EXISTENCE RESULTS FOR A CLASS OF NON-UNIFORMLY ELLIPTIC EQUATIONS

ANNA MERCALDO - IRENEO PERAL

We present existence results for a class of non-uniformly elliptic problems whose prototype is

$$
\begin{cases}-\operatorname{div}\left(\frac{\nabla u}{(a(x)+u)^{\alpha}}\right)=u^{s}+f & \text { in } \Omega \tag{0.1}\\ u(x) \geq 0 & \text { in } \Omega \\ u(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}, N \geq 3, a(x)$ is a measurable function belonging to $L^{\infty}(\Omega)$ such that $0<a_{1} \leq a(x) \leq a_{2}$, for a. e. $x \in \Omega$ with a_{1} and a_{2} positive constants. Moreover we assume that α and s are real numbers such that $0 \leq \alpha<1$ and $0 \leq s<1-\alpha$. Finally we assume that the datum f belongs to Lebesgue spaces $L^{m}(\Omega)$ where m varies in suitable intervals. We further present an existence result for nontrivial solutions to problem (0.1) when $f \equiv 0$.

1. Introduction.

We present some recent results proved in paper [18]. They concern with the existence of solutions to the following elliptic problem

$$
\begin{cases}-\operatorname{div}(A(x, u) \nabla u)=u^{s}+f(x) & \text { in } \Omega \tag{1.1}\\ u(x) \geq 0 & \text { in } \Omega \\ u(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}, N \geq 3$ and $A(x, t)$ is a matrix whose coefficients are Carathéodory functions $A_{i j}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ belonging to $L^{\infty}(\Omega \times \mathbb{R})$. Moreover we assume that the matrix $A(x, t)$ satisfies the following ellipticity condition

$$
\begin{equation*}
\frac{c_{0}}{(a(x)+|t|)^{\alpha}}|\xi|^{2} \leq\langle A(x, t) \xi, \xi\rangle \leq c_{1}|\xi|^{2} \tag{1.2}
\end{equation*}
$$

for a. e. $x \in \Omega, \forall t \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}$, for some constants $c_{0}>0, c_{1}>0$ for a constant α such that

$$
\begin{equation*}
0 \leq \alpha<1 \tag{1.3}
\end{equation*}
$$

and for a function $a(x) \in L^{\infty}(\Omega)$ which satisfies the condition

$$
\begin{equation*}
0<a_{1} \leq a(x) \leq a_{2}, \quad \text { a. e. } x \in \Omega, \quad a_{1}, a_{2}>0 \tag{1.4}
\end{equation*}
$$

Furthermore we assume that s is a real number such that

$$
\begin{equation*}
0 \leq s<1-\alpha \tag{1.5}
\end{equation*}
$$

and the datum f is a nonnegative function on Ω belonging to some Lebesgue space, i.e.

$$
\begin{equation*}
f \in L^{m}(\Omega), \quad f(x) \geq 0 \quad \text { a. e. } x \in \Omega \tag{1.6}
\end{equation*}
$$

for suitable values of m which will be specified later.
We are interested in existence results for problem (1.1) when $f \not \equiv 0$ or when $f \equiv 0$.

The main features of problem (1.1) are the non-uniformly ellipticity condition (1.2), which produces a lack of coercivity when u is large, and the presence of the semilinear term u^{s}. We explicitely remark that the operator $-\operatorname{div}(A(x, u) \nabla u)$ though well-defined between $W_{0}^{1,2}(\Omega)$ and $W^{-1,2}(\Omega)$ is not coercive in $W_{0}^{1,2}(\Omega)$ when u is large. Evidently if u is bounded then the operator becomes coercive and classical theory can be applied in order to prove existence of a weak solution. However in general the boundedness of u or is not true either couldn't be guaranteed a priori.

In [18] we prove three existence results for nonhomogeneus problem (1.1). Depending on the summability of the datum f, we prove the existence of a weak solution u such that u^{σ} belongs to $W_{0}^{1,2}(\Omega)$ for a suitable σ, the existence of a solution in distributional sense which in general belongs to a suitable

Sobolev space larger then $W_{0}^{1,2}(\Omega)$ and the existence of a renormalized solution. In Section 2 we will present the first and the second existence results. The definition of renormalized solution has been introduced by P.-L. Lions and F. Murat ([16], [19]), while an equivalent definition of solution, the entropy solution, has been introduced in [6].

In the case where $f \equiv 0$, the model problem of the general setting considered above is the following one

$$
\begin{cases}-\operatorname{div}\left(\frac{\nabla u}{(a(x)+u)^{\alpha}}\right)=u^{s} & \text { in } \Omega \tag{1.7}\\ u(x) \geq 0 & \text { in } \Omega \\ u(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where $a(x)$ is a function belonging to $L^{\infty}(\Omega)$ such that $0<a_{1} \leq a(x) \leq a_{2}$ for suitable positive constants a_{1} and a_{2}. In such a case the matrix $A(x, t) \equiv$ $\left(A_{i j}(x, t)\right)$ is given by

$$
A(x, t)=\frac{1}{(a(x)+t)^{\alpha}} I_{N \times N} .
$$

When $\alpha=0$ the elliptic problem (1.7) has a variational structure and both existence and uniqueness of a nontrivial solution are well-known (see, for example, [2] and some extensions in [1]). Actually a variational approch to problem (1.7) is also possible when $\alpha>0$, but such variational formulation does not hold for general operators $-\operatorname{div}((A(x, u) \nabla u))$ and a different approach is needed. In Section 3 we will present our existence result for problem (1.1) when f is identically zero.

When the term u^{s} does not appear in (1.1), this type of problems has been studied by many authors. In [5] and [10] the authors prove both existence and regularity (depending on the summability of the datum f) of weak solutions, while in [4] the existence and regularity of weak solutions and entropy solutions in a nonlinear case are proved. Existence and uniqueness results for renormalized solution for the class of problems (1.1) in the case where the term u^{s} does not appear have been proved, for example, in [7], [8] or in [20].

We also mention the papers [13] (where the higher integrability of the gradients is studied), [14] (where the case of the datum in divergence form is considered), [11] and [17] (where noncoercive functionals related to such type of equations are studied).

Finally we briefly make some remarks on the bounds on N and α. We assume that $N \geq 3$; the case $N=2$ is excluded, for simplicity, since it leads to technicalities due to the fact that Sobolev embedding Theorem have to be
replaced by Moser-Trudinger Theorem. Moreover we assume that $\alpha<1$. Such a condition on α is not restrictive since, when $\alpha=1$, then $s=0$, i.e. $u^{s} \equiv 1$, and existence results for problem (1.1) in such a case are proved in [5] and [10].

2. Existence results for nonhomogeneus problem.

In paper [18] we prove three existence results for the problem (1.1) when the datum f is not identically zero according to the values of the summability of f, i.e. $m \geq m_{1}=\frac{2 N}{N+2-\alpha(N-2)}, m_{2}=\frac{N(2-\alpha)}{N+2-N \alpha} \leq m<m_{1}$ and $1 \leq m<m_{2}$.

The first existence result is given by Theorem 1 below, which concerns the existence of a weak solution to problem (1.1), i.e. a nonnegative function u belonging to $W_{0}^{1,2}(\Omega)$ such that
(2.1) $\int_{\Omega}\langle A(x, u) \nabla u, \nabla \phi\rangle d x=\int_{\Omega} u^{s} \phi d x+\int_{\Omega} f \phi d x, \quad \forall \phi \in W_{0}^{1,2}(\Omega)$.

Under the assumption that the datum f, belongs to the Lebesgue space $L^{m}(\Omega)$ for the values of $m \geq m_{1}=\frac{2 N}{N+2-\alpha(N-2)}$, Theorem 1 below states the existence of a weak solution u which further verifies $u^{\sigma} \in W_{0}^{1,2}(\Omega)$ for a suitable value of σ (estimates for $\left|\nabla u^{\sigma}\right|$ are proved in [15] for solutions to a class of quasilinear elliptic problems).

Theorem 1. Assume that (1.2)-(1.6) holds true with $f \not \equiv 0$ and

$$
\begin{equation*}
m \geq m_{1}, \quad \text { with } m_{1}=\frac{2 N}{N+2-\alpha(N-2)} \tag{2.2}
\end{equation*}
$$

Then problem (1.1) has at least a weak solution u which further satisfies

$$
\begin{equation*}
u^{\sigma} \in W_{0}^{1,2}(\Omega) \tag{2.3}
\end{equation*}
$$

where

$$
\sigma= \begin{cases}\frac{N-2}{2} \frac{m(1-\alpha)}{N-2 m}, & \text { if } m_{1} \leq m<\frac{N}{2} \\ \text { any } r, r \geq 1, & \text { if } m \geq \frac{N}{2}\end{cases}
$$

The second existence result is given by Theorem 2 below. Under the assumption that the datum f belongs to the Lebesgue space $L^{m}(\Omega)$ with $m_{2}=\frac{N(2-\alpha)}{N+2-N \alpha} \leq m<m_{1}=\frac{2 N}{N+2-\alpha(N-2)}$, it states the existence of a solution in distributional sense. Such a solution in general does not belong to the energy space $W_{0}^{1,2}(\Omega)$, but it belongs to the larger Sobolev space $W_{0}^{1, q}(\Omega)$, where q is defined in (2.5) below.

Theorem 2. Assume that (1.2)-(1.6) holds true with $f \not \equiv 0$ and

$$
\begin{equation*}
m_{2} \leq m<m_{1}, \quad \text { with } \quad m_{2}=\frac{N(2-\alpha)}{N+2-N \alpha} \tag{2.4}
\end{equation*}
$$

Then problem (1.1) has at least a solution in the sense of distribution belonging to $W_{0}^{1, q}(\Omega)$ with

$$
\begin{equation*}
q=\frac{N(2-\alpha)}{N-\alpha} \tag{2.5}
\end{equation*}
$$

Remark 1. We explicitly remark that, since $\alpha<1$, it results $q>1$. Moreover, since $N>2$, then $q<2$, i.e. the Sobolev space $W_{0}^{1, q}(\Omega)$ is larger then the energy space $W_{0}^{1,2}(\Omega)$. Observe also that q does not depends on the summability of the datum f. Actually, using the same arguments of [10] or [5] we could prove that there exists a solution in the sense of distribution to the problem (1.1) which belongs to a Sobolev space smaller then $W_{0}^{1, q}(\Omega)$ for the values of s in a suitable interval.

Finally in [18] we prove a third existence result for problem (1.1) when the datum f belongs to the Lebesgue space $L^{m}(\Omega)$ with m in the interval [1, $m_{2}[$. In such a case we have to change framework and we prove the existence of a renormalized solution for problem (1.1) (see [18], Section 6).

The proofs of the existence results given by Theorems 1 and 2 follow the same scheme. We begin by defining the sequence of "approximated problems",

$$
\begin{cases}-\operatorname{div}\left(A\left(x, T_{n}\left(u_{n}\right)\right) \nabla u_{n}\right)=\left(T_{n}\left(u_{n}\right)\right)^{s}+T_{n}(f) & \text { in } \Omega \tag{2.6}\\ u_{n}(x) \geq 0 & \text { in } \Omega \\ u_{n}(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where, for any $n>0, T_{n}: \mathbb{R} \rightarrow \mathbb{R}$ denotes the usual truncation at level n, that is

$$
T_{n}(s)= \begin{cases}s & |s| \leq n \\ n \operatorname{sign}(s) & |s|>n\end{cases}
$$

for all $s \in \mathbb{R}$. Such approximated problems have a weak solution (even bounded) u_{n}; the existence of such a solution is a consequence, for example, of a result proved in [3]. Then we prove some a priori estimates: they are a priori estimates for $\left\|\left|\nabla u_{n}\right|\right\|_{L^{2}(\Omega)}$ and for $\left\|\left|\nabla\left(u_{n}\right)^{\sigma}\right|\right\|_{L^{2}(\Omega)}$ in the proof of Theorem 1; they are a priori estimates for $\left\|\left|\nabla u_{n}\right|\right\|_{L^{q}(\Omega)}$ in the proof of Theorem 2 . Finally we pass to the limit in problem (2.6) and we prove that the limit of u_{n} is a solution to problem (1.1).

3. Existence result for the homogeneus problem.

Consider problem (1.1) when the datum f is identically zero, i.e.

$$
\left\{\begin{array}{lc}
-\operatorname{div}(A(x, u) \nabla u)=u^{s} & \text { in } \Omega \tag{3.1}\\
u(x) \geq 0 & \text { in } \Omega \\
u(x)=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Theorem 3 below states the existence of a nontrivial weak solution to the homogeneous problem (3.1) under the assumptions (1.2)-(1.5) and the further assumptions

$$
\begin{equation*}
A(x, t) \text { is a simmetric matrix, } \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|A\left(x, t_{1}\right)-A\left(x, t_{2}\right)\right| \leq L\left(\left|t_{1}-t_{2}\right|\right), \tag{3.3}
\end{equation*}
$$

for almost everywhere $x \in \Omega$ and for every $t_{1}, t_{2} \in \mathbb{R}$, where $L: \mathbb{R} \rightarrow \mathbb{R}$ is a function which satisfies the following conditions

$$
\begin{equation*}
L(t) \text { is a nondecreasing function, } \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0^{+}} \frac{d t}{L(t)}=+\infty \tag{3.6}
\end{equation*}
$$

Theorem 3. Under the assumptions (1.2)-(1.5), (3.2)-(3.6), problem (3.1) has at least a nontrivial weak solution.

The proof of Theorem 3 is done by several steps (cf. [3]).
The first step consists in proving the existence of a convenient sub-solution ϕ to the problem (3.1). Indeed the assumptions (1.2)-(1.5), (3.2)-(3.6) allows to apply Theorem 1 in [9] which implies that, for every fixed $n \in \mathbb{N}$ and $r>0$, there exists an eigenvalue $\lambda_{n, r}$ with corresponding positive eigenfunction $v_{n, r} \in W_{0}^{1,2}(\Omega)$ such that

$$
\begin{cases}-\operatorname{div}\left(A\left(x, T_{n}\left(v_{n, r}\right)\right) \nabla v_{n, r}\right)=\lambda_{n, r} v_{n, r} & \text { in } \Omega \tag{3.7}\\ v_{n, r}(x)>0 & \text { in } \Omega \\ v_{n, r}(x)=0 & \text { on } \partial \Omega \\ \left\|v_{n, r}\right\|_{L^{2}(\Omega)}=r . & \end{cases}
$$

Moreover, it results

$$
\begin{equation*}
\frac{c_{0}}{(\beta+n)^{2 \theta}} \mu_{1} \leq \lambda_{n, r} \leq \frac{\mu_{1}}{\alpha^{2 \theta}}, \tag{3.8}
\end{equation*}
$$

where μ_{1} denotes the first eigenvalue of Laplace operator with Dirichlet boundary datum on $\partial \Omega$. We prove that for any $n>0$ and $r>0$ the functions $v_{n, r}$ belongs to $L^{\infty}(\Omega)$ and an apriori estimate is proved in such a space. Then we prove that for any fixed $n>0$, there exists a suitable $r>0$ such that the function $\phi=v_{n, r}$ satisfies

$$
\begin{equation*}
\|\phi\|_{L^{\infty}(\Omega)} \leq \min \left\{\left(\frac{\alpha^{2 \theta}}{\mu_{1}}\right)^{\frac{1}{1-s}}, n\right\} \tag{3.9}
\end{equation*}
$$

Such a function $\phi=v_{n, r}$ is a (bounded) sub-solution to problem (3.1), i.e.

$$
-\operatorname{div}(A(x, \phi) \nabla \phi) \leq \phi^{s} \text { a.e. in } \Omega \text { and in } \mathscr{D}^{\prime}(\Omega) .
$$

The second step in the proof of Theorem 3 consists in proving the existence of a super-solution ψ to the problem (3.1). Actually such a super-solution is a solution to the problem

$$
\begin{cases}-\operatorname{div}(A(x, \psi) \nabla \psi)=P \psi^{t}+Q & \text { in } \Omega \tag{3.10}\\ \psi \geq 0 & \text { in } \Omega \\ \psi=0 & \text { on } \partial \Omega\end{cases}
$$

with suitable constants $P>0, Q \geq\|\phi\|_{L^{\infty}(\Omega)}^{s}$ and $0 \leq s<t<1-\alpha$.
The third step in the proof of Theorem 3 is the proof of a comparison result given by Theorem 4 below.
Theorem 4. Assume that the matrix $A(x, s)$ verifies the assumptions (1.2)(1.4) and (3.2)-(3.6). Moreover assume that the functions $u \in W_{0}^{1,2}(\Omega)$ and $v \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ satisfy

$$
\begin{align*}
& \left\{\begin{array}{l}
-\operatorname{div}(A(x, v) \nabla v) \leq g \\
v \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega),
\end{array}\right. \tag{3.11}\\
& \left\{\begin{array}{l}
-\operatorname{div}(A(x, u) \nabla u) \geq f \\
u \in W_{0}^{1,2}(\Omega),
\end{array}\right. \tag{3.12}
\end{align*}
$$

where f and g are elements of the dual space $W^{-1,2}(\Omega)$ such that

$$
\begin{equation*}
f \geq g \quad \text { in } \mathscr{D}^{\prime}(\Omega) . \tag{3.13}
\end{equation*}
$$

Then $u \geq v$ almost everywhere in Ω.

Such a result extend the comparison result proved by Artola and Boccardo in [3] to our context of lack of coerciveness; its proof is obtained by adapting the method used by Artola in [2] to prove the uniqueness result.

In the fourth step of the proof of Theorem 3 we introduce an iteration argument. We define the sequence of functions $\left\{u_{k}\right\}$ solutions to problem

$$
\begin{cases}-\operatorname{div}\left(A\left(x, u_{k+1}\right) \nabla u_{k+1}\right)=u_{k}^{s} & \text { in } \Omega \tag{3.14}\\ u_{k+1}(x) \geq 0 & \text { in } \Omega \\ u_{k+1}(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where u_{1}, the first function of the sequence, is the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(A\left(x, u_{1}\right) \nabla u_{1}\right)=\phi^{s} & \text { in } \Omega \tag{3.15}\\ u_{1}(x) \geq 0 & \text { in } \Omega \\ u_{1}(x)=0 & \text { on } \partial \Omega\end{cases}
$$

We prove that the functions $u_{k} \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ satisfy

$$
\begin{equation*}
0<\phi(x) \leq u_{1}(x) \leq u_{2}(x) \leq \cdots \leq u_{k}(x) \leq \cdots \leq \psi(x) \text { a.e. in } \Omega \tag{3.16}
\end{equation*}
$$

and then that the function

$$
u(x)=\lim _{k \rightarrow \infty} u_{k}(x) \text { a.e. in } \Omega
$$

is a nontrivial weak solution to problem (3.1).
Finally we remark that, under the assumptions of Theorem 4, if we assume also that the super-solution u belongs to $L^{\infty}(\Omega)$, then Theorem 4 gives an uniqueness result, since in such a case we can change the role of u and v. Such uniqueness result coincides, in the case where $\alpha=0$, with the uniqueness result of Brezis and Oswald proved in [12].

REFERENCES

[1] B. Abdellaoui - I. Peral, Some results for semilinear elliptic equations with critical potential, Proc. Royal Soc. of Edinburg, 132A (2002), pp. 1-24.
[2] M. Artola, Sur une classe de problémes paraboliques quasi-linàires, Boll. Un. Mat. Ital. B, 5 (1986), pp. 51-70.
[3] M. Artola - L. Boccardo, Positive solutions for some quasilinear elliptic equations, Comm. Appl. Nonlinear Anal., 3 (1996), pp. 89-98.
[4] A. Alvino - L. Boccardo - L. Orsina - V. Ferone - G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., 182 (2003), pp. 53-79.
[5] A. Alvino - V. Ferone - G. Trombetti, A priori estimates for a class of nonuniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., pp. 381-391.
[6] F. Bénilan - L. Boccardo - T. Gallouët - R. Gariepy - M. Pierre - J. L. Vàzquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), pp. 241-273.
[7] D. Blanchard - F. Désir-O. Guibe, Quasi-linear degenerate elliptic problems with L^{1} data, Nonlinear Anal., 60 (2005), pp. 557-587.
[8] D. Blanchard - O. Guibe, Infinite valued solutions of non-uniformly elliptic problems, Anal. Appl., 2 (2004), pp. 227-246.
[9] L. Boccardo, Positive eigenfunctions for a class of quasi-linear operators, Boll. Un. Mat. Ital. B, 18 (1981), pp. 951-959.
[10] L. Boccardo - A. Dall'Aglio - L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., pp. 51-81.
[11] L. Boccardo - L. Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space. Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), pp. 95-130.
[12] H. Brezis - L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), pp. 55-64.
[13] D. Giachetti - M. M. Porzio, Elliptic equations with degenerate coercivity: gradient regularity, Acta Math. Sin., 19 (2003), pp. 349-370.
[14] D. Giachetti - M. M. Porzio, Existence results for some nonuniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), pp. 100-130.
[15] N. Grenon - F. Murat - A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, to appear on C.R. Acad. Sci. Paris.
[16] P.-L. Lions - F. Murat, Solutions renormalisées d'équations elliptiques non linéaires, to appear.
[17] A. Mercaldo, Existence and boundedness of minimizers of a class of integral functionals, Boll. Unione Mat. Ital. Sez. B, 6 (2003), pp. 125-139.
[18] A. Mercaldo - I. Peral, Existence results for semilinear elliptic equations with some lack of coercivity , preprint.
[19] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023, Laboratoire d'Analyse Numérique de l'Université Paris VI (1993).
[20] A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., pp. 915-936.
A. Mercaldo

Dipartimento di Matematica e Applicazioni "R. Caccioppoli",
Università di Napoli "Federico II", Complesso Monte S. Angelo, via Cintia, 80126 Napoli (ITALY)
e-mail: mercaldo@unina.it
I. Peral

Departamento de Matemáticas,
Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (SPAIN)Spain e-mail: ireneo.peral@uam.es

