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EXISTENCE RESULTS FOR A CLASS
OF NON-UNIFORMLY ELLIPTIC EQUATIONS

ANNA MERCALDO - IRENEO PERAL

We present existence results for a class of non-uniformly elliptic prob-
lems whose prototype is

di vu =u’+ in Q
v (W) SeAso
u(x) >0 in Q

ux)=0 on 09,

0.1)

where €2 is an open bounded subset of RN, N > 3, a(x) is a measurable
function belonging to L°°(€2) such that 0 < a1 < a(x) < ap, fora. e. x €Q
with a; and a, positive constants. Moreover we assume that « and s are real
numbers such that 0 < @ < 1 and 0 < s < 1 — «. Finally we assume that
the datum f belongs to Lebesgue spaces L™ (€2) where m varies in suitable
intervals. We further present an existence result for nontrivial solutions to
problem (0.1) when f = 0.

1. Introduction.

We present some recent results proved in paper [18]. They concern with
the existence of solutions to the following elliptic problem

—div(A(x, u)Vu) = u’® + f(x) in Q
(1.1) ux) >0 in Q
ux)=0 on 0J€2,
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where Q is an open bounded subset of RY, N > 3 and A(x, t) is a matrix
whose coefficients are Carathéodory functions A;; : 2 x R — R belonging to
L*° (2 x R). Moreover we assume that the matrix A(x, ¢) satisfies the following
ellipticity condition

€o

2 2
1.2) @@+ e 1§17 < (A(x, 1), &) < c1l§]",

fora. e. x € Q, Vt € R, VE e R", for some constants ¢g > 0, ¢; > 0 for a
constant « such that

(1.3) O0<a<l,

and for a function a(x) € L°°(2) which satisfies the condition
(1.4) O<ay <alx)<ap,, aexef, a, a>0.
Furthermore we assume that s is a real number such that

(1.5) 0<s<1-—a,

and the datum f is a nonnegative function on €2 belonging to some Lebesgue
space, i.e.

(1.6) fel™Q), f(x)>=0 aexeQ,

for suitable values of m which will be specified later.

We are interested in existence results for problem (1.1) when f = 0 or
when f =0.

The main features of problem (1.1) are the non-uniformly ellipticity con-
dition (1.2), which produces a lack of coercivity when u is large, and the
presence of the semilinear term u*. We explicitely remark that the operator
—div(A(x, u)Vu) though well-defined between W,'*(Q2) and W~"2(Q) is not
coercive in W(;’z(Q) when u is large. Evidently if u is bounded then the op-
erator becomes coercive and classical theory can be applied in order to prove
existence of a weak solution. However in general the boundedness of u or is not
true either couldn’t be guaranteed a priori.

In [18] we prove three existence results for nonhomogeneus problem (1.1).
Depending on the summability of the datum f, we prove the existence of a
weak solution u such that u° belongs to Wo] ’2(9) for a suitable o, the existence
of a solution in distributional sense which in general belongs to a suitable
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Sobolev space larger then Wo] 2(§2) and the existence of a renormalized solution.
In Section 2 we will present the first and the second existence results. The
definition of renormalized solution has been introduced by P.-L. Lions and
E. Murat ([16], [19]), while an equivalent definition of solution, the entropy
solution, has been introduced in [6].

In the case where f = 0, the model problem of the general setting
considered above is the following one
\%
—div (_u) =u’ in Q
(1.7) (a(x) + u)®
u(x) =0 in Q
ux)=0 on 052,

where a(x) is a function belonging to L*°(€2) such that 0 < a; < a(x) < a,
for suitable positive constants a; and a,. In such a case the matrix A(x,t) =
(Ajj(x, 1)) is given by

Alx,t) = xN -

@m0
When o = 0 the elliptic problem (1.7) has a variational structure and both
existence and uniqueness of a nontrivial solution are well-known (see, for
example, [2] and some extensions in [1]). Actually a variational approch to
problem (1.7) is also possible when o > 0, but such variational formulation
does not hold for general operators —div((A(x, u)Vu)) and a different approach
is needed. In Section 3 we will present our existence result for problem (1.1)
when f is identically zero.

When the term ©® does not appear in (1.1), this type of problems has been
studied by many authors. In [5] and [10] the authors prove both existence and
regularity (depending on the summability of the datum f) of weak solutions,
while in [4] the existence and regularity of weak solutions and entropy solutions
in a nonlinear case are proved. Existence and uniqueness results for renormal-
ized solution for the class of problems (1.1) in the case where the term u* does
not appear have been proved , for example, in [7], [8] or in [20].

We also mention the papers [13] (where the higher integrability of the
gradients is studied), [14] (where the case of the datum in divergence form is
considered), [11] and [17] (where noncoercive functionals related to such type
of equations are studied).

Finally we briefly make some remarks on the bounds on N and o. We
assume that N > 3; the case N = 2 is excluded, for simplicity, since it leads
to technicalities due to the fact that Sobolev embedding Theorem have to be
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replaced by Moser-Trudinger Theorem. Moreover we assume that @ < 1. Such
a condition on « is not restrictive since, when o« = 1, thens = 0, i.e. u® = 1,
and existence results for problem (1.1) in such a case are proved in [5] and [10].

2. Existence results for nonhomogeneus problem.

In paper [18] we prove three existence results for the problem (1.1) when

the datum f is not identically zero according to the values of the summability
. 2=

off,l.e.mzm] :m,.mzzl\mﬁ <m < m an.d1§m<m2.

The first existence result is given by Theorem 1 below, which concerns the

existence of a weak solution to problem (1.1), i.e. a nonnegative function u

belonging to W(;’z(Q) such that

2.1) /(A(x,u)Vu,V¢) dx:/us¢dx+/ fodx, Vo e W, ().
Q Q Q

Under the assumption that the datum f, belongs to the Lebesgue space L™ (2)

for the values of m > m; = N+2,2—N,, Theorem 1 below states the existence
a(N—2)

of a weak solution u# which further verifies u® € Wo] ’Z(Q) for a suitable value of

o (estimates for |Vu?| are proved in [15] for solutions to a class of quasilinear

elliptic problems).

Theorem 1. Assume that (1.2)—(1.6) holds true with f £ 0 and
2N

N+2—a(N—-2)

Then problem (1.1) has at least a weak solution u which further satisfies

(2.2) m=>my, withm; =

(2.3) u’ € Wy (),
where N —2m( )
—2m(l —« ) N
o = 2 N-2m’ ifm=m <3,
anyr, r > 1, ifmz%.

The second existence result is given by Theorem 2 below. Under the
assumption that the datum f belongs to the Lebesgue space L™(2) with

— Ne—o) - 2N . : :
My = §5—yNg SM <M = gy my, it states the existence of a solution

in distributional sense. Such a solution in general does not belong to the energy
space W(;’z(Q), but it belongs to the larger Sobolev space WO]’q(Q), where ¢ is
defined in (2.5) below.
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Theorem 2. Assume that (1.2)—(1.6) holds true with f £ 0 and
NQ2-—a)
N+2—Na
Then problem (1.1) has at least a solution in the sense of distribution belonging
to Wo’q(Q) with

2.4) m, <m<my, With my=

NQ2 —a)
(2.5) = —
N —«

Remark 1. We explicitly remark that, since « < 1, itresults ¢ > 1. Moreover,
since N > 2, then ¢ < 2, i.e. the Sobolev space W()]’q(Q) is larger then the
energy space Wo] 2(€2). Observe also that ¢ does not depends on the summability
of the datum f. Actually, using the same arguments of [10] or [5] we could
prove that there exists a solution in the sense of distribution to the problem (1.1)
which belongs to a Sobolev space smaller then WO] “4(Q) for the values of s in a
suitable interval.

Finally in [18] we prove a third existence result for problem (1.1) when the
datum f belongs to the Lebesgue space L™ (€2) with m in the interval [1, m;][.
In such a case we have to change framework and we prove the existence of a
renormalized solution for problem (1.1) (see [18], Section 6).

The proofs of the existence results given by Theorems 1 and 2 follow the
same scheme. We begin by defining the sequence of “approximated problems”,

—div(A(x, T, (un))Vu,) = (To(un))’ + T,(f) in €
(2.6) { u,(x) >0 in Q
u,(x) =0 on IR

where, for any n > 0, T,, : R — R denotes the usual truncation at level n, that

is
s Is| <n,
n sign(s) Is| > n,

T,(s) = {

for all s € R. Such approximated problems have a weak solution (even bounded)
u,; the existence of such a solution is a consequence, for example, of a result
proved in [3]. Then we prove some a priori estimates: they are a priori estimates
for |[|Vu, ||l 12y and for |||V (u,)? ||l 12 in the proof of Theorem 1; they are a
priori estimates for |||Vu,|||z«q) in the proof of Theorem 2. Finally we pass
to the limit in problem (2.6) and we prove that the limit of u,, is a solution to
problem (1.1).
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3. Existence result for the homogeneus problem.

Consider problem (1.1) when the datum f is identically zero, i.e.

—div(A(x, u)Vu) = u’ in
(3.1) u(x) >0 in Q
ux)=0 on J%.

Theorem 3 below states the existence of a nontrivial weak solution to the
homogeneous problem (3.1) under the assumptions (1.2)—(1.5) and the further
assumptions

(3.2) A(x, t) is a simmetric matrix,

(3.3) |A(x, 1) — A(x, )| = LIty — 1)),

for almost everywhere x € 2 and for every t;,, € R, where L : R — R is a
function which satisfies the following conditions

(3.4 L(t) is a nondecreasing function,
(3.5) L(0) =0,
dt
(3.6) / — = +400.
o+ L(t)

Theorem 3. Under the assumptions (1.2)—(1.5), (3.2)—(3.6), problem (3.1) has
at least a nontrivial weak solution.

The proof of Theorem 3 is done by several steps (cf. [3]).

The first step consists in proving the existence of a convenient sub-solution
¢ to the problem (3.1). Indeed the assumptions (1.2)—(1.5), (3.2)—(3.6) allows
to apply Theorem 1 in [9] which implies that, for every fixed n € N and
r > 0, there exists an eigenvalue A, , with corresponding positive eigenfunction
Upr € Wol’z(Q) such that

—div(A(x, Ty ))VUp,) = Ay rUnr in Q
Upr(x) >0 in Q
G.7) Vs (x) =0 on 9

||Un,r||L2(Q) =r.



EXISTENCE RESULTS FOR A CLASS... 295

Moreover, it results

C
0 < M1

W_—n)zg,ul < hur =< o2

where 111 denotes the first eigenvalue of Laplace operator with Dirichlet bound-
ary datum on 0€2. We prove that for any n > 0 and r > O the functions v, ,
belongs to L°°(£2) and an apriori estimate is proved in such a space. Then we
prove that for any fixed n > 0, there exists a suitable r > 0 such that the
function ¢ = v, , satisfies

(e
(3.9 ||¢||L°°(Q)§m1n{(lu_) -
1

Such a function ¢ = v, is a (bounded) sub-solution to problem (3.1), i.e.

(3.8)

—div(A(x, ¢)Vo) < ¢* a.e. in Q and in D'(Q).

The second step in the proof of Theorem 3 consists in proving the existence
of a super-solution ¥ to the problem (3.1). Actually such a super-solution is a
solution to the problem

—div(A(x, ¥)Vy¥) = PYy' 4+ Q in Q
(3.10) v >0 in Q
Y =0 on 0%2,

with suitable constants P > 0, Q > ||§[[jx and 0 <s <7 <1 —0a.
The third step in the proof of Theorem 3 is the proof of a comparison result
given by Theorem 4 below.

Theorem 4. Assume that the matrix A(x, s) verifies the assumptions (1.2)—
(1.4) and (3.2)-(3.6). Moreover assume that the functions u € WO]’Z(Q) and

v e Wy () N L%(Q) satisfy

311 —div(A(x, v)Vv) < g in Q
(.11 ve Wy A(Q) N L=(Q),
—div(A(x, u)Vu) > f in Q
(3.12) { ue WO]’Z(Q),
where f and g are elements of the dual space W~2(Q) such that
(3.13) f>g inDQ).

Then u > v almost everywhere in Q2.



296 ANNA MERCALDO - IRENEO PERAL

Such a result extend the comparison result proved by Artola and Boccardo
in [3] to our context of lack of coerciveness; its proof is obtained by adapting
the method used by Artola in [2] to prove the uniqueness result.

In the fourth step of the proof of Theorem 3 we introduce an iteration
argument. We define the sequence of functions {u;} solutions to problem

—div(A(X, ups1)Vuggr) = uy, in
(3.14) Ugr1(x) >0 in Q
ukﬂ(x) =0 on 89,

where u, the first function of the sequence, is the solution to the problem
—div(A(x, u)Vu,) = ¢* in Q

(3.15) ui(x)>0 in Q
up(x)=0 on L.

We prove that the functions u; € Wo] 2(Q) N L™(Q) satisfy
(3.16) 0 < o(x) Sui(x) Sup(x) < -+ <wy(x) < -+ - < Y(x) ae. in Q.
and then that the function

u(x) = lim wu;(x) a.e. in 2,
k— 00

is a nontrivial weak solution to problem (3.1).

Finally we remark that, under the assumptions of Theorem 4, if we assume
also that the super-solution u belongs to L*°(£2), then Theorem 4 gives an
uniqueness result, since in such a case we can change the role of # and v. Such
uniqueness result coincides, in the case where o = 0, with the uniqueness result
of Brezis and Oswald proved in [12].
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