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POSITIVE SOLUTIONS OF NONLINEAR
FRACTIONAL THREE-POINT BOUNDARY-VALUE PROBLEM

SOTIRIS K. NTOUYAS - EHSAN POURHADI

In this paper, we study the existence of positive solutions to the boun-
dary-value problem with fractional order

(Ca Dα y)(t)+q(t) f (y) = 0, 0≤ a < t < b, 1 < α < 2,

y(a) = 0, y(b) = βy(η),

where a < η < b and β (η − a)− b+ a 6= 0. We prove the existence of
at least one positive solution when f is either superlinear or sublinear us-
ing the well-known Guo-Lakshmikantham fixed point theorem in cones.
Moreover, the convexity and concavity of the solutions are investigated
with respect to the behavior of the function q.

1. Introduction

In the last decades, the investigation of multi-point boundary value problem
for linear second order ordinary differential equations was begun by Il’in and
Moiseev [10, 11]. The study of three-point BVPs for nonlinear integer-order
ordinary differential equations was initiated by Gupta [7]. Many authors since
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then considered the existence and multiplicity of solutions (or positive solutions)
of three-point BVPs for nonlinear integer-order ordinary differential equations.
To identify a few, we refer the reader to [15, 16, 24] and the references therein.

In 2000, using the fixed point index theorems, Leray-Schauder degree and
upper and lower solutions, Ma [15] investigated the following second-order
three-point boundary value problem

u′′+λh(t) f (u) = 0, t ∈ (0,1), (1)

u(0) = 0, cu(η) = u(1),

where

(A) λ is a positive parameter; η ∈ (0,1) and 0 < cη < 1;

(B) h : [0,1]→ [0,∞) is continuous and does not vanish identically on any sub-
set of positive measure;

(C) f : [0,∞)→ [0,∞) is continuous;

(D) f∞ := limu→∞

f (u)
u

= ∞.

In the result of He and Ge [8], utilizing Leggett-Williams fixed-point theorem
[13], the multiplicity of positive solutions of the following problem has been
concerned:

u′′+ f (t,u) = 0, t ∈ (0,1),

u(0) = 0, cu(η) = u(1),

where 0 < η < 1, c > 0 and 0 < cη < 1. Moreover, f : [0,1]× [0,∞)→ [0,∞)
is continuous, and f (t, ·) does not vanish identically on any subset of [0,1] with
positive measure.

In the last decades, fractional calculus and fractional differential equations
have attracted much attention, we refer for instance to [1, 2, 14, 18, 19, 26] and
references therein. It is found that many phenomena can be modeled with the
aid of fractional derivatives or integrals, such as fractional Brownian motion [3],
anomalous diffusion [9, 17], etc. This motivates us to remodel the problem (1)
by a fractional order and study on it.

Throughout this paper, we consider the existence of positive solutions to
the three-point boundary value problem consisting by the fractional differential
equation

(Ca Dαy)(t)+q(t) f (y) = 0, 0≤ a < t < b, (2)
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where C
a Dα is the Caputo fractional derivative of order 1 < α < 2, subject to the

boundary conditions

y(a) = 0, y(b) = βy(η), a < η < b, (3)

where f ,q satisfy

(H1) f ∈C([0,∞), [0,∞));

(H2) q ∈C([a,b], [0,∞)).

By taking

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

,

we set f0 = 0 and f∞ = ∞ corresponding to the superlinear case, and f0 = ∞ and
f∞ = 0 corresponding to the sublinear case. Here, in this paper, our goal is to
present some existence results for positive solutions to (2)-(3), assuming that f
is either superlinear or sublinear. The technique of proof of our main result is
based upon the well-known Guo-Lakshmikantham fixed point theorem [6] in a
cone.

Theorem 1.1. [6] Let E be a Banach space, and let K ⊆ E be a cone. Assume
Ω1,Ω2 are open subsets of E with 0 ∈Ω1, Ω1 ⊂Ω2, and let

A : K∩ (Ω2 \Ω1)−→ K

be a completely continuous operator such that:

(i) ‖Au‖ ≤ ‖u‖, u ∈ K∩∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K∩∂Ω2; or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K∩∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K∩∂Ω2.

Then A has a fixed point in K∩ (Ω2 \Ω1).

2. Preliminaries and auxiliary facts

For completeness, in this section, we gather some fundamental definitions of
Caputo’s derivatives of fractional order which can be found in ([12], [20], [21])
together with some simple crucial lemmas which will be needed further on.

Definition 2.1. Let α ≥ 0 and f be a real function defined on [a,b]. The
Riemann-Liouville fractional integral of order α for a continuous function f :
(a,∞)→ R is defined by (aI0 f )(x) = f (x) and

(aIα f )(x) =
1

Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t ∈ [a,b],

where Γ(·) is the Gamma function.
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Definition 2.2. For a continuous function f : (a,∞)→R the Riemann-Liouville
fractional derivative of fractional order α > 0 is defined by

RLDα
a+ f (t) =

1
Γ(n−α)

( d
dt

)n ∫ t

a
(t− s)n−α−1 f (s)ds, n = [α]+1,

where [α] denotes the integer part of the real number α.

For α < 0, we use the convention that Dαy = I−αy. Also for β ∈ [0,α), it is
valid that Dβ Iαy = Iα−β y.

Definition 2.3. The Caputo fractional derivative of order α ≥ 0 is given by
(Ca D0 f )(t) = f (t) and (Ca Dα f )(t) = (aIm−αDm f )(t) for α > 0, where m is the
smallest integer greater or equal to α . Besides, it can be formulated by

CDα
a+ f (t) =

1
Γ(n−α)

∫ t

a
(t− s)n−α−1 f (n)(s)ds, n = [α]+1, f ∈ ACn([a,b]),

where α /∈ N0 and ACn([a,b]) represents the space of all absolutely continuous
functions having absolutely continuous derivative up to (n−1) (see also [12]).

The Green function for the BVP (2)-(3) can be obtained by using an impor-
tant lemma derived by Zhang [25] as follows:

Lemma 2.4. Let α > 0, then in C(0,T )∩L(0,T ) the differential equation

CDα
0+u(t) = 0

has solutions u(t) = c0 + c1t + c2t2 + · · ·+ cntn−1, ci ∈ R, i = 0,1, · · · ,n, n =
[α]+1.

Moreover, it has been proved that Iα
0+Dα

0+u(t) = u(t)+c0+c1t+c2t2+ · · ·+
cntn−1 for some ci ∈ R, i = 0,1, · · · ,n, n = [α]+1 (see Lemma 2.3 in [25]).

In the following we present a pivotal lemma which will play major role in
our next analysis and concern a linear variant of problem (2)-(3).

Lemma 2.5. For g ∈C([a,b], [0,∞)), the problem

(Ca Dαy)(t)+g(t) = 0, 0≤ a < t < b, (4)

with order 1 < α < 2 and the boundary condition (3) has a unique solution

y(t) =− 1
Γ(α)

∫ t

a
(t− s)α−1g(s)ds

+
t−a

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1g(s)ds−β

∫
η

a
(η− s)α−1g(s)ds

)
.
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Proof. Applying the Riemann-Liouville fractional integral aIα for (4)-(3) and
the imposed boundary conditions together with a fact from fractional calculus
theory we see that y ∈C[a,b] is a solution of (4)-(3) if and only if

y(t) = c0 + c1(t−a)− 1
Γ(α)

∫ t

a
(t− s)α−1g(s)ds (5)

for some real constants c0 and c1 (see Lemma 2.4). Since y(a) = 0 we get
immediately that c0 = 0. Now,

y(b) = βy(η) ⇔ c1(b−a)− 1
Γ(α)

∫ b

a
(b− s)α−1g(s)ds

= c1β (η−a)− β

Γ(α)

∫
η

a
(η− s)α−1g(s)ds

⇔ c1 =
1

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1g(s)ds

−β

∫
η

a
(η− s)α−1g(s)ds

)
.

Hence, equality (5) becomes

y(t) = − 1
Γ(α)

∫ t

a
(t− s)α−1g(s)ds+

t−a
Γ(α)(b−a−β (η−a))

×

×
(∫ b

a
(b− s)α−1g(s)ds−β

∫
η

a
(η− s)α−1g(s)ds

)
.

Lemma 2.6. Suppose that g ∈C2([a,b];R) and g(a)≥ 0.

(a) If g is convex, then the unique solution of (4)-(3) is concave.

(b) If g is concave, then the unique solution of (4)-(3) is convex.

Proof. In order to prove the validity of (a), first, by the definition of the Caputo’s
derivative, it is easily seen from (4)-(3) that

I2−α
a (y′′(t)) =−g(t).

Then it follows that

Iα
a (I

2−α
a (y′′(t))) =−Iα

a (g(t)).

That is,

I2
a (y
′′(t)) =−Iα

a (g(t)).
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Hence, we can obtain

y′′(t) =− d2

dt2 Iα
a (g(t)) =−Iα

a (g
′′(t)) =−RLD2−α

a g(t).

On the other hand, from the fractional calculus we know that

CDα
a g(t) =RLDα

a g(t)−
n−1

∑
k=0

g(k)(a)
Γ(k−α +1)

(t−a)k−α , (n = bαc+1),

see also [12]. Since 0 < 2−α < 1 then we get

CD2−α
a g(t) =RLD2−α

a g(t)− g(a)
Γ(α−1)

(t−a)α−2, a < t ≤ b,

which implies that

y′′(t) =−
(

CD2−α
a g(t)+

g(a)
Γ(α−1)

(t−a)α−2
)

=−
(

Iα
a (g

′′(t))+
g(a)

Γ(α−1)
(t−a)α−2

)
which is obviously non-positive for all t ∈ (a,b] and so the solution of (4)-(3) is
concave. The proof of the second part is quite similar.

Lemma 2.7. Let 0 < βη < b and g ∈ C2([a,b];R) be a convex function with
g(a) ≥ 0. Then the unique solution of the problem (4)-(3) satisfies y(t) ≥ 0 for
all t ∈ [a,b] and is concave.

Proof. Following Lemma 2.6 we see that y(t) is concave down on (a,b). If
y(b) ≥ 0, then the concavity of y and the boundary condition y(a) = 0 yield
y(t)≥ 0 for all t ∈ [a,b]. Otherwise, letting y(b)< 0, we have y(η)< 0 and

y(b) = βy(η)>
b
η

y(η),

which contradicts the concavity of y and the proof is complete.

Proposition 2.8. Suppose that βη > b and g∈C2([a,b];R) is a convex function
with g(a)≥ 0. Then the problem (4)-(3) has no positive solution.

Proof. Suppose the contrary, (4)-(3) has a positive solution y. If y(b)> 0, then
y(η)> 0 and

y(b) = βy(η)>
b
η

y(η),
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which contradicts the concavity of y, since g is convex. Now, let y(b) = 0 and
y(r)> 0 for some r ∈ (a,b), then

y(η) = y(b) = 0, η 6= r.

This together with the condition y(a) = 0 implies that y is not concave. Indeed,

r ∈ (a,η) =⇒ y(r)< y(η) = y(b) = 0

r ∈ (η ,b) =⇒ y(r)> y(η) = y(b) = 0 =⇒ y(a)< 0

which both cases show a contradiction using the concavity of y.

Lemma 2.9. Let 0 < βη < b, β (a−η)+b−a 6= 0, and g ∈C2([a,b];R) be a
convex function with g(a)≥ 0. Then the solution of Eq. (4)-(3) satisfies

min
t∈[η ,b]

y(t)≥ γ‖y‖

where

γ = min
{

β (b−η)

β (a−η)+b−a
,
βη

b
,
η

b

}
. (6)

Proof. We split the proof into the following cases.

Case 1. We encounter with the case 0 < β < 1. Following Lemma 2.7
and initial conditions we know that y(η) ≥ y(b). Now, let y(t̂) = ‖y‖ for some
t̂ ∈ (a,b]. Assume that t̂ ≤ η < b, then

min
t∈[η ,b]

y(t) = y(b). (7)

On the other hand, from the concavity of the solution y we see

y(η)− y(t̂)
η− t̂

≥ y(b)− y(η)

b−η

which shows that

y(t̂)≤ (b−η)+(1−β )(η− t̂)
β (b−η)

y(b)

≤ (b−η)+(1−β )(η−a)
β (b−η)

y(b)

=
β (a−η)+b−a

β (b−η)
y(b).
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This together with (7) yields that

min
t∈[η ,b]

y(t)≥ β (b−η)

β (a−η)+b−a
‖y‖.

Now, let us take η < t̂ < b, then

min
t∈[η ,b]

y(t) = y(b). (8)

Using the concavity of y we conclude

y(η)

η
≥ y(t̂)

t̂
.

This together with the boundary condition y(b) = βy(η) implies that

y(b)
βη
≥ y(t̂)

t̂
>

1
b
‖y‖

which means

min
t∈[η ,b]

y(t)>
βη

b
‖y‖.

Case 2. Suppose that 1 ≤ β <
b
η

. Then we have y(η) ≤ y(b). Now, by

setting y(t̂) = ‖y‖ we see that η ≤ t̂ ≤ b. We notice that if a < t̂ < η , then
the point Pη = (η ,y(η)) is below the straight line given by the points Pb =
(b,y(b)) and P̂t = (t̂,y(t̂)) and this contradicts the concavity of y. The recent
facts guarantee the following equality:

min
t∈[η ,b]

y(t) = y(η).

Similar to the former case and using Lemma 2.7 we obtain

y(η)

η
≥ y(t̂)

t̂

which implies

min
t∈[η ,b]

y(t)≥ η

b
‖y‖

and the consequence follows.
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3. Main result

Based on the lemmas presented in previous section we derive our main result as
follows.

Theorem 3.1. Assume that (H1) and (H2) hold. Then the problem (2)-(3) has
at least one positive solution in the case

(i) f0 = 0 and f∞ = ∞ (superlinear) or

(ii) f0 = ∞ and f∞ = 0 (sublinear).

Proof. Let us first consider the case (i):
Superlinear case. Suppose then that f0 = 0 and f∞ = ∞. We want to establish
the existence of a positive solution of (2)-(3). Following the proof of Lemma
2.5, problem (2)-(3) has a solution y = y(t) if and only if y solves the operator
equation

y(t) =− 1
Γ(α)

∫ t

a
(t− s)α−1q(s) f (y(s))ds+

t−a
Γ(α)(b−a−β (η−a))

×

×
(∫ b

a
(b− s)α−1q(s) f (y(s))ds−β

∫
η

a
(η− s)α−1q(s) f (y(s))ds

)
def
= Ay(t).

(9)

Set

K := {y | y ∈C[a,b], y≥ 0, min
η≤t≤b

y(t)≥ γ‖y‖}, (10)

where γ is given by (6). It is clear that K is a cone in C[a,b]. Moreover, by
Lemma 2.9, AK ⊂ K. It is also easy to see that A : K→ K is completely contin-
uous.

Now since f0 = 0, we may take r1 > 0 such that f (y)≤ εy, for 0 < y < r1,
where ε > 0 satisfies

ε(b−a)
Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s)ds

)
< 1. (11)

Hence, if y ∈ K and ‖y‖= r1, then following (9) and (11), we derive

Ay(t)≤ t−a
Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s) f (y(s))ds

)
≤ t−a

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s)εy(s)ds

)
≤ ε(b−a)

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s)‖y‖ds

)
=

εr1(b−a)
Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s)ds

)
.

(12)
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Now if we set

Ω1 = {y ∈C[a,b] | ‖y‖< r1}, (13)

then (12) yields that ‖Ay‖ ≤ ‖y‖, for all y ∈ K∩∂Ω1. Moreover, since f∞ = ∞,
there exists r̂2 > 0 so that f (u)≥ ρu for all u≥ r̂2 where ρ > 0 is taken so that

ργ(η−a)
Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s)ds≥ 1. (14)

Suppose r2 = max{2r1, r̂2γ−1} and Ω2 = {y ∈C[a,b] | ‖y‖ < r2}, then y ∈ K
with ‖y‖= r2 yields

min
η≤t≤b

y(t)≥ γ‖y‖ ≥ r̂2,

and hence

Ay(η) =− 1
Γ(α)

∫
η

a
(η− s)α−1q(s) f (y(s))ds

+
η−a

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s) f (y(s))ds

−β

∫
η

a
(η− s)α−1q(s) f (y(s))ds

)
=− 1

Γ(α)(b−a−β (η−a))

(
(b−a)

∫
η

a
(η− s)α−1q(s) f (y(s))ds

− (η−a)
∫ b

a
(b− s)α−1q(s) f (y(s))ds

)
=− 1

Γ(α)(b−a−β (η−a))

(∫
η

a

[
(b−a)(η− s)α−1

− (η−a)(b− s)α−1
]

q(s) f (y(s))ds

− (η−a)
∫ b

η

(b− s)α−1q(s) f (y(s))ds
)
.

(15)

On the other hand, by the fact that

0≤ η− s
b− s

≤
(

η− s
b− s

)α−1
≤ η−a

b−a
< 1, a≤ s≤ η < b, 1 < α < 2,

we see that

Ay(η)≥ η−a
Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s) f (y(s))ds.
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Therefore, for y ∈ K∩∂Ω2,

‖Ay‖ ≥ ργ(η−a)‖y‖
Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s)ds≥ ‖y‖.

Consequently, by the first part of the Guo-Lakshmikantham fixed point theorem,
it follows that A has a fixed point in K∩ (Ω2 \Ω1) such that r1 ≤ ‖y‖ ≤ r2. This
finishes the proof of superlinear part of the theorem.

Now we consider the case (ii):
Sublinear case. Suppose then that f0 = ∞ and f∞ = 0. Let us first take r3 > 0
such that f (y)≥ µy for 0 < y < r3, where

µγ(η−a)
Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s)ds≥ 1. (16)

Utilizing the same technique as used in (15), one can obtain that

Ay(η) =− 1
Γ(α)

∫
η

a
(η− s)α−1q(s) f (y(s))ds

+
η−a

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s) f (y(s))ds

−β

∫
η

a
(η− s)α−1q(s) f (y(s))ds

)
≥ η−a

Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s) f (y(s))ds

≥ µ(η−a)
Γ(α)(b−a−β (η−a))

∫ b

η

(b− s)α−1q(s)y(s)ds.

(17)

Therefore, we may set Ω3 = {y ∈C[a,b] | ‖y‖< r3} such that ‖Ay‖ ≥ ‖y‖ for
y ∈ K∩∂Ω3.

On the other hand, since f∞ = 0 then there is r̂4 > 0 such that f (y)≤ ξ y for
y≥ r̂4 where ξ > 0 enjoys

ξ (b−a)
Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s)ds

)
≤ 1. (18)

Now, we must consider two distinct cases as follows:

Case (I). Let us assume that f is bounded, say f (y) ≤M for all y ≥ 0. For
this case, we set

r4 = max
{

2r3,
M(b−a)

Γ(α)(b−a−β (η−a))

∫ b

a
(b− s)α−1q(s)ds

}
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such that for y ∈ K with ‖y‖= r4 we get

Ay(t) =− 1
Γ(α)

∫ t

a
(t− s)α−1q(s) f (y(s))ds

+
t−a

Γ(α)(b−a−β (η−a))

(∫ b

a
(b− s)α−1q(s) f (y(s))ds

−β

∫
η

a
(η− s)α−1q(s) f (y(s))ds

)
≤ t−a

Γ(α)(b−a−β (η−a))

∫ b

a
(b− s)α−1q(s) f (y(s))ds

≤ M(b−a)
Γ(α)(b−a−β (η−a))

∫ b

a
(b− s)α−1q(s)ds

≤ r4

which yields ‖Ay‖ ≤ ‖y‖.

Case (II). Now, suppose that f is unbounded, then we derive from (H1) that
there exists r4 such that

r4 > max
{

2r3,
r̂4

γ

}
s.t. f (y)≤ f (r4) for 0 < y≤ r4

and it would be possible because f is unbounded. Using (18), for any y ∈ K
with ‖y‖= r4 we conclude that

Ay(t)≤ b−a
Γ(α)(b−a−β (η−a))

∫ b

a
(b− s)α−1q(s) f (r4)ds

≤ (b−a)
Γ(α)(b−a−β (η−a))

∫ b

a
(b− s)α−1q(s)ξ r4ds

≤ r4.

Hence, in any case we may set

Ω4 = {y ∈C[a,b] | ‖y‖< r4},

and then we may obtain ‖Ay‖≤ ‖y‖. Based on the second part of Guo-Lakshmi-
kantham fixed point theorem, it follows that BVP (2)-(3) has a positive solution
and the consequence follows.

4. A concrete example

Concerning with the existence of positive solution of BVP (2)-(3), we now give
an example to illustrate the effciency of our main result. Let us first recall some
auxiliary facts as follows.
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As we know, analytic solutions to fractional-order differential equations are
often expressed in terms of the Mittag-Leffler function. The Mittag-Leffler func-
tion Eα,β is a special function, a complex function which relates to two complex
parameters α and β (it is also worth mentioning that it was firstly introduced as
a one-parameter function). The Mittag-Leffler function is considered as a gen-
eralization of the exponential function. It may be given by the following series
when the real part of α is strictly positive

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, z ∈ C,

which is of great importance for the fractional calculus. In the case α and β are
real and positive, the series converges for all values of the argument z, so the
Mittag-Leffler function is an entire function.

Example 4.1. Consider the following boundary-value problem with fractional
order

(C0 D1.5y)(t)+q(t) 3
√

y2 = 0, 0 < t < 1,

y(0) = 0, y(1) =
√

3y(0.5)
(19)

where

q(t) =
4π11/6t5/6

∑
∞
k=0

(−4π2t2

9 )k

(4k+3)!!

27

(
2
9

∑
∞
k=0

(−4π2t2

9 )k

(2k+2)!

) 1
3

< ∞, t ∈ (0,1)

and n!! is called the double factorial and given by n!!= n(n−2)(n−4) · · ·5 ·3 ·1
for odd n > 0 and n!! = n(n−2)(n−4) · · ·6 ·4 ·2 for even n > 0.

First we note that f (u) = 3
√

u2 is a sublinear function. We claim that BVP
(19) has a solution y = sin(πt

3 ) which is concave on [0,1]. In order to prove it,
bring in mind that

C
0 Dα sinλ t =−1

2
i(iλ )ntn−α(E1,n−α+1(iλ t)− (−1)nE1,n−α+1(−iλ t)) (20)

such that λ ∈ C,α ∈ R,n ∈ N, and n− 1 < α < n. The formula as above also
can be represented in the terms of the so-called hypergeometric functions (some-
times called the Kummer or confluent functions), see also [4]. Based on (20),
we obtain
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C
0 D

3
2 sin

πt
3

=−1
2

i(
π

3
i)2√t

(
E1, 3

2
(
iπt
3
)−E1, 3

2
(− iπt

3
)

)

=
π2i
18
√

t

(
∞

∑
k=0

( iπt
3 )k

Γ(k+ 3
2)
−

∞

∑
k=0

(−iπt
3 )k

Γ(k+ 3
2)

)

=
π2

18
√

t

(
∞

∑
k=0

i( iπt
3 )k

Γ(k+ 3
2)

(
1− (−1)k

))

=
π2

18
√

t

(
∞

∑
k=1

i( iπt
3 )2k−1

Γ(2k−1+ 3
2)

(
1− (−1)2k−1

))

=
π

3
√

t

(
∞

∑
k=1

(−π2t2

9 )k

Γ(2k+ 1
2)

)

=−π3t
3
2

27

(
∞

∑
k=0

(−π2t2

9 )k

Γ(2k+ 5
2)

)
,

making use of the fact that

Γ

(
n+

1
2

)
=

(2n)!
4nn!

√
π =

(2n−1)!!
2n

√
π, n = 0,1,2,3, · · · ,

we get the following formula

C
0 D3/2 sin

πt
3

=−4π5/2t3/2

27

(
∞

∑
k=0

(−4π2t2

9 )k

(4k+3)!!

)
< ∞.

Moving forward, using the series expansion of cosine we derive

q(t) 3

√
sin2 πt

3
=

4π11/6t5/6
∑

∞
k=0

(−4π2t2

9 )k

(4k+3)!!

27

(
2
9

∑
∞
k=0

(−4π2t2

9 )k

(2k+2)!

) 1
3
× 3

√
2π2t2

9

(
∞

∑
k=0

(− 4π2t2

9 )k

(2k+2)!

) 1
3

= − C
0 D

3
2 sin

πt
3

which means y = sin πt
3 is the solution of BVP (19).
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