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EXISTENCE RESULTS FOR A CLASS

OF NON-UNIFORMLY ELLIPTIC EQUATIONS

ANNA MERCALDO - IRENEO PERAL

We present existence results for a class of non-uniformly elliptic prob-
lems whose prototype is

(0.1)

⎧⎪⎨
⎪⎩

−div
( ∇u
(a(x) + u)α

)
= us + f in �

u(x) ≥ 0 in �

u(x) = 0 on ∂�,

where � is an open bounded subset of R
N , N ≥ 3, a(x) is a measurable

function belonging to L∞(�) such that 0 < a1 ≤ a(x) ≤ a2 , for a. e. x ∈ �

with a1 and a2 positive constants. Moreover we assume that α and s are real
numbers such that 0 ≤ α < 1 and 0 ≤ s < 1 − α. Finally we assume that
the datum f belongs to Lebesgue spaces Lm (�) where m varies in suitable
intervals. We further present an existence result for nontrivial solutions to
problem (0.1) when f ≡ 0.

1. Introduction.

We present some recent results proved in paper [18]. They concern with
the existence of solutions to the following elliptic problem

(1.1)

{ −div(A(x , u)∇u) = us + f (x ) in �

u(x ) ≥ 0 in �

u(x ) = 0 on ∂�,
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where � is an open bounded subset of R
N , N ≥ 3 and A(x , t) is a matrix

whose coefficients are Carathéodory functions Ai j : � × R → R belonging to
L∞(�×R). Moreover we assume that the matrix A(x , t) satisfies the following
ellipticity condition

(1.2)
c0

(a(x )+ |t |)α |ξ |2 ≤ 〈A(x , t)ξ, ξ〉 ≤ c1|ξ |2,

for a. e. x ∈ �, ∀ t ∈ R, ∀ξ ∈ RN , for some constants c0 > 0, c1 > 0 for a
constant α such that

(1.3) 0 ≤ α < 1,

and for a function a(x )∈ L∞(�) which satisfies the condition

(1.4) 0 < a1 ≤ a(x ) ≤ a2, a. e. x ∈ �, a1, a2 > 0 .

Furthermore we assume that s is a real number such that

(1.5) 0 ≤ s < 1− α,

and the datum f is a nonnegative function on � belonging to some Lebesgue
space, i.e.

(1.6) f ∈ Lm(�), f (x ) ≥ 0 a. e. x ∈ �,

for suitable values of m which will be specified later.
We are interested in existence results for problem (1.1) when f �≡ 0 or

when f ≡ 0.
The main features of problem (1.1) are the non-uniformly ellipticity con-

dition (1.2), which produces a lack of coercivity when u is large, and the
presence of the semilinear term us . We explicitely remark that the operator
−div(A(x , u)∇u) though well-defined between W 1,2

0 (�) and W−1,2(�) is not
coercive in W 1,2

0 (�) when u is large. Evidently if u is bounded then the op-
erator becomes coercive and classical theory can be applied in order to prove
existence of a weak solution. However in general the boundedness of u or is not
true either couldn’t be guaranteed a priori.

In [18] we prove three existence results for nonhomogeneus problem (1.1).
Depending on the summability of the datum f , we prove the existence of a
weak solution u such that uσ belongs to W 1,2

0 (�) for a suitable σ , the existence
of a solution in distributional sense which in general belongs to a suitable
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Sobolev space larger thenW 1,2
0 (�) and the existence of a renormalized solution.

In Section 2 we will present the first and the second existence results. The
definition of renormalized solution has been introduced by P.-L. Lions and
F. Murat ([16], [19]), while an equivalent definition of solution, the entropy
solution, has been introduced in [6].

In the case where f ≡ 0, the model problem of the general setting
considered above is the following one

(1.7)

⎧⎪⎨
⎪⎩

−div
( ∇u
(a(x )+ u)α

)
= us in �

u(x ) ≥ 0 in �

u(x ) = 0 on ∂�,

where a(x ) is a function belonging to L∞(�) such that 0 < a1 ≤ a(x ) ≤ a2
for suitable positive constants a1 and a2. In such a case the matrix A(x , t) ≡(
Ai j (x , t)

)
is given by

A(x , t) = 1

(a(x )+ t)α
IN×N .

When α = 0 the elliptic problem (1.7) has a variational structure and both
existence and uniqueness of a nontrivial solution are well-known (see, for
example, [2] and some extensions in [1]). Actually a variational approch to
problem (1.7) is also possible when α > 0, but such variational formulation
does not hold for general operators −div((A(x , u)∇u)) and a different approach
is needed. In Section 3 we will present our existence result for problem (1.1)
when f is identically zero.

When the term us does not appear in (1.1), this type of problems has been
studied by many authors. In [5] and [10] the authors prove both existence and
regularity (depending on the summability of the datum f ) of weak solutions,
while in [4] the existence and regularity of weak solutions and entropy solutions
in a nonlinear case are proved. Existence and uniqueness results for renormal-
ized solution for the class of problems (1.1) in the case where the term us does
not appear have been proved , for example, in [7], [8] or in [20].

We also mention the papers [13] (where the higher integrability of the
gradients is studied), [14] (where the case of the datum in divergence form is
considered), [11] and [17] (where noncoercive functionals related to such type
of equations are studied).

Finally we briefly make some remarks on the bounds on N and α. We
assume that N ≥ 3; the case N = 2 is excluded, for simplicity, since it leads
to technicalities due to the fact that Sobolev embedding Theorem have to be
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replaced by Moser-Trudinger Theorem. Moreover we assume that α < 1. Such
a condition on α is not restrictive since, when α = 1, then s = 0, i.e. us ≡ 1,
and existence results for problem (1.1) in such a case are proved in [5] and [10].

2. Existence results for nonhomogeneus problem.

In paper [18] we prove three existence results for the problem (1.1) when
the datum f is not identically zero according to the values of the summability
of f , i.e. m ≥ m1 = 2N

N+2−α(N−2) , m2 = N(2−α)
N+2−Nα

≤ m < m1 and 1 ≤ m < m2.
The first existence result is given by Theorem 1 below, which concerns the

existence of a weak solution to problem (1.1), i.e. a nonnegative function u
belonging to W 1,2

0 (�) such that

(2.1)
∫

�

〈A(x , u)∇u, ∇φ〉 dx =
∫

�

usφ dx +
∫

�

f φ dx , ∀φ ∈W 1,2
0 (�).

Under the assumption that the datum f , belongs to the Lebesgue space Lm(�)
for the values of m ≥ m1 = 2N

N+2−α(N−2) , Theorem 1 below states the existence
of a weak solution u which further verifies uσ ∈W 1,2

0 (�) for a suitable value of
σ (estimates for |∇uσ | are proved in [15] for solutions to a class of quasilinear
elliptic problems).

Theorem 1. Assume that (1.2)–(1.6) holds true with f �≡ 0 and

(2.2) m ≥ m1, with m1 = 2N

N + 2− α(N − 2)
.

Then problem (1.1) has at least a weak solution u which further satisfies

(2.3) uσ ∈W 1,2
0 (�) ,

where

σ =
⎧⎨
⎩
N − 2

2

m(1− α)

N − 2m
, if m1 ≤ m < N

2 ,

any r, r ≥ 1, if m ≥ N
2 .

The second existence result is given by Theorem 2 below. Under the
assumption that the datum f belongs to the Lebesgue space Lm (�) with
m2 = N(2−α)

N+2−Nα
≤ m < m1 = 2N

N+2−α(N−2) , it states the existence of a solution
in distributional sense. Such a solution in general does not belong to the energy
space W 1,2

0 (�), but it belongs to the larger Sobolev space W 1,q
0 (�), where q is

defined in (2.5) below.
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Theorem 2. Assume that (1.2)–(1.6) holds true with f �≡ 0 and

(2.4) m2 ≤ m < m1, with m2 = N (2− α)

N + 2− Nα
.

Then problem (1.1) has at least a solution in the sense of distribution belonging
to W 1,q

0 (�) with

(2.5) q = N (2 − α)

N − α
.

Remark 1. We explicitly remark that, since α < 1, it results q > 1. Moreover,
since N > 2, then q < 2, i.e. the Sobolev space W 1,q

0 (�) is larger then the
energy spaceW 1,2

0 (�). Observe also that q does not depends on the summability
of the datum f . Actually, using the same arguments of [10] or [5] we could
prove that there exists a solution in the sense of distribution to the problem (1.1)
which belongs to a Sobolev space smaller then W 1,q

0 (�) for the values of s in a
suitable interval.

Finally in [18] we prove a third existence result for problem (1.1) when the
datum f belongs to the Lebesgue space Lm (�) with m in the interval [1,m2[.
In such a case we have to change framework and we prove the existence of a
renormalized solution for problem (1.1) (see [18], Section 6).

The proofs of the existence results given by Theorems 1 and 2 follow the
same scheme. We begin by defining the sequence of “approximated problems”,

(2.6)

{ −div(A(x , Tn(un))∇un) = (Tn(un))
s + Tn( f ) in �

un(x ) ≥ 0 in �

un(x ) = 0 on ∂�

where, for any n > 0, Tn : R → R denotes the usual truncation at level n, that
is

Tn(s) =
{
s |s| ≤ n,
n sign(s) |s| > n,

for all s ∈ R. Such approximated problems have a weak solution (even bounded)
un ; the existence of such a solution is a consequence, for example, of a result
proved in [3]. Then we prove some a priori estimates: they are a priori estimates
for ‖|∇un |‖L2(�) and for ‖|∇(un)σ |‖L2(�) in the proof of Theorem 1; they are a
priori estimates for ‖|∇un |‖Lq(�) in the proof of Theorem 2. Finally we pass
to the limit in problem (2.6) and we prove that the limit of un is a solution to
problem (1.1).
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3. Existence result for the homogeneus problem.

Consider problem (1.1) when the datum f is identically zero, i.e.

(3.1)

{ −div(A(x , u)∇u) = us in �

u(x ) ≥ 0 in �

u(x ) = 0 on ∂�.

Theorem 3 below states the existence of a nontrivial weak solution to the
homogeneous problem (3.1) under the assumptions (1.2)–(1.5) and the further
assumptions

(3.2) A(x , t) is a simmetric matrix,

(3.3) |A(x , t1)− A(x , t2)| ≤ L(|t1 − t2|),
for almost everywhere x ∈ � and for every t1, t2 ∈ R, where L : R → R is a
function which satisfies the following conditions

(3.4) L(t) is a nondecreasing function,

(3.5) L(0) = 0,

(3.6)
∫
0+

dt

L(t)
= +∞ .

Theorem 3. Under the assumptions (1.2)–(1.5), (3.2)–(3.6), problem (3.1) has
at least a nontrivial weak solution.

The proof of Theorem 3 is done by several steps (cf. [3]).
The first step consists in proving the existence of a convenient sub-solution

φ to the problem (3.1). Indeed the assumptions (1.2)–(1.5), (3.2)–(3.6) allows
to apply Theorem 1 in [9] which implies that, for every fixed n ∈ N and
r > 0, there exists an eigenvalue λn,r with corresponding positive eigenfunction
vn,r ∈W 1,2

0 (�) such that

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

−div(A(x , Tn(vn,r ))∇vn,r ) = λn,rvn,r in �

vn,r (x ) > 0 in �

vn,r (x ) = 0 on ∂�

||vn,r ||L2(�) = r .
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Moreover, it results

(3.8)
c0

(β + n)2θ
μ1 ≤ λn,r ≤ μ1

α2θ
,

where μ1 denotes the first eigenvalue of Laplace operator with Dirichlet bound-
ary datum on ∂�. We prove that for any n > 0 and r > 0 the functions vn,r
belongs to L∞(�) and an apriori estimate is proved in such a space. Then we
prove that for any fixed n > 0, there exists a suitable r > 0 such that the
function φ = vn,r satisfies

(3.9) ||φ||L∞(�) ≤ min

{ (
α2θ

μ1

) 1
1−s

, n

}
.

Such a function φ = vn,r is a (bounded) sub-solution to problem (3.1), i.e.

−div(A(x , φ)∇φ) ≤ φs a.e. in � and inD′(�).

The second step in the proof of Theorem 3 consists in proving the existence
of a super-solution ψ to the problem (3.1). Actually such a super-solution is a
solution to the problem

(3.10)

⎧⎨
⎩

−div(A(x , ψ)∇ψ) = Pψ t + Q in �

ψ ≥ 0 in �

ψ = 0 on ∂�,

with suitable constants P > 0, Q ≥ ||φ||sL∞(�) and 0 ≤ s < t < 1− α.
The third step in the proof of Theorem 3 is the proof of a comparison result

given by Theorem 4 below.

Theorem 4. Assume that the matrix A(x , s) verifies the assumptions (1.2)–
(1.4) and (3.2)–(3.6). Moreover assume that the functions u ∈ W 1,2

0 (�) and
v ∈W 1,2

0 (�) ∩ L∞(�) satisfy

(3.11)

{ −div(A(x , v)∇v) ≤ g in �

v ∈W 1,2
0 (�) ∩ L∞(�),

(3.12)

{−div(A(x , u)∇u) ≥ f in �

u ∈W 1,2
0 (�),

where f and g are elements of the dual space W−1,2(�) such that

(3.13) f ≥ g in D′(�).

Then u ≥ v almost everywhere in �.
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Such a result extend the comparison result proved by Artola and Boccardo
in [3] to our context of lack of coerciveness; its proof is obtained by adapting
the method used by Artola in [2] to prove the uniqueness result.

In the fourth step of the proof of Theorem 3 we introduce an iteration
argument. We define the sequence of functions {uk} solutions to problem

(3.14)

⎧⎨
⎩

−div(A(x , uk+1)∇uk+1) = usk in �

uk+1(x ) ≥ 0 in �

uk+1(x ) = 0 on ∂�,

where u1, the first function of the sequence, is the solution to the problem

(3.15)

{ −div(A(x , u1)∇u1) = φs in �

u1(x ) ≥ 0 in �

u1(x ) = 0 on ∂�.

We prove that the functions uk ∈W 1,2
0 (�) ∩ L∞(�) satisfy

(3.16) 0 < φ(x ) ≤ u1(x ) ≤ u2(x ) ≤ · · · ≤ uk (x ) ≤ · · · ≤ ψ(x ) a.e. in �.

and then that the function

u(x ) = lim
k→∞ uk (x ) a.e. in�,

is a nontrivial weak solution to problem (3.1).

Finally we remark that, under the assumptions of Theorem 4, if we assume
also that the super-solution u belongs to L∞(�), then Theorem 4 gives an
uniqueness result, since in such a case we can change the role of u and v. Such
uniqueness result coincides, in the case where α = 0, with the uniqueness result
of Brezis and Oswald proved in [12].
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