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ON COMPLEX H-TYPE LIE ALGEBRAS

NATHANIEL ELDREDGE

Let g be a complex nilpotent Lie algebra equipped with a Hermitian
inner product 〈·, ·〉. We show that if (g,〈·, ·〉) is an H-type Lie algebra
in the sense of Kaplan, then g must be isomorphic to a complex Heisen-
berg Lie algebra h2n+1

C . This shows that the class of complex H-type Lie
algebras is very small.

1. Introduction

Since their introduction by Kaplan [8], H-type Lie algebras, and their corre-
sponding nilpotent Lie groups, have attracted interest as a natural generaliza-
tion of the classical real Heisenberg Lie algebra h3 of dimension 3 and the
corresponding real Heisenberg group H3. The Heisenberg group is a moti-
vating example in many areas of mathematics, and in many cases, facts about
the Heisenberg group carry over into the H-type setting. For instance, H-type
groups carry a natural structure as sub-Riemannian manifolds, and the analysis
of their sub-Laplacians has attracted considerable interest. As a sampling, we
mention [1, 3, 5–7, 9].

The H-type condition for a (real) Lie algebra g is dependent on a choice
of inner product 〈·, ·〉 (i.e. a positive definite, symmetric, bilinear form) on g,
so it is really a property of the pair (g,〈·, ·〉). For example, in h3, the natural
Euclidean inner product will do.
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Among the H-type Lie algebras are the complex Heisenberg (or Heisen-
berg–Weyl) Lie algebras h2n+1

C , equipped with their natural Euclidean inner
products. The Euclidean inner product on h2n+1

C is Hermitian with respect to the
complex structure, which is a natural compatibility condition. As such, analysis
on the complex Heisenberg groups H2n+1

C can take advantage of all the tools of
complex geometry, together with the many results for H-type groups mentioned
above. The purpose of this note is to show that there are no other complex Lie
algebras with this property.

Another way to state this result is that if a Lie algebra is required to carry
a complex structure and simultaneously be H-type, in a compatible way, then it
is forced to be a complex Heisenberg Lie algebra. This is somewhat similar in
spirit to a result in [10], where it is shown that a real Carnot group of corank
1 is forced to be “almost” a Heisenberg group; it splits into an (anisotropic)
Heisenberg part and a Euclidean part. (Here, corank 1 means that the Lie algebra
g can be written g = g1⊕ g2, with [g1,g1] = g2, [g1,g2] = 0, and dimg2 = 1.)
However, we stress that in the present paper, we make no a priori assumptions
about the dimension or rank of the Lie algebra.

As an application, we refer to [4], in which we studied a property known as
strong hypercontractivity for the hypoelliptic heat kernel on a stratified complex
Lie group. An essential hypothesis for this result was that the heat kernel should
satisfy a logarithmic Sobolev inequality. For most Lie groups, it remains an
open problem to determine whether this inequality holds, but it follows from
the results of [3, 6] that the inequality holds in every H-type Lie group. Thus,
the strong hypercontractivity theorem proved in [4] holds in particular for any
complex Lie group which, when considered as a real Lie group, is also H-type.
The result of the present note implies that these Lie groups are precisely the
family H2n+1

C . As this is a relatively limited class of examples, we see this as
further motivation to try to extend the logarithmic Sobolev inequality beyond
the H-type case.

2. Definitions and examples

We begin by recalling the definition of an H-type Lie algebra, as formulated in
[2, Definition 18.1.1]. (Kaplan’s original definition [8] is equivalent, but slightly
less convenient for our purposes.) Let g be a real finite-dimensional Lie algebra
equipped with an inner product 〈·, ·〉 : g×g→ R. Let z be the center of g, and
let v= z⊥. For z ∈ z and u ∈ v, define Jzu as the unique element of v satisfying

〈Jzu,v〉= 〈z, [u,v]〉 for all v ∈ v. (1)

It is clear that each Jz : v→ v is a linear map, and moreover z 7→ Jz is linear in z.
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Definition 2.1. We say that (g,〈·, ·〉) is H-type if the following two conditions
hold:

1. [v,v]⊂ z

2. For each z ∈ z with ‖z‖= 1, Jz : v→ v is an isometry with respect to 〈·, ·〉.

We observe that an H-type Lie algebra is necessarily nilpotent of step 2. A
simply-connected Lie group is said to be H-type if its Lie algebra is H-type in
the above sense.

Now suppose that g is a complex Lie algebra, whose complex structure we
denote by i. If we wish to equip g with a real inner product, it is natural to
demand some compatibility with the complex structure. Specifically, we would
like the inner product to be Hermitian, i.e., for x,y ∈ g we have 〈ix, iy〉= 〈x,y〉.
We may then define J in terms of this inner product by (1). We observe for later
use that, as a consequence of the Hermitian property of the inner product, we
have for α,β ∈ C and u,z ∈ g,

Jαz(βu) = αβ̄Jzu. (2)

That is, Jzu is complex linear in z and conjugate linear in u.
The question of interest in this note is when both of the above properties

hold, motivating the following definition.

Definition 2.2. A complex H-type Lie algebra is a pair (g,〈·, ·〉), where g is a
complex Lie algebra and 〈·, ·〉 is an inner product on g, such that the following
two conditions hold:

• The inner product 〈·, ·〉 is Hermitian with respect to the complex structure
of g.

• Forgetting the complex structure on g, the pair (g,〈·, ·〉) is H-type in the
sense of Definition 2.1.

We can likewise define a complex H-type Lie group as a connected and
simply connected complex Lie group G equipped with a Hermitian left-invariant
Riemannian metric g which, when viewed as an inner product on the Lie algebra
of G, satisfies the above conditions.

Example 2.3. The complex Heisenberg Lie algebra of complex dimension
2n+ 1 is the complex Lie algebra h2n+1

C generated (over C) by the basis of the
2n+1 vectors {x1,y1, . . . ,xn,yn,z}, with the bracket defined by [xk,yk] = z, and
for j 6= k, [x j,yk] = [x j,z] = [y j,z] = 0. We may equip h2n+1

C with the real inner
product 〈·, ·〉 that makes all of xk, ixk,yk, iyk,z, iz orthonormal; it is clear that this
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inner product is Hermitian. The center z of h2n+1
C is spanned (over C) by z, so

we clearly have [v,v] = z. Defining J as above, it is easy to compute

Jzxk = yk Jzyk =−xk Jzixk =−iyk Jziyk = ixk

so that Jz is an isometry. Moreover, every element w ∈ z is of the form w = αz
for some α ∈ C, and ‖w‖ = |α|, so using (2) we see that Jw is an isometry
whenever ‖w‖= 1. Thus (h2n+1

C ,〈·, ·〉) is a complex H-type Lie algebra.

Of course, the complex Heisenberg Lie algebras are a very special family
within the far larger class of all complex Lie algebras. Likewise, the class of
H-type Lie algebras, although fairly restrictive, is still much broader than this
specific family. For instance, there exist H-type Lie algebras having centers of
any given real dimension [8], while the complex Heisenberg Lie algebras all
have centers of real dimension 2.

Nevertheless, we shall now prove that the complex Heisenberg Lie algebras
are, up to isometric isomorphism, the only complex H-type Lie algebras.

3. Main result

Theorem 3.1. Let (g,〈·, ·〉) be a complex H-type Lie algebra as defined above.
Then for some n, (g,〈·, ·〉) is isometrically isomorphic to h2n+1

C with its standard
Hermitian inner product.

In particular, complex H-type Lie algebras are completely classified by their
dimension. We also immediately obtain the analogous classification of complex
H-type Lie groups.

Proof. Suppose (g,〈·, ·〉) is complex H-type, and let v, z and J be defined as
above.

We recall the well-known Clifford algebra identity for H-type Lie algebras:

JzJw + JwJz =−2〈z,w〉 I, z,w ∈ z. (3)

To prove this, first consider the case when w = z and ‖z‖ = 1. Then for any
u,v ∈ v, we have〈

J2
z u,v

〉
= 〈z, [Jzu,v]〉=−〈z, [v,Jzu]〉=−〈Jzv,Jzu〉=−〈v,u〉

since Jz is an isometry. So J2
z = −I. The general case follows by scaling and

polarization.
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We begin by showing that z must have complex dimension 1. If not, then
we can find z,w ∈ z with ‖z‖ = ‖w‖ = 1 and 〈z,w〉 = 〈iz,w〉 = 0. Then by (3)
and (2) we have

0 =−2〈z,w〉 I = JzJw + JwJz

0 =−2〈iz,w〉 I = JizJw + JwJiz = iJzJw + JwiJz = i(JzJw− JwJz).

Thus JwJz = JzJw = 0, contradicting the requirement that Jz,Jw be isometries.
Therefore, z is the complex span of a single unit vector z. We recursively

construct an orthonormal basis for v over R, of the form {xk, ixk,yk, iyk : k =
1, . . . ,n}. Suppose {xk, ixk,yk, iyk : k = 1, . . . ,m−1} have been constructed and
do not span v. Let xm be any unit vector orthogonal to all of xk, ixk,yk, iyk for
k = 1, . . . ,m. Then set ym = Jzxm. We have ‖ym‖ = 1, and a few straightfor-
ward computations verify that {xk, ixk,yk, iyk : k = 1, . . . ,m} are now orthogonal.
When the process terminates, we have the desired orthonormal basis.

To compute brackets, for j 6= k we have

〈z, [xk,yk]〉= 〈Jzxk,yk〉= 〈yk,yk〉= 1〈
z, [xk,x j]

〉
=
〈
Jzxk,x j

〉
=
〈
yk,x j

〉
= 0〈

z, [yk,y j]
〉
=
〈
Jzyk,y j

〉
=
〈
Jzyk,Jzx j

〉
=
〈
yk,x j

〉
= 0〈

z, [xk,y j]
〉
=
〈
Jzxk,y j

〉
=
〈
yk,y j

〉
= 0.

Similar computations show that if z is replaced by iz, all of the above expressions
vanish. Each bracket is in z and hence a complex scalar multiple of z, so we have

[xk,yk] = z, [xk,x j] = [yk,y j] = [xk,y j] = 0.

The corresponding brackets for ixk, iyk, etc, follow from the complex bilinearity
of the bracket. These are precisely the same relations as for the complex Heisen-
berg Lie algebra h2n+1

C , and the basis is orthonormal, just as for the standard
inner product on h2n+1

C . Therefore, the unique complex linear map g→ h2n+1
C

sending x1,y1, . . . ,xn,yn,z ∈ g to the standard basis for h2n+1
C (described in Ex-

ample 2.3) is an isometric isomorphism of complex Lie algebras.
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[7] J. Inglis - V. Kontis - B. Zegarliński, From U-bounds to isoperimetry with appli-
cations to H-type groups, J. Funct. Anal. 260 no. 1 (2011), 76–116.

[8] Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated
by composition of quadratic forms, Trans. Amer. Math. Soc. 258 no. 1 (1980),
147–153.

[9] Hans Martin Reimann, Rigidity of H-type groups, Math. Z. 237 no. 4 (2001),
697–725.

[10] Luca Rizzi, Measure contraction properties of Carnot groups, Calc. Var. Partial
Differential Equations 55 no. 3 (2016), Art. 60, 20.

NATHANIEL ELDREDGE
School of Mathematical Sciences
University of Northern Colorado

e-mail: neldredge@unco.edu


