∈ H0(ωF). Near a we can write

η |U =

∑
j≥0

η jz j

dz and g∗η |U = ρ

∑
j≥0

η jρ
jz j

dz.

In particular, η ∈ H0(ωF)
G if and only if, near a we have

η |U =

∑
j≥0

η2+3 jz2+3 j

dz
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and an analogous decomposition holds near the other ramification points. Simi-
larly, we have

η |U =

∑
j≥0

η3 jz3 j

dz and η |U =

∑
j≥0

η1+3 jz1+3 j

dz

if η ∈ H0(ωF)ρ and η ∈ H0(ωF)ρ2 respectively.

As

Sym2(H0(ωF)
−)1 = H0(ωF)ρ ⊗H0(ωF)ρ2 , Sym2(H0(ωF)

−)ρ = H0(ωF)
⊗2
ρ2 ,

and
Sym2(H0(ωF)

−)ρ2 = Sym2(H0(ωF)ρ),

if ϕ ∈ Sym2(H0(ωF)
−)µ we can write it in coordinate near a as

ϕ|U = z
(
ϕ0 +ϕ1z3 +o(z5)

)
dz2

for µ = 1 and as

ϕ|U =
(
ϕ0 +ϕ1z3 +o(z5)

)
dz2 and ϕ|U = z2 (

ϕ0 +ϕ1z3 +o(z5)
)

dz2

if µ = ρ and µ = ρ2, respectively. In the latter cases, we have that the residue of
ϕ/π∗α in a is 0 as ϕ/π∗α is either holomorphic or has a pole of order 2 with
coefficient of degree −1 equal to 0. Hence

Sym2(H0(ωF)
−)ρ ⊕Sym2(H0(ωF)

−)ρ2 ⊆ Ker(doP∨E).

By Theorem 4.2 and using Diagram (32) we obtain dim(Ker(doP∨E)) = 4. This
is equal to the dimension of Sym2(H0(ωF)

−)ρ ⊕Sym2(H0(ωF)
−)ρ2 so

Sym2(H0(ωF)
−)ρ ⊕Sym2(H0(ωF)

−)ρ2 = Ker(doP∨E).

In particular, β1 = 0 and ν(β ) = 0 as claimed.
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