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WEAKWELL-POSEDNESS OF THE DIRICHLET PROBLEM

FOR EQUATIONS OFMIXED ELLIPTIC-HYPERBOLIC TYPE

KEVIN R. PAYNE

Equations of mixed elliptic-hyperbolic type with a homogeneous Di-
richlet condition imposed on the entire boundary will be discussed. Such
closed problems are typically overdetermined in spaces of classical solutions
in contrast to the well-posedness for classical solutions that can result from
opening the boundary by prescribing the boundary condition only on a proper
subset of the boundary. Closed problems arise, for example, in models of
transonic fluid flow about a given profile, but very little is known on the well-
posedness in spaces of weak solutions. We present recent progress, obtained
in collaboration with D. Lupo and C.S. Morawetz, on the well-posedness in
weighted Sobolev spaces as well as the beginnings of a regularity theory.

1. Introduction.

The purpose of this note is to examine the question of well-posedness for
the Dirichlet problem for a second order linear partial differential equation of
mixed elliptic-hyperbolic type. That is, given f ∈ H0, we ask if it is possible to
show the existence of a unique u ∈ H1 which solves in some reasonable sense
the problem

(1.1) Lu = K (y)uxx + uyy = f in �
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(1.2) u = 0 on ∂�

where H0, H1 are functions spaces to be determined, K ∈C1(R) satisfies

(1.3) K (0) = 0 and yK (y) > 0 for y �= 0,

� is a bounded open and connected subset of R
2 with piecewise C1 boundary.

We will assume throughout that

(1.4) �± := � ∩ R
2
± �= ∅,

so that (1.1) is of mixed elliptic-hyperbolic type. We will call � amixed domain
if (1.4) holds.

While the Dirichlet problem (1.1)–(1.2) is classically well-posed for an
elliptic operator L , the presence of a hyperbolic subregion �− leads to an over-
determined problem in spaces of classical regularity. This phenomenon is well
known for purely hyperbolic equations, as first noted by Picone [13]. In the
mixed type case, under mild assumptions on the function K and the geometry
of the boundary one has a uniqueness result of the following form: Assume
that ũ is a sufficiently smooth solution to Lũ = 0 in � \ � such that ũ = 0
on ∂� \ � . Then ũ ≡ 0 on � \ �. Here � is a backward light cone with
vertex at an interior point C = (x0, 0) on the parabolic line (see Figure 1).
Such uniqueness theorems have been proven by a variety of methods, including
energy integrals as in [15] and maximum principles as in [1] and [8]. From this
uniqueness theorem, one can show that if u is a sufficiently smooth solution to
(1.1) which vanishes only on the proper subset of the boundary � = ∂� \ � ,
it must vanish on �. Hence, if one wants to impose the boundary condition
on all of the boundary, one must expect in general that some real singularity
must be present. Moreover, in order to prove well-posedness, one must make a
good guess about where to look for the solution; that is, one must choose some
reasonable function space which admits a singularity strong enough to allow for
existence but not so strong as to lose uniqueness. This, in practice, has proven
to be the main difficulty of the problem.

A boundary value problem such as (1.1)–(1.2) in which the boundary
condition is imposed on the entire boundary will se called closed, while a
problem with the boundary condition imposed on a proper subset will be called
open. Both open and closed boundary value problems associated to (1.1) are
of interest in the study of transonic fluid flow. More precisely, equations of the
form (1.1) describe the flow in the hodograph plane where u represents either
a stream function (with Dirichlet boundary conditions) or a perturbation of the
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Figure 1: Shaded region � \ �

velocity potential (with conormal boundary conditions) and the variables x , y
represent the flow angle and a rescaled flow speed respectively (see the classic
monograph [2] or the modern survey [11], for example). Open problems arise
in flows in nozzles and in proving non-existence of smooth flows past airfoils
and closed problems arise in constructing smooth transonic flows about airfoils,
see [9]. This connection to transonic flows is our principal motivation.

Despite the interest in closed problems for mixed type equations, the liter-
ature essentially contains only two results on well-posedness. The first, due
to Morawetz [10] concerns the Dirichlet problem for the Tricomi equation
(K (y) = y) and the second due to Pilant [14] concerns conormal boundary con-
ditions for the Lavrentiev-Bitsadze equation (K (y) = sgn(y)). In both cases,
the restrictions on the boundary geometry are quite severe in that the domains
must be lens-like and thin in some sense. Such restrictions on boundary geom-
etry and the type change function are not particularly welcome in the transonic
flow applications since the boundary geometry reflects profile or nozzle shape
and the approximation K (y) ∼ y is valid only for nearly sonic speeds. The
main purpose of our investigation is to show well-posedness continues to hold
for classes of type change functions and more general domains. Herein we will
describe a part of the recent progress made on the Dirichlet problem. The results
are contained in [6] which also contains additional results, including work on
problems with mixed boundary conditions.
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2. Background notions.

In order to present the well-posedness results for (1.1)–(1.2), we would
like to first make precise the setting in which we will work. The function K ∈
C1(R) will be taken to satisfy (1.3) and additional assumptions as necessary.

In all that follows, � will be a bounded mixed domain (open, connected,
satisfying (1.4)) in R

2 with piecewise C1 boundary so that we may apply the
divergence theorem and ν will denote the external normal field. Since the
differential operator (1.1) is invariant with respect to translations in x , we may
assume that the origin is the point on the parabolic line AB := {(x , y)∈ � : y =
0} with maximal x coordinate; that is, B = (0, 0). This will simplify certain
formulas without reducing the generality of the results. We will sometimes
require that � is star-shaped with respect to the flow of a given (Lipschitz)
continuous vector field V = (V1(x , y), V2(x , y)); that is, for every (x0, y0) ∈ �

one has Ft (x0, y0) ∈ � for each t ∈ [0, +∞] where Ft (x0, y0) represents the
time-t flow of (x0, y0) in the direction of V .

We will make use of several natural spaces of functions and distributions.
We define H 1

0 (�; K ) as the closure of C∞
0 (�) (smooth functions with compact

support) with respect to the weighted Sobolev norm

||u||H 1(�;K ) :=
[∫

�

(|K |u2x + u2y + u2
)
dxdy

]1/2
.

Since u ∈ H 1
0 (�; K ) vanishesweakly on the entire boundary, one has a Poincarè

inequality: there exists CP = CP (�, K )

(2, 1) ||u||2L2(�) ≤ CP

∫
�

(|K |u2x + u2y
)
dxdy, u ∈ H 1

0 (�; K ).

The inequality (2.1) is proven in the standard way by integrating along segments
parallel to the coordinate axes for u ∈ C10 (�) and then using continuity. An
equivalent norm on H 1

0 (�; K ) is thus given by

(2.2) ||u||H 1
0 (�;K ) :=

[∫
�

(|K |u2x + u2y
)
dxdy

]1/2
.

We denote by H−1(�; K ) the dual space to H 1
0 (�; K ) equipped with its

negative norm in the sense of Lax

(2.3) ||w||H−1(�;K ) := sup
0 �=ϕ∈C∞

0 (�)

|〈w, ϕ〉|
||ϕ||H 1

0 (�;K )
,
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where 〈·, ·〉 is the duality bracket and one has the generalized Schwartz inequal-
ity

(2.4) |〈w, ϕ〉| ≤ ||w||H−1(�;K )||ϕ||H 1
0 (�;K ), w ∈ H−1(�; K ), ϕ ∈ H 1

0 (�; K ).
One clearly has a rigged triple of Hilbert spaces

H 1
0 (�; K ) ⊂ L2(�) ⊂ H−1(�; K ),

where the scalar product (on L2 for example) will be denoted by (·, ·)L2(�) .
It is routine to check that the second order operator L in (1.1) is formally

self-adjoint when acting on distributions D′(�) and gives rise to a unique
continuous and self-adjoint extension

(2.5) L : H 1
0 (�; K ) → H−1(�; K )

We will also make use of suitably weighted versions of L2(�) and their
properties. In particular, for K ∈C1(R) satisfying (1.3) we define

L2(�; |K |−1) := { f ∈ L2(�) : |K |−1/2 f ∈ L2(�)},
equipped with its natural norm

|| f ||L2(�;|K |−1) =
[∫

�

|K |−1 f 2 dxdy
]1/2

,

which is the dual space to the weighted space L2(�; |K |) defined as the
equivalence classes of square integrable functions with respect to the measure
|K | dxdy ; that is, with finite norm

|| f ||L2(�;|K |) =
[∫

�

|K | f 2 dxdy
]1/2

.

One has the obvious chain of inclusions

L2(�; |K |−1) ⊂ L2(�) ⊂ L2(�; |K |),
where the inclusion maps are continuous and injective (since K vanishes only
on the parabolic line, which has zero measure).
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3. Results on existence and uniqueness..

As a first step, using standard functional analytic techniques, one can ob-
tain results on weak existence and strong uniqueness for solutions to the Dirich-
let problem (1.1)–(1.2). The key point is to obtain a suitable a priori estimate
by performing an energy integral argument with a well chosen multiplier. One
obtains the following result

Theorem 3.1. Let � be any bounded region in R
2 with piecewise C1 boundary.

Let K ∈C1(R) be a type change function satisfying (1.3) and
(3.1) K ′ > 0

(3.2) ∃δ > 0 : 1+
(
2K

K ′

)′
≥ δ

a) There exists a constant C1(�, K ) such that

(3.3) ||u||H 1
0 (�;K ) ≤ C1 ||Lu||L2(�), u ∈C20 (�).

b) For each f ∈ H−1(�; K ) there exists u ∈ L2(�) which weakly solves
(1.1)–(1.2) in the sense that

(3.4) (u, Lϕ)L2 = 〈 f, ϕ〉, ϕ ∈ H 1
0 (�; K ) : Lϕ ∈ L2(�).

This theorem is the union of Lemma 2.1 and Theorem 2.2 of [6], where the
complete proof is given. It should be noted that, since L is formally self-adjoint,
the estimate (3.3) also holds for Lt = L and that, in (3.4), L is the self-adjoint
extension (2.5). The estimate (3.3) follows from an energy integral argument
(the method of multipliers) in which one considers an arbitrary u ∈ C20 (�) and
and seeks to estimate the expression (Mu, Lu)L2 from above and below where
Mu = au + bux + cuy is the multiplier to be determined. Using

(3.5) a ≡ −1, b ≡ 0, c = c(y) = max{0, −4K/K ′}
one has the needed positive lower bound, while the Cauchy-Scwartz inequality
is used for the upper bound. The two estimates are combined with the Poincarè
inequality (2.1) to complete the estimate (3.3). The proof of the existence in
part b is a standard argument using the Hahn-Banach theroem and the Riesz
representation theorem.

The estimate (3.3) also shows that sufficiently strong solutions must be
unique. We say that u ∈ H 1

0 (�; K ) is a strong solution of the Dirichlet problem
(1.1)–(1.2) if there exists an approximating sequence un ∈C20 (�) such that

||un − u||H 1(�;K ) → 0 and ||Lun − f ||L2(�) → 0 as n → +∞
The following theorem is an immediate consequence of the definition.
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Theorem 3.2. Let � be any bounded region in R
2 with piecewise C1 boundary.

Let K ∈C1(R) be a type change function satisfying (1.3), (3.1) and (3.2). Then
any strong solution of the Dirichlet problem (1.1)–(1.2) must be unique.

Remarks.

1. The class of admissible K is very large and includes the standard models
for transonic flow problems such as the Tricomi equation with K (y) = y and
the Tomatika-Tamada equation K (y) = A(1− e−2By ) with A, B > 0 constants.
2. The result also holds for non strictly monotone functions such as the

Gellerstedt equation with K (y) = y|y|m−1 where m > 0. In this case, one
can check that in place of (3.5) it is enough to choose the dilation multiplier
introduced in [7]

a ≡ 0, b = (m + 2)x , c = 2y.

3. No boundary geometry hypotheses have yet been made; in particular,
there are no star-like hypotheses on the elliptic part and no sub-characteristic
hypotheses on the hyperbolic part. These kinds of hypotheses will enter when
we look for solutions in a stronger sense.

It is clear that the existence is in a very weak sense; too weak, in fact, to
be very useful. In particular, the sense in which the solution vanishes at the
boundary is only by duality and one may not have uniqueness. Example 2.4 of
[6] gives one way in which things may go wrong. In any case, the existence
result is a first general indication that while the closed Dirichlet problem is
generically over-determined for regular solutions, it is generically not over-
determined if one looks for a solution which is taken in a sufficiently weak
sense. Moreover, while uniqueness generically holds for strong solutions, one
must show that such strong solutions exist.

We are now ready for the well-posedness result, which shows that there is
a way to steer a course between the weak existence and the strong uniqueness
result for the Dirichlet problem by following the path laid out by Didenko [3]
for open boundary value problems. The suitable notion of solutions is contained
in the following definition.

Definition 3.3. We say that u ∈ H 1
0 (�; K ) is a generalized solution of the

Dirichlet problem (2.1)–(2.2) if there exists a sequence un ∈C∞
0 (�) such that

||un − u||H 1
0 (�;K ) → 0 and ||Lun − f ||H−1(�;K ) → 0, for n → +∞

or equivalently

〈Lu, ϕ〉 = −
∫

�

(
Kuxϕx + uyϕy

)
dxdy = 〈 f, ϕ〉, ϕ ∈ H 1

0 (�, K ),
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where 〈·, ·〉 is the duality pairing between H 1
0 (�; K ) and H−1(�; K ), L is the

continuous extension defined in (2.5), and the relevant norms are defined in
(2.2) and (2.3).

Our first result concerns the Gellerstedt operator; that is, with K of pure
power type

(3.6) K (y) = y|y|m−1, m > 0.

Theorem 3.4. Let � be a bounded mixed domain with piecewise C1 boundary
and parabolic segment AB with B = 0. Let K be of pure power form
(3.6). Assume that � is star-shaped with respect to the vector field V =
(−(m + 2)x , −μy) where μ = 2 for y > 0 and μ = 1 for y < 0. Then

a) there exists C1 > 0 such that

(3.7) ||u||L2(�;|K |) ≤ C1 ||Lu||H−1(�;K ), u ∈C∞
0 (�).

b) for each f ∈ L2(�; |K |−1) there exists a unique generalized solution
u ∈ H 1

0 (�; K ) in the sense of Definition 3.3 to the Dirichlet problem (1.1)–
(1.2).

Note that the restriction on the boundary geometry allows for both non
lens-like and lens-like domains. Moreover, the star-shaped assumption implies
that the hyperbolic boundary is non-characteristic.

This theorem is the union of Lemma 3.3 and Theorem 3.2 of [6]. The
existence in part b) follows from the a priori estimate of in much the same
way as in Theorem 2.1. The uniqueness follows also from the estimate and
the Definition 2.3. To obtain the estimate (3.7), the basic idea is to estimate
from above and below the expression (Iu, Lu)L2 (�) for each u ∈C∞

0 (�) where
v = Iu is the solution to the following auxiliary Cauchy problem{

Mv := av + bvx + cvy = u in �

v = 0 on ∂� \ B
where B = (0, 0) is the righthand endpoint of the parabolic line and

(3.8) a ≡ −1/4, (b, c) = −V = ((m + 2)x , μy).

One analyzes first the properties of the solution v, which is shown to lie in
C∞(�±) ∩ C0(�) ∩ H 1

0 (�; K ). Then one estimates from below where the
choice (3.8) ensures the positivity of the quadratic form (Iu, Lu). The rest of
the estimate proceeds as before, using the generalized Schwartz inequality (2.4),
continuity properties of the differential operator M , and the Poincarè inequality
(2.1).
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Remarks.

1. One can eliminate almost entirely the boundary geometry restrictions in
the elliptic part of the domain by patching together the a priori estimate (3.7)
with an easy estimate on elliptic subdomans using the multiplier Mu = u (see
Theorem 3.4 of [6].
2. One can replace the type change functions K of pure power typewith more

general forms in which there is a bound on the variation of (K/K ′)′ for y small
(see Proposition 3.5 of [6]).
3. With respect to the original result of Morawetz, our improvements are due

in part from the fact that we work directly on the second order equation instead
of reducing to a first order system, as is done in [10]. Working with the equation
allows for a greater freedom in choosing the multipliers (a, b, c); for the first
order system there is no coefficient corresponding to a.
4. The norm H 1(�; K ) employed here has a weight |K | which vanishes on

the entire parabolic line and hence one might worry that the solution is not
locally H 1 due to the term |K |u2x . In fact, the solution does lie in H 1

loc(�) as
will be discussed below. On the other hand, the norms used in [10] for treating
the equation by way of a first order system were carefully constructed so as not
to have weights vanishing on the interior.

4. Local regularity results.

We now discuss the beginnings of a regularity theory for the Dirichlet
problem (1.1)–(1.2). in particular, for the applications to transonic flow, it
would be important to know that the solutions were at least continuous in the
interior. As noted in the Remark 4 above, a generalized solution in the sense
of Definition 3.3 with f ∈ L2(�; |K |−1) will be locally in H 1 as follows from
a microlocal analysis argument, if K is smooth enough, using Hörmander’s
theorem on the propagation of singularities (cf. [12]). Moreover, one can show
that u is locally H 2 and hence continuous by the Sobolev embedding theorem,
provided that one assumes more regularity on f than is required to the existence
and uniqueness.

We will restrict our discussion to the important special case of the Tricomi
equation (K (y) = y); that is

(4.1) Tu = yuxx + uyy = f in �

(4.2) u = 0 on ∂�
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where � an admissiblemixed domain for the existence result of Theorem 3.4 in
this special case. This will allows us to give a direct argument to obtain the local
H 1 regularity which avoids the use of microlocal analysis as was suggested to
us by Louis Nirenberg. His argument involves a formal estimate which states
that locally one can remove the presence of the weight |K | = |y| in the norm
(2.2) for sufficiently smooth solutionswhere mollifying in the x direction yields
the needed regularity. The formal estimate is the following (see Lemma 5.1 of
[6]).

Lemma 4.1. (Nirenberg) Let u be a weak solution to the inhomogeneous
Tricomi equation (4.1). Assume that

F :=
∫

�

f 2 dxdy < +∞

E :=
∫

�

(|y|u2x + u2y
)
dxdy < +∞.

If u is smooth enough, then for each compact subdomain G ⊂ � there exists a
constant C = C(�,G) such that

∫
G
u2x dxdy ≤ C(E + F).

The proof involves a sequence of integration by parts starting from the
integral of ζu2x where ζ ∈ C∞

0 (�) is a cutoff function with ζ ≡ 1 on G . One
checks that the u2x ∈ L1loc(�) is needed to start the estimate and then u ∈ H 2

loc(�)
would be enough to justify the various integration by parts performed.

In order to extend the estimate to a generalized solution u of (4.1)–(4.2),
one mollifies in the x -direction. Using the standard properties of this smoothing
process (cf. [5]) one finds that the mollified function uε solves (4.1) with f
replaced by its mollification fε and that uε ∈ H 2

loc(�). Thus one can apply
Lemma 4.1 to uε and pass to a limit with the aid of Fatou’s lemma (see Lemma
5.3 and Theorem 5.4 of [6]). This yields the desired result.

Theorem 4.2. Let � be a mixed domain and f ∈ L2(�). If u ∈ H 1(�, y)
is a weak solution of the inhomogeneous Tricomi equation Tu = f , then
u ∈ H 1

loc(�).

Finally, higher order local regularity can be achieved by assuming more
regularity on the forcing term f .
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Theorem 4.3. Let u ∈ H 1
0 (�, y) be the unique generalized solution to the

Dirichlet problem for the inhomogeneous Tricomi equation Tu = f with
f ∈ L2(�, |y|−1). If, in addition, fx ∈ L2(�, |y|−1), then u ∈ H 2

loc(�).

This is Theorem 5.5 of [6]. The idea of the proof is to consider the weak
derivative ux ∈ L2(�, |y|) ∩ L2loc(�) which is a weak solution of the equation
Tux = fx although no claim is made about its boundary values. One could call
this an interior weak solution in analogy with the definition of Sarason [16] for
first order systems. Comparing ux with w ∈ ∈ H 1

0 (�; y) the unique generalized
solution to (4.1)–(4.2) with right hand side fx ∈ L2(�, |y|−1) one has

(w, T v)L2(�) = ( fx , v)L2(�) = (ux , Tv)L2(�), ∀v ∈C∞
0 (�).

Now, if one knew that for each compact subdomain G of � one has

(4.3) {g ∈ L2(G) : g = T v, v ∈C∞
0 (�)} is dense in L2(G),

then the result would follow. The verification of this density claim depends on
the fact that: every interior weak solution is an interior strong solution in the
sense that there exists a sequence of functionsUn ∈C∞

0 (�) such that

lim
n→+∞

[||Uu −U ||L2(G) + ||TUn − g||L2(G)
] = 0.

That interior weak solutions are interior strong solutions follows for the Tricomi
equation because T is principally normal and � admits a function ψ ∈ C2(�)
such that the level sets of ψ are pseudo-convex with respect to T , facts noted by
Hörmander (cf. Theorem 8.7.4 of [4] and Section 8.6 of [4]).

Remark. One can generalize Theorems 4.2 and 4.3 to include more general
type change functions K (y). One only needs that K is sufficiently smooth in
order to apply Hörmander’s results on singularity propagation as well as the
weak equals strong result used to obtain the density (4.3).
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