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ON DOMINANT RATIONAL MAPS FROM A VERY GENERAL
COMPLETE INTERSECTION SURFACE IN P4

FEDERICO CAUCCI - YONGHWA CHO - LUCA RIZZI

Let S be a very general complete intersection surface of multidegree
(d1,d2) in P4. The following problem arises: determine the couples
(d1,d2) such that the surface S does not have any “non-evident” ratio-
nal map to other surfaces. By non-evident rational map, we mean non-
birational dominant map whose target space is not rational. We give a
partial solution, presenting a class of multidegrees (d1,d2) which satisfy
the above condition.

1. Introduction

A classical consequence of the Riemann-Hurwitz formula for curves says that
if φ : C → C′ is a noncostant morphism from a very general curve of genus
g > 1 onto a curve C′, then either φ is birational or C′ is rational. See [1, Cor.
8.32 Chapter XXI]. Lee and Pirola in [6] prove the following theorem which
generalizes this result to the case of surfaces in P3:

Theorem 1.1 ([6, Thm. 1.1]). Let X ⊂ P3 be a very general surface of degree
d > 4, and let f : X 99KY be a dominant rational map from X to another surface
Y . Then, either f is birational or Y is rational.
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Here “very general” means that, if X = {F = 0}, then the homogeneous
polynomial F is very general, i.e. it belongs to the complement of a union
of countably many proper subvarieties of P(

d+3
d ). In this paper, following the

argument of [6] and using results from [4], we try to give an answer to the
analogous problem in the case of a very general complete intersection surface:

Question. Let X ⊂ P4 be a very general complete intersection surface of mul-
tidegree (d1,d2) and let f : X 99K Y be a dominant rational map of degree > 1.

For which degrees d2 ≥ d1 > 1 can we say that Y is a rational surface?

Our main result is the following:

Theorem 1.2. Let T be the following set of pairs of natural numbers

T := {(3, t) | t ≥ 3}∪{(4, t) | t ≥ 4}∪{(5, t) | 5≤ t ≤ 9}∪{(6,6)} .

Then if (d1,d2) ∈ T , Y is a rational surface.

This result has an equivalent algebraic formulation:

Theorem 1.3. Let (d1,d2) ∈ T and let C(X) be the function field of a complete
intersection surface X of multidegree (d1,d2). Then every proper subfield C ⊂
K ⊂ C(X) is a pure transcendental extension of C, if X is very general.
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. . .

. . .
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Figure 1: The elements of the set T

The first step to prove Theorem 1.2 uses some results from Hodge theory to
find conditions on the surface Y . These conditions are not enough to prove that
Y is rational, but they leave us with only two other possibilities. In particular we
are able to prove
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Lemma 1.4. If Y is not rational, we can assume that it is a minimal surface
which belongs to one of the following classes:

1. Kod(Y ) = 1 and there exists an elliptic fibration Y → P1 with exactly two
multiple fibers (see [3]);

2. Kod(Y ) = 2, i.e. Y is a surface of general type.

In the second step, computations on the moduli dimension of such surfaces
prove that the two cases of Lemma 1.4 are not possible if (d1,d2) ∈ T ; this
proves that Y is a rational surface.

2. First restrictions on Y

From now on call F1,F2 the homogeneous polynomials of degree respectively
d1,d2 that define the complete intersection X ⊂ P4, i.e. X = {F1 = F2 = 0}. Call
V1 and V2 the hypersurfaces corresponding to F1 and F2. Recall that F1 and F2

are very general in P(
d1+4

d1
) and P(

d2+4
d2
), respectively. Up to Veronese embedding

of degree d2, it is often useful to regard X as an hyperplane section on V1. Recall
the definition of fixed and vanishing cohomology on X :

H2(X ,Q)fixed := Im(i∗ : H2(V1,Q)→ H2(X ,Q)) (1)

and
H2(X ,Q)van := Ker(i! : H2(X ,Q)→ H4(V1,Q)), (2)

where i : X ↪→V1 is the inclusion, i∗ is the associated pullback and i! is the Gysin
map. Denote by U the open set parametrising smooth hyperplane sections of V1.
The Noether-Lefschetz locus is the subset of U corresponding to surfaces S such
that the restriction map NS(V1)⊗Q→ NS(S)⊗Q is not surjective. We recall
some useful properties of X .

Proposition 2.1. Let X ⊂ P4 be a very general complete intersection surface of
multidegree (d1,d2) with d2 ≥ d1 ≥ 3, and let H ⊂ X be a general hyperplane
section. Then,

(a) the rational cohomology of X decomposes in the following way

H2(X ,Q) =Q · 〈H〉⊕H2(X ,Q)van;

in particular the Hodge substructure on the orthogonal complement to
the hyperplane section is irreducible;

(b) the Néron-Severi group NS(X) is generated by H;



186 FEDERICO CAUCCI - YONGHWA CHO - LUCA RIZZI

(c) Bir(X) = Aut(X) = LinAut(X) = {idX}.

Proof. By the Lefschetz hyperplane theorem [8, Thm. 4.25], we have a decom-
position of the rational cohomology of X in fixed and vanishing part

H2(X ,Q) = H2(X ,Q)fixed⊕H2(X ,Q)van (3)

together with an isomorphism H2(X ,Q)fixed ∼= H2(V1,Q). Again by Lefschetz
hyperplane theorem, H2(V1,Q)∼= H2(P4,Q), hence we have the decomposition
in (a). The irreducibility of the vanishing part, that is the fact that it has no non-
trivial Hodge substructures, comes from [8, Cor. 10.23]; see also [9, Sec. 3.2.3].

The Noether-Lefschetz locus is a countable union of proper algebraic sub-
sets of U ; [9, Thm. 3.33]. Hence for very general X the map NS(V1)⊗Q→
NS(X)⊗Q is surjective. Since NS(V1) is generated by the hyperplane section,
part (b) follows.

To prove part (c), note that Pic(X) = Z ·H by Lefschetz hyperplane the-
orem, hence every birational map X 99K X leaves H invariant and it comes
from an automorphism of P4 and therefore is linear. A classical result of Mat-
sumura and Monsky [7] states that a general hypersurface of degree ≥ 3 has
no nontrivial linear automorphism. It immediately follows that if 3 ≤ d1 < d2,
any linear automorphism of X should fix V1 and hence it is the identity. Also
in the remaining case d1 = d2 = 3, one can easily find that such an automor-
phism fixes a hypersurface given by a polynomial in the ideal (F1,F2), hence
Bir(X)=Aut(X)=LinAut(X)= {idX} for X very general and d2≥ d1≥ 3.

Remark 2.2. Actually in [2] the authors prove that

Bir(X) = Aut(X) = LinAut(X) = {idX}

for X very general complete intersection of degrees d2 ≥ d1 ≥ 2. Thanks to this
result we could add the line {(d1,d2) = (2, t) | t > 5} to our set T , by the same
computation of the following section. Nevertheless in this paper we stick to the
case d2 ≥ d1 ≥ 3.

Proposition 2.3. Let X be very general of multidegree (d1,d2) such that d2 ≥
d1 ≥ 3, and let f : X 99K Y be a dominant rational map of degree > 1. Then,
pg(Y ) = q(Y ) = 0 and π1(Y ) = 1.

Proof.([4, Prop. 3.5.2]). We can define a pullback map f ∗ : H2(Y,Z)→H2(X ,Z)
passing through the resolution of indeterminacy of f . More in details consider
such a resolution

Z
φ

��

h

��
X

f // Y

(4)
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and define f ∗ as the composition of h∗ and the Gysin map φ! . The restriction
f ∗ : H2,0(Y )→ H2,0(X) is injective. Let TY ⊇ H2,0(Y ) (resp. TX ⊇ H2,0(X))
be the Hodge substructure orthogonal to Néron-Severi Hodge substructure of
Y (resp. of X). Then,

H2(X ,C) = NS(X)C⊕TX

= C〈H〉⊕H2(X ,C)van,

By Proposition 2.1(a), TX is an irreducible Hodge structure. Thus, if h2,0(Y ) 6= 0
then f ∗ maps TY isomorphically to TX . In particular, f ∗ : H2,0(Y )→ H2,0(X) is
an isomorphism. Then, the canonical map ϕ|KX | : X→ PH0(KX) factors through
f . Since ϕ|KX | is an embedding, f must be a birational map, a contradiction.

For π1(Y ) = 1 the proof is the same as the one in [4, Prop. 3.5.2] and it uses
part (c) of the previous proposition.

Since π1(Y ) = 1 we immediately deduce that q(Y ) = 0.

Assuming that Y is not rational, by classification of algebraic surfaces we
may assume that Y is a minimal surface which belongs to one of the following
classes:

1. Kod(Y ) = 1: there exists an elliptic fibration Y → P1 with exactly two
multiple fibers (see [3], pp. 133 and 146);

2. Kod(Y ) = 2: a surface of general type.

This is exactly Lemma 1.4.
To study the map f : X 99K Y , we restrict to a general hyperplane section C

of X , which is a complete intersection curve in P3.

Lemma 2.4. Let C be a general hyperplane section of X. Then, the restriction
of f : C→ Y is birational onto its image.

Proof. Since C is a general hyperplane section, the images f (C) of such C cov-
ers general points of Y . By [8, Cor. 10.23], the general hyperplane section C has
a simple Jacobian. The map fC : C→ fC(C) induces a morphism C→ D where
D is the normalization of fC(C). Then, since C→ D is surjective, JC→ JD
is surjective. Assume that fC is not birational. Then the kernel of JC→ JD is
infinite1, or C ' P1. In the former case it follows that the subabelian variety
ker◦(JC→ JD) is JC, which means JD is a point. Thus, D ' P1. In the latter
the surjectivity of JC→ JD implies again that D' P1. This is impossible since
f (C) covers the general points of Y and Y is not a ruled surface.

1
∑pi∈ f−1

C (q) ni pi, ∑ni = 0 belongs to the kernel
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Since C is a complete intersection curve of multidegree (d1,d2) in P3, if
we can prove that a (very) general complete intersection curve in P3 of multi-
degree (d1,d2) cannot be birationally immersed into any Y as above, then by
Lemma 2.4 we can conclude that there is no dominant rational map f : X 99K Y
of degree > 1.

3. Dimension Counting

By contradiction, assume that a very general complete intersection curve C of
multidegree (d1,d2) has a birational immersion into any Y with pg = q = 0
and Kod(Y ) ≥ 1. There exists a countable number of families {Wi}i∈I for all
such birational immersions κ : C→ Y . That is for every birational immersion
κ : C→ Y there is j ∈ I, u ∈Wj and a commutative diagram

C j
K j //

p j ��

Y j

π j��
Wj

(5)

such that p−1
j (u) = C, π

−1
j (u) = Y and K j|C = κ . To see this, first of all we

recall that in general it is possible to find a countable number of families that
contain all the algebraic (smooth) projective varieties. This follows from the
fact that the Hilbert polynomials are countable and that any Hilbert scheme has
a finite number of irreducible components. Any smooth algebraic surface can
be embedded in P5, so the countable union of projective schemes (over C)⋃

i∈I

HilbPi , Pi(t) ∈Q[t], degPi = 2

covers all smooth surfaces, where the Pi(t) are Hilbert polynomials in P5. Simi-
larly, we can regard the Hilbert scheme HilbQ where Q(t) = d1d2t− 1

2 d1d2(d1+
d2− 4). This contains the complete intersection curves of multidegree (d1,d2)
in P3. For shorthand notation, let HSi := HilbPi and HC := HilbQ. Let Si and
C be the universal families of these Hilbert schemes. We consider the Hilbert
scheme of morphisms [1, p.47]

Hi := HomHC×HSi(C ×HSi,HC×Si).

The above scheme parametrizes the family of morphisms

C[C]×{[Y ]}→ {[C]}× (Si)[Y ], ([C], [Y ]) ∈ HC×HSi.
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Since taking graphs gives an embedding of Hi onto an open subscheme of some
Hilbert scheme [1, p.48], Hi has at most a countable number of irreducible
components. Combining all together, we find that there is a countable number
of families for all birational immersions k : C→ Y . Now, by a Baire’s category
argument, we may take an irreducible component W = Wi0 which dominates
the familyM(d1,d2) of complete intersection curves of multidegree (d1,d2) in
Mg, where g = g(C) = 1

2 d1d2(d1+d2−4)+1 (see [5, Ex. I.7.2 (d)]). It follows
that

dimW ≥ dimM(d1,d2).

The number n := dimW is bounded by the number n′+m′ where n′ is the di-
mension of the vector space of first order infinitesimal deformations of the mor-
phism κ : C → Y with Y fixed, and m′ = h1(TY ) the dimension of the vector
space of first order infinitesimal deformations of Y . If we can prove n′+m′ <
dimM(d1,d2) then we get the contradiction

dimM(d1,d2)≤ n≤ n′+m′ < dimM(d1,d2).

Proposition 3.1. We have

dimM(d1,d2) =

{ (d1+3
3

)
+
(d2+3

3

)
−
(d2−d1+3

3

)
−17 if d2 > d1

2
(d+3

3

)
−19 if d = d1 = d2.

Proof. We consider the normal exact sequence

0→TC→TP3

∣∣
C→NC/P3 → 0. (6)

The desired dimension can be counted by looking at the dimension of

Im(H0(NC/P3)→ H1(TC))

in the long exact sequence

0→ H0(TC)→ H0(TP3

∣∣
C)→ H0(NC/P3)→ H1(TC)→ . . . .

Since NC/P3 is isomorphic to OC(d1)⊕OC(d2), the proof is reduced to a stan-
dard cohomological computation using the exact sequence defining C

0→OP3(−d1−d2)→OP3(−d1)⊕OP3(−d2)→OP3 →OC→ 0. (7)

See also [4, p.303].

For a given κ : C→ Y , the dimension of the vector space of first order in-
finitesimal deformations of κ with fixed target is bounded by h0(NC/Y ). Let
N ′C/Y = NC/Y

/
(NC/Y )tors be the torsion-free quotient of NC/Y . We can use
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h0(N ′C/Y ) instead of h0(NC/Y ) to bound n′ since for an actual deformation the
corresponding section of the normal bundle cannot vanish on a general point. In
the short exact sequence

0→TC→ κ
∗TY →NC/Y → 0, (8)

we get degNC/Y = degκ∗TY−degTC =−degκ∗KY +(2g−2). Then, degN ′C/Y ≤
2g− 2− degκ∗KY . The Clifford theorem says h0(N ′C/Y ) ≤ g− 1

2 degκ∗KY .
Thus, we get n′ ≤ g− 1

2 degκ∗KY .

Lemma 3.2. Let f : X 99K Y be a dominant rational map, and let κ : C→ Y
be the restriction of f to the general hyperplane section. Assume that Y is a
minimal surface with pg(Y ) = q(Y ) = 0, π1(Y ) = 1, and Kod(Y ) ≥ 0. Then,
degC κ∗KY ≥ d1d2.

Proof. Let φ : Z→ X be the resolution of indeterminacy of f , and let h : Z→Y
be the morphism which extends f . Let E be the exceptional divisor of φ : Z→
X , H be the hyperplane divisor of X , and let HZ = φ ∗H ∈ PicZ. By Hurwitz
formula,

KZ = h∗KY +R,

where R is the ramification divisor of h. At the same time, KZ = φ ∗KX +E, thus

h∗KY +R = φ
∗KX +E = (d1 +d2−5)HZ +E.

Since PicZ is generated by HZ and the irreducible components of E, we may
write

h∗KY = rHZ−W

R = sHZ +W +E,

where W = ∑i aiEi and Ei are irreducible components of E, r and s are non-
negative integers such that r + s = d1 + d2 − 5. Then as in [4, Lem. 3.1.1,
Rmk. 3.1.3], we have ai ≥ 0 for all i and r > 0. Since C is a general hyper-
plane section, we may assume that C does not meet exceptional divisors. Hence,
degC κ∗KY = (C .κ∗KY ) = (C . rHZ) = d1d2r ≥ d1d2.

For the sake of completeness, we reproduce the argument of the section 3.1
of [4]:

Lemma 3.3. The divisor W is effective and r > 0.
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Proof. Write W = A− B, where A and B are effective divisors with disjoint
irreducible components. By hypothesis h∗KY = rHZ −A+B is a nef divisor,
then

0≤ B .h∗KY =−B .A+B2 ≤ B2,

since HZ .B = 0 and A .B≥ 0. So B = 0, because it is contracted by φ , hence W
is an effective divisor. Moreover

deg( f )K2
Y = (h∗KY )

2 = r2H2
Z +W 2 = r2d1d2 +W 2 ≤ r2d1d2.

Now, if K2
Y > 0 (i.e. Y is of general type), we have r > 0. Otherwise, by con-

tradiction we suppose r = 0, and K2
Y = 0. Hence W = 0 and h∗KY = 0. This

implies that
h∗h∗KY = deg( f )KY = 0.

By hypothesis Y is simply connected, therefore Pic0(Y ) is trivial and so KY = 0.
But this gives that pg(Y ) = 1, we get a contradiction.

Now we want to find the region for (d1,d2) satisfying n′+m′< dimM(d1,d2).
The following propositions deal with the two cases of Lemma 1.4.

Proposition 3.4. Let T1 ⊂ Z×Z be the set of pairs (d1,d2) defined by

d1 = 3, d2 ≥ 3
d1 = 4, d2 ≥ 4
d1 = 5, 5≤ d2 ≤ 13
d1 = 6, d2 = 6,7.

Let C be a very general hyperplane section of the complete intersection surface
X of multidegree (d1,d2)∈ T1. Then, there is no birational immersion κ : C→Y
for any surface Y of Kod(Y ) = 1, pg(Y ) = q(Y ) = 0, and π1(Y ) = 1.

Proof. By classification of surfaces, Y admits an elliptic fibration Y → P1 with
exactly two multiple fibers. By [6, Prop. 2.4], the dimension of the Kuranishi
space of deformations of Y has dimension at most 10. Thus, m′ ≤ 10, and
n′ ≤ g(C)− 1

2 degC κ∗KY . If we can show

g(C)− 1
2

degC κ
∗KY +10 <M(d1,d2) (?)

then n′+m′ ≤ g(C)− 1
2 degC κ∗KY +10 <M(d1,d2), hence we get the desired

conclusion. Using Proposition 3.1 and Lemma 3.2 we have g(C) = 1
2 d1d2(d1 +

d2−4)+1 and degC κ∗KY ≥ d1d2, and we get an inequality on d1 and d2 which
determines T1.
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Proposition 3.5. Let T2 ⊂ Z×Z be the set of pairs (d1,d2) defined by

d1 = 3, d2 ≥ 3
d1 = 4, d2 ≥ 4
d1 = 5, 5≤ d2 ≤ 9
d1 = 6, d2 = 6.

Let C be a very general hyperplane section of the complete intersection surface
X of multidegree (d1,d2)∈ T2. Then, there is no birational immersion κ : C→Y
for any surface Y of general type with pg(Y ) = q(Y ) = 0, and π1(Y ) = 1.

Proof. By [4, Cor. 2.5.3], m′ ≤ 19. As in Proposition 3.4, it is enough to find
the pairs (d1,d2) which satisfy the following:

g(C)− 1
2

degC κ
∗KY +19 <M(d1,d2).

It is immediate to see that the set T2 is exactly the collection of such pairs.

Combining all the elements, we get our main result, that is Theorem 1.2 of
the introduction

Theorem 3.6. Let (d1,d2)∈ T := T1∩T2 = T2. Then, for very general complete
intersection surface X of multidegree (d1,d2) and any dominant rational map
f : X 99K Y , either f is birational or Y is rational.

Comparing to the result [6] of Lee and Pirola, we expected to find a much
wider region for T (for instance, region with bounded complement) by using
their method. One of the possible ways to improve T is to find a better bound
for dimW which was bounded by n′ = h0(NC/Y ) and m′ = h1(TY ). Indeed,
h0(NC/Y ) counts the dimension of deformations of the birational immersion
κ : C→Y with fixed Y , but for us it suffices to look at deformations κ ′ : C′→Y
with C′ ∈M(d1,d2) since we derived contradiction by looking at the restric-
tion to hyperplane sections of the birational maps X 99K Y . The tangent space
L := T[C]M(d1,d2) is identified with the image of the Kodaira-Spencer map
H0(NC/P3)→H1(TC) along the identification H1(TC)' T[C]Mg. Hence, in the
long exact sequence induced by (8), we have

H0(NC/Y )
α−→ H1(TC),

and the subgroup α−1L⊂H0(NC/Y ) parametrizes the deformations of the bira-
tional immersions κ ′ : C′→ Y where C′ is lying insideM(d1,d2). If we could
find an efficient bound for α−1L, we would be able to replace the inequalities in
the proofs of Propositions 3.4 and 3.5 to enlarge the area of T . Unfortunately so
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far, we have no idea how to evaluate the dimension of α−1L. Furthermore, even
if we have a meaningful difference between dimensions ofM(d1,d2) andMg,
we need an upper bound of α−1L ⊂ H0(NC/Y ) for all possible surfaces Y with
KodY ≥ 1, so the global bound for α−1L may not be very useful to enlarge T .
In this sense, it might be necessary to find another way to improve the result.
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