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OPTIMALITY CONDITIONS FOR SHARP MINIMALITY OF
ORDER γ IN SET-VALUED OPTIMIZATION

TIJANI AMAHROQ - IKRAM DAIDAI - AICHA SYAM

Sharp minimizers of order γ are defined for set-valued optimization
problems. Necessary and sufficient conditions are given for such mini-
mizers, this allows us to extend the well known results obtained in the
scalar and vectorial cases by Auslender [6], Studniarski [21], Ward [24]
and Jiménez [12, 13].

1. Introduction

Let X be a normed space, f : X → R a real-valued function and S be a subset of
X. For a real number γ , a point x̄ ∈ S is said to be γ-order sharp local minimizer
with modulus c > 0 for f if there exists a neighborhood U of x̄ such that

f (x)≥ f (x̄)+ c ‖ x− x̄ ‖γ , f or all x ∈U ∩S. (1)

With the notation S( f , x̄,U) := {x ∈ U : f (x) = inf
u∈U

f (u)}, a point x̄ ∈ S is

said to be γ-order weak sharp local minimizer with modulus c > 0 for f if there
exists a neighborhood U of x̄ such that

f (x)≥ f (x̄)+ cd(x,S( f , x̄,U))γ , f or all x ∈U ∩S, (2)
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where U is the same as in (1) and, as usual, d(x,S) = inf
u∈S
‖ x−u ‖.

Recently the sharp minimizer and the weak sharp minimizer, have received ex-
tensive research. It has been found that weak sharp minimizers are closely re-
lated to the error bound in optimization, see Zheng et al. [26] and the references
therein. Furthermore, sharp minimizers of order 2 for real-valued functions are
known in Ait Mansour et al. [1] under ”c-eignevalue minimizers”, where the au-
thors provide the bounds of the modulus c (i.e.,c ∈]0, 1

4 ]) in the case of strong
quasi-convexity on the objective function.
Sharp and weak sharp minimums are very useful in numerical optimization,
error bound theory as well as parametric stability and sensitivity analysis of
variational problems. In [8] Cromme considers this notion in the context of the
convergence of iterative numerical procedures. Auslender [6] obtains necessary
and sufficient conditions for a local minimizer of orders 1 and 2, supposing that
the objective function f is locally Lipschitzian and the feasible set S is closed.
Studniarski [21] extends Auslender’s results to any extended real-valued func-
tion f , any subset S of Rn (not necessarily closed) and encompassing minimizers
of order greater than 2. For this aim he used directional derivatives that are gen-
eralizations of the lower and upper Hadamard derivatives. Ward [24] follows
the line of Studniarski using other derivatives and tangent cones.
Jiménez [11] extends the notion of minimizer of order γ to vector optimization
problems. In several papers, he extends the notion of strict minimizer to vector
optimization problems. In [12, 13], Jiménez and Jiménez and Novo develop
a theory on minimizers of order γ (γ ≥ 1 integer) considering different frame-
works.
In all of these papers, the objective functions are real-valued or vector-valued.
To our knowledge, a very limited attention has been dedicated to sharp and
weak sharp minimality for set-valued optimization. In [9], Durea and Stru-
gariu proposed the weak sharp minimiser for a set-valued optimization problem
by means of the oriented distance function and discussed some necessary opti-
mality conditions with the aid of the Mordukhovich generalized differentiation.
Very recently, Zhu et al. [25] extended the Fermat rules for the local minimiser
of the constrained set-valued optimization problem to the sharp and the weak
sharp minimimser of order 1 in Banach spaces or Asplund spaces, by means of
the Mordukhovich generalized differentiation and the normal cone.
In this paper, we extend this notion to set-valued optimization problems without
recourse to the use of distances adopted in [9, 25]. Also we establish neces-
sary and sufficient optimality conditions of a sharp minimizer of order γ for
set-valued optimization problems. Sufficient optimality conditions requiring a
type of strong convexity are also given.
On the other hand a type of Fritz John necessary and sufficient optimality named
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sharp Fritz John necessary and sufficient optimality conditions are established.
Our paper is written as follows. In Sec. 2, we present some basic definitions
such that γ-strongly convex set-valued maps and provide its characterization in
terms of Clarke derivative. This characterization leads us to derive optimality
conditions for sharp minimality of order γ . In Sec. 3, using separation theorem
we present Fritz John optimality conditions for sharp minimality of order γ . In
Sec. 4, we give optimality condition for a sharp minimizer of order γ without
convexity assumption and a useful sufficient condition for a sharp minimizer of
order 1 in finite dimensional space.

2. Preliminaries

Throughout this paper X and Y are Banach spaces, X∗ and Y ∗ will denote the
continuous duals of X and Y , respectively, and we write <., .> for the canonical
bilinear forms with respect to the dualities <X∗,X> and <Y ∗,Y>. In the sequel
BY denotes the open unit ball in Y and BY its closure and cl(A) will be the
topological closure of a subset A of X .
In this paper the following cones will be used.

Definition 2.1. Let A⊂ X and x̄ ∈ cl(A).
(i) The Clarke tangent cone to A at x̄ is

Tc(A, x̄) = {u ∈ X : ∀(xn)→A x̄, ∀ (tn) ↓ 0+, ∃(un)→ u with xn + tnun ∈ A ∀n},

where x→A x̄ means x→ x̄ with x ∈ A.
(ii) The tangent cone to A at x̄ is the set

T (A, x̄) = {v ∈ X : ∀ (tn)→ 0+, ∃(xn)→A x̄, such that t−1
n (xn− x̄)→ v}.

(iii) The contingent cone to A at x̄ is the set

K(A, x̄) = {v ∈ X : ∃(xn)⊂ A, ∃(tn)→ 0+, such that t−1
n (xn− x̄)→ v},

= {v ∈ X : ∃(vn)→ v, ∃(tn)→ 0+, such that x̄+ tnvn ∈ A,∀n ∈N}.

We denote by Nc(A, x̄) the Clarke normal cone to A at x̄, that is,

Nc(A, x̄) = {x∗ ∈ X∗ : < x∗,v >≤ 0 f or all v ∈ Tc(A, x̄)}.

Let F : X ⇒ Y be a set-valued map. In the sequel we denote the domain and
the graph of F respectively by

dom(F) = {x ∈ X , F(x) 6= /0},

gr(F) = {(x,y) ∈ X×Y, y ∈ F(x)}.
If A is a subset of X , then

F(A) = ∪
x∈A

F(x).
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Definition 2.2. Let (x̄, ȳ)∈ gr(F). The Clarke derivative DcF(x̄, ȳ) of F at (x̄, ȳ)
is the set-valued map from X into Y defined by

y ∈ DcF(x̄, ȳ)(x) if and only if (x,y) ∈ Tc(gr(F);(x̄, ȳ)).

Definition 2.3. [5] Let (x̄, ȳ) ∈ gr(F). The tangent derivative DF(x̄, ȳ) of F at
(x̄, ȳ) is the set-valued map from X into Y defined by

y ∈ DF(x̄, ȳ)(x) if and only if (x,y) ∈ T (gr(F);(x̄, ȳ)).

Due to Definition 2.1, y ∈ DF(x̄, ȳ)(x) if and only if for all (tn)→ 0+ there
exists (xn,yn)→A (x̄, ȳ) such that t−1

n ((xn,yn)− (x̄, ȳ))→ (x,y).

Definition 2.4. Let (x̄, ȳ) ∈ gr(F). The contingent derivative CF(x̄, ȳ) of F at
(x̄, ȳ) is the set-valued map from X into Y defined by

y ∈CF(x̄, ȳ)(x) if and only if (x,y) ∈ K(gr(F);(x̄, ȳ)).

Remark 2.5. Let (x̄, ȳ) ∈ gr(F). It is well known to see that

1. gr(DcF(x̄, ȳ))⊂ gr(DF(x̄, ȳ))⊂ gr(CF(x̄, ȳ)).

2. gr(DcF(x̄, ȳ)) = gr(CF(x̄, ȳ)), whenever gr(F) is convex in X×Y .

The following notions of optimality will be used in the sequel. Let Y+ be
a closed convex cone pointed in Y (that is Y+∩ (−Y+) = {0}) with nonempty
interior int(Y+).

Let A be a nonempty subset of Y and ȳ ∈ A. Then ȳ is said to be a minimizer
(respectively a weak minimizer) of A with respect to Y+ if

(A− ȳ)∩ (−Y+) = {0} (resp. (A− ȳ)∩ (−int(Y+)) = /0),

or, equivalently

A∩ (ȳ−Y+) = {ȳ} (resp. A∩ (ȳ− int(Y+)) = /0).

We denote by Min(A) the set of all minimizer points of A with respect to Y+

and by W.Min(A) the set of all weak minimizer points of A with respect to Y+.

Let S be a nonempty subset of X and consider the multiobjective optimization
problem

(P) Minimize F(x)

sub ject to x ∈ S.

Let x̄ ∈ S and (x̄, ȳ) ∈ gr(F). The pair (x̄, ȳ) ∈ gr(F) is said to be a local (re-
spectively a local weak) minimizer of (P) with respect to Y+ if there exists a
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neighborhood U of x̄ such that ȳ ∈ MinF(S∩U) (resp. ȳ ∈W.MinF(S∩U)).
This means that for all x ∈ S∩U

F(x)⊂ ȳ+(Y\(−Y+))∪{0}

(resp. F(x)⊂ ȳ+Y\(−int(Y+))).

We now introduce a new notion of sharp minimizer of order γ for set-valued
optimization problems.

Definition 2.6. Let γ > 0 and F : X ⇒ Y be a set-valued map. We say that
(x̄, ȳ) ∈ gr(F) is a local sharp minimizer of order γ for (P) with respect to Y+

if there exist c > 0 and a neighborhood U of x̄ such that for all x ∈ S∩U

F(x)+ c ‖ x− x̄ ‖γ BY ⊂ ȳ+(Y\(−Y+))∪{0}. (3)

When (3) holds for all x ∈ S, we say that (x̄, ȳ) is a global sharp minimizer of
order γ for (P).

Definition 2.7. Let γ > 0 and F : X ⇒ Y be a set-valued map. We say that
(x̄, ȳ) ∈ gr(F) is a local weak sharp minimizer of order γ for (P) with respect
to Y+ if there exist c > 0 and a neighborhood U of x̄ such that for all x ∈ S∩U

F(x)+ c ‖ x− x̄ ‖γ BY ⊂ ȳ+Y\(−int(Y+)). (4)

When (4) holds for all x ∈ S, we say that (x̄, ȳ) is a global weak sharp mini-
mizer of order γ for (P).

Remark 2.8. Definition 5 and Definition 6 above seem to be natural extension
of the notion of sharp minimizer to set-valued maps. Indeed,
a) Definition 2.6 becomes the usual notion of sharp minimizer of order γ , when
Y , Y+ = R+ and F : X → R is a real-valued function, that is, (1). This means
that Definition 2.6 generalizes the corresponding scalar notion.
b) Clearly, if F : X → Y is a vector-valued mapping, then (3) is equivalent to
the definition introduced by Jiménez [11, 12], that is, there exist c > 0 and a
neighborhood U of x̄ such that

(F(x)+Y+)∩B(F(x̄),c ‖ x− x̄ ‖γ) = /0, ∀x ∈ S∩U\{x̄}. (5)

c) If (x̄, ȳ) is a local (respectively a local weak) sharp minimizer of order γ

for (P) with respect to Y+, then (x̄, ȳ) is a local (respectively a local weak)
minimizer of (P) with respect to Y+.
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Now, we recall the following Definition introduced by Amahroq et al. [2].
If X is a reflexif Banach space, a real-valued function f : X → R∪{+∞} is
said to be γ-strongly convex, if there exist c > 0 and a function g : [0,1]→ R+

with

lim
θ→0

g(θ)
θ

= 1 and g(0) = g(1) = 0 (6)

such that for all x, y ∈ X and θ ∈ [0,1]

f (θy+(1−θ)x)≤ θ f (y)+(1−θ) f (x)− cg(θ) ‖ x− y ‖γ . (7)

It has been proved in [2] , that if f is γ-strongly convex then f admits a global
sharp minimizer of order γ .
Note that in [1], Ait Mansour et al. proved that a strongly quasiconvex real-
valued function admits a global sharp minimizer of order 2 even in the more
general setting of constrained quasi-minimization coercive problems.
As in [10], we introduce the following definition with a slight modification.

Definition 2.9. Let γ > 0 and F : X ⇒ Y be a set-valued map. We will say
that F is γ-strongly convex if there exist a constant c > 0 and a function g :
[0,1]→ R+ with

lim
θ→0

g(θ)
θ

= 1 and g(0) = g(1) = 0 (8)

such that for all x, y ∈ X and θ ∈ [0,1]

θF(y)+(1−θ)F(x)+ cg(θ) ‖ x− y ‖γ BY ⊂ F(θy+(1−θ)x). (9)

Example 2.10. Consider Example 1 in [14]. Let

F1(x) = [ f (x),+∞[, F2(x) =]−∞,g(x)], F3(x) = [ f (x),g(x)], withx ∈C,

where f , g : X → R∪{+∞} are two extended real-valued functions and C is a
convex subset of X . It has been proved that if f is 2-strongly convex and that g
is 2-strongly concave (that is −g satisfies (7) with γ = 2) such that f ≤ g on C.
Then F1, F2 and F3 are 2-strongly convex set-valued maps. It is not difficult to
prove that the result is still valid for any γ > 0.

In order to give a characterization of γ−strong convexity of set-valued maps,
let us recall the following result due to Huang [10].

Theorem 2.11. [10] Let F : X ⇒Y be a closed-graph set-valued map. If for each
(x,y), (x′,y′) ∈ gr(F) and (x∗,y∗) ∈ Nc(gr(F),(x,y)) the following inequality

< x∗,x′− x >+< y∗,y′− y >+c ‖ x− x′ ‖γ‖ y∗ ‖≤ 0, (10)

holds for some c > 0. Then F is γ-strongly convex on X.
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Theorem 2.12. Let F : X ⇒Y be a γ-strongly convex set-valued map with con-
stant c > 0 and (x̄, ȳ) ∈ gr(F). Then for all x ∈ X

F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ⊂ DcF(x̄, ȳ)(x− x̄). (11)

Conversely, suppose that (11) holds for any (x̄, ȳ) ∈ gr(F) and that gr(F) is
closed. Then F is γ−strongly convex.

Proof. Let y ∈ F(x) and b ∈ BY . Since gr(F) is convex, it suffices to prove that

F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ⊂ DF(x̄, ȳ)(x− x̄).

Let λn→ 0+, we may suppose that λn ∈]0,1], for all n. Put{
xn := x̄+λn(x− x̄)
yn := ȳ+λn(y− ȳ)+ cg(λn) ‖ x− x̄ ‖γ b,

where g : [0,1]→ R+ is given by (8) and (9). Due to the γ-strong convexity of
F , we obtain that (xn,yn) ∈ gr(F) for all n. Further,

λ
−1
n (xn− x̄,yn− ȳ)→ (x− x̄,y− ȳ+ c ‖ x− x̄ ‖γ b).

Thus, (x− x̄,y− ȳ+c ‖ x− x̄ ‖γ b)∈ T (gr(F);(x̄, ȳ)) for all y∈ F(x) and b∈BY .
What means that

F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ⊂ DF(x̄, ȳ)(x− x̄).

Conversely, if (11) holds for any (x̄, ȳ) ∈ gr(F), then

(x− x̄,y− ȳ+ c ‖ x− x̄ ‖γ b) ∈ Tc(gr(F);(x̄, ȳ))

for all y ∈ F(x) and b ∈ BY . Thus for all (x∗,y∗) ∈ Nc(gr(F);(x̄, ȳ)), y ∈ F(x)
and b ∈ BY we obtain

< (x∗,y∗),(x− x̄,y− ȳ+ c ‖ x− x̄ ‖γ b)>≤ 0.

Since b ∈ BY is arbitrary, so that for all (x̄, ȳ), (x,y) ∈ gr(F) and (x∗,y∗) ∈
Nc(gr(F);(x̄, ȳ))

< x∗,x− x̄ >+< y∗,y− ȳ >+c ‖ x− x̄ ‖γ‖ y∗ ‖≤ 0.

This implies that F is γ-strongly convex set-valued map by Theorem 2.11.

Corollary 2.13. Let F : X ⇒ Y be a closed-graph set-valued map. Then F is
γ-strongly convex on X if and only if

F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ⊂ DcF(x̄, ȳ)(x− x̄), (12)

for all x ∈ X and (x̄, ȳ) ∈ gr(F).
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When the set-valued map F is γ-strongly convex, the following proposi-
tion proves that any local sharp minimizer of order γ for (P) is a global sharp
minimizer of order γ for (P).

Proposition 2.14. Let (x̄, ȳ) ∈ gr(F), γ ≥ 1 and S ⊂ X be nonempty convex
subset of X. Suppose that F : X ⇒ Y is γ-strongly convex on S. Then (x̄, ȳ) is a
local sharp minimizer of order γ for (P) with respect to Y+ if and only if it is a
global sharp minimizer of order γ for (P) with respect to Y+.

Proof. Since (x̄, ȳ) is a local sharp minimizer of order γ with respect to Y+ for
(P), then there exist c1 > 0 and δ > 0 such that for all z ∈ S∩B(x̄,δ )

F(z)+ c1 ‖ z− x̄ ‖γ BY ⊂ ȳ+(Y\(−Y+))∪{0}. (13)

Now let z ∈ S\B(x̄,δ ), one gets for t > 0 sufficiently small w := x̄+ t(z− x̄) ∈
S∩B(x̄,δ ). So that

F(w)+ c1 ‖ w− x̄ ‖γ BY ⊂ ȳ+(Y\(−Y+))∪{0}.

Using the γ−strong convexity of F , we obtain for some c2 > 0

tF(z)+(1− t)ȳ+ c2g(t) ‖ z− x̄ ‖γ BY ⊂ ȳ+(Y\(−Y+))∪{0}.

Hence

F(z)− ȳ+ c2
g(t)

t
‖ z− x̄ ‖γ BY ⊂ (Y\(−Y+))∪{0}.

Letting t→ 0+, we obtain

F(z)− ȳ+ c2 ‖ z− x̄ ‖γ BY ⊂ (Y\(−Y+))∪{0}. (14)

With c = min(c1,c2), from (13) and (14) it follows that for all z ∈ S

F(z)− ȳ+ c ‖ z− x̄ ‖γ BY ⊂ (Y\(−Y+))∪{0}.

From Remark 2.8 necessary optimality condition for sharp minimizer of
order γ can be derived from the well known results as in Corley and Taa [7, 22].
Also in the strong convex setting one can derive sufficient optimality condition
for sharp minimizer of order γ as in the convex case, but for the convenience of
the reader we give an easy and direct proof.

Theorem 2.15. Let (x̄, ȳ) ∈ gr(F) and γ ≥ 1. If (x̄, ȳ) is a local weak sharp
minimizer of order γ for (P), then

CFS(x̄, ȳ)(x)∩ (−int(Y+)) = /0 f or all x ∈ S. (15)

Where FS denotes the restriction of F to S, that is FS(x) = F(x) for x ∈ S and
FS(x) = /0 for x 6∈ S.
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Proof. Suppose the contrary that, for some x ∈ S, there exists y ∈CFS(x̄, ȳ)(x)∩
(−int(Y+)).
It follows that there exist (tn)→ 0+ and (xn,yn)→ (x,y) with (xn)⊂ S such that

ȳ+ tnyn ∈ F(x̄+ tnxn) f or all n ∈ N.

Let c > 0. Since y 6= 0, then there exist bn ∈ BY ∩ (−int(Y+)) and n0 ∈ N such
that

ȳ+ tnyn + ctγ
n ‖ xn ‖γ bn ∈ −int(Y+)+ ȳ, ∀ n≥ n0.

Putting wn := ȳ+ tnyn and un := x̄+ tnxn, it follows that

wn ∈ F(un),

and
wn− ȳ+ c ‖ un− x̄ ‖γ bn ∈ −int(Y+) f or all n≥ n0,

in contradiction to (x̄, ȳ) is a local weak sharp minimizer of order γ for (P).

Sufficient conditions based on γ-strong convexity are now stated for prob-
lem (P).

Theorem 2.16. Let (x̄, ȳ) ∈ gr(F). If S is a convex set, F is a γ-strongly convex
set-valued map on S and

DF(x̄, ȳ)(x− x̄)∩ (−Y+) = {0}, f or all x ∈ S, (16)

(respectively, DF(x̄, ȳ)(x− x̄)∩ (−int(Y+)) = /0, f or all x ∈ S) (17)

then (x̄, ȳ) is a sharp minimizer (respectively, weak sharp minimizer) of order γ

for (P).

Proof. Since F is a γ-strongly convex set-valued map on S, it follows by Theo-
rem 2.12, that for all x ∈ S

(F(x)− ȳ+ c ‖ x− x̄ ‖γ BY )∩ (−Y+)⊂ DF(x̄, ȳ)(x− x̄)∩ (−Y+) = {0}. (18)

Thus (x̄, ȳ) is a global sharp minimizer of order γ for (P).
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3. Sharp Fritz John multipliers

In this section we establish sharp Fritz John necessary and sufficient optimality
conditions for sharp minimizer of order γ for the problem (P).

In the next, the following set

Y+i = {ϕ ∈ Y ∗, ϕ(y)≥ 0, f or all y ∈ Y+},

denotes the nonnegative dual cone of Y+. We say that ϕ ∈ Y+i is definitely
positive, if ϕ(y)> 0 for all y ∈ int(Y+), and strictly positive, if ϕ(y)> 0 for all
y ∈ Y+\{0}.

In the following, we show that weak sharp minimizers of order γ for problem
(P) are exactly minimizers for the following real-valued function :

ψ(x,y) = ϕ(y)− c ‖ x− x̄ ‖γ‖ ϕ ‖,

for some elements ϕ ∈ Y+i. Such element ϕ will be called sharp multipliers.

Theorem 3.1. (a) Suppose that (x̄, ȳ) is a weak sharp minimizer of order γ for
(P) and that F(x) is convex for all x ∈ S. Then for all x ∈ S, there exist a
definitely positive ϕ ∈ Y+i and c > 0 such that

ϕ(y)−ϕ(ȳ)≥ c ‖ x− x̄ ‖γ‖ ϕ ‖, f or all y ∈ F(x) with x ∈ S. (19)

(b) If there exist a strictly (resp. definitely) positive ϕ ∈Y+i and c > 0 such that

ϕ(y)−ϕ(ȳ)≥ c ‖ x− x̄ ‖γ‖ ϕ ‖, for all y ∈ F(x) with x ∈ S,

then (x̄, ȳ) is a (resp. weak) sharp minimizer of order γ for (P).

Proof. (a) Let x ∈ S, then there exists c > 0 such that

(F(x)− ȳ+ c ‖ x− x̄ ‖γ BY )∩−int(Y+) = /0.

We have F(x)− ȳ+c ‖ x− x̄ ‖γ BY is a convex set. By separation theorem, there
exists ϕ ∈ Y ∗ that does not vanish identically and α ∈ R such that

ϕ(z)≤ α, f or all z ∈ −int(Y+), (20)

and

ϕ(z)≥ α, f or all z ∈ (F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ). (21)
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But since 1
n z ∈ −int(Y+) for all z ∈ −int(Y+) and n ∈ N∗, the continuity of

ϕ gives from (20) that ϕ ∈ Y+i. Similarly, we obtain that α ≥ 0. Finally, let
y ∈ F(x) and b ∈ BY , from (21) we obtain

ϕ(y)−ϕ(ȳ)≥ c ‖ x− x̄ ‖γ‖ ϕ ‖, f or all y ∈ F(x).

On the other hand, ϕ is a definitely positive functional. Otherwise, there exists
ŷ ∈ int(Y+) such that ϕ(ŷ) = 0. So that for some r > 0, we get

ϕ(ŷ+ rb)≥ 0, f or all b ∈ B.

As a consequence ‖ ϕ ‖= 0, which is in contradiction with ϕ is not a zero
functional.
(b) Let x ∈ S, by assumption we have

ϕ(y− ȳ+ c ‖ x− x̄ ‖γ b)≥ 0, f or all b ∈ B and y ∈ F(x).

Since ϕ is strictly positive, so that, if v ∈ F(x)− ȳ+ c ‖ x− x̄ ‖γ B, we obtain
that v 6∈ (−Y+)\{0}. Thus

(F(x)− ȳ+ c ‖ x− x̄ ‖γ BY )∩ (−Y+)\{0}= /0.

The last assertion shows that (x̄, ȳ) is a sharp minimizer of order γ for (P).

4. Necessary and Sufficient Optimality Conditions without convexity as-
sumption

The aim of this section is to give sufficient condition for a point x̄ to be a sharp
minimizer of order 1 for the problem (P).

Proposition 4.1. Let F : X ⇒Y , (x̄, ȳ)∈ gr(F) with x̄∈ S and γ ≥ 1. Then (x̄, ȳ)
is not a local sharp minimizer of order γ for (P) with respect to Y+ if and only if
there exist sequences xn ∈ S\{x̄}, yn ∈ F(xn) and dn ∈Y+\{0} such that xn→ x̄
and

lim
n→+∞

yn− ȳ+dn

‖ xn− x̄ ‖γ
= 0. (22)

Proof. Part ”if”. Let (xn), (yn) and (dn) satisfying (22).
Reasoning ”ad absurdum”, suppose that (x̄, ȳ) is a local sharp minimizer of order
γ for (P) with respect to Y+. Then there exist δ , c > 0 such that

F(x)− ȳ+ c ‖ x− x̄ ‖γ BY ⊂ (Y\(−Y+))∪{0}, f or all x ∈ BX(x̄,δ )∩S.
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Now for ε = min(δ ,c), from (22) there exists n0 = n0(ε) such that for each
n≥ n0, we have xn ∈ BX(x̄,ε)∩S, yn ∈ F(xn) and

yn +dn ∈ BY (ȳ,ε ‖ xn− x̄ ‖γ)⊂ BY (ȳ,c ‖ xn− x̄ ‖γ).

Hence for each n≥ n0, there exists bn ∈ BY such that

−dn = yn− ȳ+ c ‖ xn− x̄ ‖γ bn ∈ (Y\(−Y+))∪{0},

we have a contradiction since dn ∈ Y+\{0}.
Part ”only if”. By assumption, for all δ > 0 and for all c > 0, there exist x ∈
BX(x̄,δ )∩S\{x̄}, b ∈ BY and y ∈ F(x) such that

y− ȳ+ c ‖ x− x̄ ‖γ b ∈ −Y+\{0}.

In particular, for all n ∈ N∗, taking δ = 1
n and c = 1

n , there exist xn ∈ BX(x̄, 1
n)∩

S\{x̄}, yn ∈ F(xn), bn ∈ BY and dn ∈ Y+\{0} such that

−dn := yn− ȳ+
1
n
‖ xn− x̄ ‖γ bn,

that is,
‖ yn− ȳ+dn ‖
‖ xn− x̄ ‖γ

<
1
n
,

and the claim follows.

In the remaining of this work, for a vector y∈Rp its components are denoted
by yi, with i ∈ {1, ..., p}.

Proposition 4.2. Let F : X ⇒ Y , (x̄, ȳ) ∈ gr(F) with x̄ ∈ S and γ > 0.
(a) If there exist d ∈ Y+\{0}, sequences xn ∈ S\{x̄} and yn ∈ F(xn) such that

lim
n→+∞

yn− ȳ
‖ xn− x̄ ‖γ

=−d ∈ −Y+\{0}, (23)

then (x̄, ȳ) is not a local sharp minimizer of order γ for (P) with respect to Y+.
(b) Let Y =Rp and Y+ =Rp

+. If (x̄, ȳ) is not a local sharp minimizer of order γ

for (P) with respect to Y+, then there exist sequences xn ∈ S\{x̄} and yn ∈F(xn)
such that

lim
n→+∞

yn− ȳ
‖ xn− x̄ ‖γ

= d ∈ [−∞,0]p. (24)

(c) Conversely to (b), if there exist sequences xn ∈ S\{x̄}, xn → x̄, yn ∈ F(xn)
and d ∈ [−∞,0]p such that

lim
n→+∞

yn− ȳ
‖ xn− x̄ ‖γ

= d, (25)

then (x̄, ȳ) is not a local sharp minimizer of order γ for the problem (P) with
respect to Y+.
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Proof. (a) By assumption, we have that

lim
n→+∞

yn− ȳ+ ‖ xn− x̄ ‖γ d
‖ xn− x̄ ‖γ

= 0.

Let dn :=‖ xn− x̄ ‖γ d, since dn ∈ Y+\{0} for all n, we can apply Proposition
4.1, and the conclusion follows.
(b) By Proposition 4.1, there exist sequences xn ∈ S\{x̄}, yn ∈ F(xn) and d̃n ∈
Rp
+\{0} such that xn→ x̄ and

lim
n→+∞

yn− ȳ+ d̃n

‖ xn− x̄ ‖γ
= 0. (26)

Let

dn =
d̃n

‖ xn− x̄ ‖γ
, an =

yn− ȳ
‖ xn− x̄ ‖γ

, and bn = an +dn, f or all n.

With this notation, the equation (26) establishes that lim
n→+∞

bn = 0p ∈ Rp. Since

dn ∈ Rp
+\{0}, we may construct a subsequence (dkn) such that

d = lim
n→+∞

dkn ∈ [0,+∞]p. As bkn = akn +dkn , taking the limit, we get

0 = lim
n→+∞

bkn = lim
n→+∞

akn + lim
n→+∞

dkn .

Therefore, d := lim
n→+∞

akn =−d ∈ [−∞,0]p, and the result is proved.

(c) Let d ∈ [−∞,0]p satisfying (25).
If −d ∈ Rp

+\{0} the result follows from (a).
If −d 6∈ Rp

+\{0}, some of the component of d is −∞. Reordering, we can
suppose that d = (d

1
, ...,d

k
,d

k+1
, ...,d

p
) with d

i
= −∞ for i = 1, ...,k and d

i ∈
]−∞,0] if i > k with k ≥ 1.
We have that

lim
n→+∞

yi
n− ȳi

‖ xn− x̄ ‖γ
=−∞,

for i = 1, ...,k. Thus, since for n large enough and for i = 1, ...,k, di
n :=−(yi

n−
ȳi)> 0. Let

dn = (d1
n , ...,d

k
n,− ‖ xn− x̄ ‖γ d

k+1
, ...,− ‖ xn− x̄ ‖γ d

p
) ∈ Rp

+\{0}.

Clearly,

lim
n→+∞

yn− ȳ+dn

‖ xn− x̄ ‖γ
= 0,

and using Proposition 4.1, we conclude the result.
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From the above result, we obtain the following sufficient optimality condi-
tion of a local sharp minimizer of order 1 for problem (P).

Theorem 4.3. Let F : Rn ⇒ Rp, (x̄, ȳ) ∈ gr(F) with x̄ ∈ S and Y+ = Rp
+. If

CF(x̄, ȳ)(x)∩Rp
− = /0, ∀ x ∈ K(S, x̄)\{0}. (27)

Then (x̄, ȳ) is a local sharp minimizer of order 1 for the problem (P).

Proof. Suppose that (x̄, ȳ) is not a local sharp minimizer of order 1 for the prob-
lem (P). Then, by Proposition 4.2 there exist sequences xn ∈ S\{x̄}, yn ∈ F(xn)
such that xn→ x̄ and

lim
n→+∞

yn− ȳ
‖ xn− x̄ ‖

= w ∈ [−∞,0]p.

Put vn := (xn− x̄)/tn with tn =‖ xn− x̄ ‖ and wn := (yn− ȳ)/tn. By extracting
subsequence if necessary, we may suppose that

lim
n→+∞

vn = v ∈ K(S, x̄)\{0}.

Since ȳ+ tnwn ∈ F(x̄+ tnxn) for all n, it follows that

w ∈CF(x̄, ȳ)(v)∩Rp
−,

which is a contradiction to the hypothesis (27).

Conclusion. For a perspective research, it could be interesting to express our
definitions of sharp minima in an equivalent way by the use of distances from a
point to a set, which could link our results to quantitative stability for set-valued
optimization.
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[11] B. Jiménez, Strict efficiency in vector optimization, J. Math. Anal. Appl. 265

(2002), 264-284.
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