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PROBLEMI LINEARI E NON LINEARI

DI FLUSSO INTORNO AD OSTACOLI

DARIO PIEROTTI

We discuss the problem of the steady two-dimensional flow past fixed
disturbances in an open channel of finite depth. We consider different
types of obstacles, like submerged or surface-piercing bodies, and localized
perturbations of a horizontal bottom; recent results on unique solvability of
the linear problem and rigorous proofs of solvability of the non linear, free
boundary problem are reviewed.

1. Introduction.

Let us consider the steady two-dimensional flow of a heavy, ideal fluid,
past fixed obstacles in a channel of finite depth; we assume irrotational motion
and neglect the effects of surface tension. Then, we can describe the flow by
a holomorphic function (the complex velocity field) defined in an unbounded
domain and satisfying a non linear condition (the Bernoulli condition) on a
free boundary (the free surface). The problem is completed by specifying the
conditions at the other boundaries of the region filled by the fluid; assuming
rigid walls and obstacles, we have the no-flow condition; the same kinematic
condition holds on the free surface.
The above problem has been widely studied by analytical and numerical meth-
ods; however, little is known about its solvability from a rigorous point of view,
due to the difficulties related to the free boundary. The mathematical approach
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to such problem, andmore generally to problems involvingwave-structure inter-
actions, usually deals with linearized versions, whose solutions are called linear
water waves; an exhaustive treatment of linear water-wave theory, including a
discussion of its physical justification, can be found in [1]. One of the still open
questions in the linear theory is to determine whether the problem of the stream
past assigned obstacles (submerged or surface-piercing bodies, roughness of a
channel’s bed, etc.) is uniquely solvable for all values of the flux velocity; a
positive answer is known for special geometries (see Section 3), but in general
the connection between unique solvability and the geometry of the obstacles is
not completely understood. As previously remarked, even less is known about
the solutions of the exact, free-boundary problem; at the present time, rigorous
results has been established only in a few cases, starting from the discussion of
particular linear problems and using local methods of non linear analysis (see
Section 4). We recall that local and global bifurcation theory has been success-
fully applied to the non linear problem of the free flow (i.e. without obstacles)
in a channel with horizontal bottom of finite depth; in this case, there are non
trivial solutions bifurcating from the constant parallel flow, whose properties
depend critically on the parameter Fr = c/

√
gH , the Froude number. More

precisely:
For Fr < 1 (subcritical flow) there are periodic waves (Stokes waves) of

wave length λ near subcritical velocities satisfying the relation

(1.1) c2 = g
λ

2π
tanh

2πH

λ
.

For Fr > 1 (supercritical flow) there are solitary waves of any amplitude,
vanishing at infinity.
As we will show in the present note, the parameter Fr is also critical in the
discussion of the flow past fixed disturbances, both for the linear and non linear
problem.

2. Formulation of the problem and linearized equations.

Let us now discuss an example of two-dimensional problem, whose geom-
etry is depicted in Figure 1 below; the unknowns of the problem can be listed as
follows:

– two scalars x+ > 0, x− < 0;

– a real function h : R\[x−, x+] → R (the free surface);
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– a complex function : ω(z) = u(x , y) − iv(x , y) (complex velocity field)
holomorphic in S, the region filled with the fluid.

We remark that S depends on x+, x− and h; if there are no semi-submerged
obstacles, the free surface is represented by a continuous function defined on
the whole real line.
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Figure 1

The boundary conditions of the problem are

(2.1)
1

2
|ω(x , h(x ))|2 + gh(x ) = const., x ∈ R/[x−, x+]

(2.2) v(x , h(x )) = h′(x )u(x , h(x )), x ∈ R/[x−, x+]

(2.3) (ui + vj) · n = 0, on σ =
⋃

σi ;

(2.4) v = 0, on B;

(2.5) lim
x→−∞ ω(z) = c;
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(2.6) lim
x→−∞ h(x ) = 0;

(2.7)
(
x±, h(x±)

) ∈ σ2.

Equations (2.1) and (2.2) represent, respectively, the Bernoulli condition
and the kinematic condition on the free surface; equations (2.3), (2.4) express
the conditions on the (rigid) physical boundaries. By conditions (2.5), (2.6), the
flow at upstream infinity is equal to the constant parallel flow with velocity c,
while the free surface reduces to the surface of calm water. Finally, (2.7) must
be satisfied at the contact points between the free surface and a surface-piercing
body.
The linearized problem is obtained by inserting in (2.1)–(2.7) the formal expan-
sion

ω(x , y) = c + εω(1)(x , y)+ ε2ω(2)(x , y)+ · · · ;
h(x ) = εh(1)(x )+ ε2h(2)(x )+ · · ·

(where ε is a suitable adimensional parameter [1] and by observing that for
ε → 0 the free surface reduces to a subset of the line y = 0; a typical geometry
of a linear problem is represented in Figure 2 below.

P− P+y = 0
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F

Figure 2.

By considering the first order terms in ε of (2.1), (2.2), we can eliminate the
unknown h (by differentiation) and obtain

u(1)x (x , 0)+
g

c2
v(1)(x , 0) = 0, on F (h = 0).



PROBLEMI LINEARI E NON LINEARI. . . 333

Then, by defining the potential φ of the perturbed (zero circulation) flow,
∇φ = u(1)i + v(1)j, we readily obtain the equations of the linear problem
(Neumann-Kelvin problem):

(2.8) �φ = 0, in S;

(2.9) φxx + νφy = 0, on F;

(2.10)
∂φ

∂n
= k, on σ =

⋃
σi ;

(2.11) φy = 0, on B;

(2.12) lim
x→−∞ |∇φ| = 0;

where ν = g/c2 and k = −cnx on σ . In order to obtain well-posed formula-
tions of the problem with semi submerged obstacles, one needs supplementary
conditions at the bow and stern points, which somehow replace (2.7); for exam-
ple, one can choose

(2.13) φx (P+) = α+, φx (P−) = α−,

which can be interpreted as fixing the elevation of the free surface at P± [1]. By
requiring that there is no additional flux at infinity from the perturbed flow (see
the asymptotic properties of the solutions in section 3) the data must be chosen
to satisfy the compatibility conditions

(2.14) α+ − α− + ν

∫
σ

k = 0.
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3. Solvability of the linear problem.

We now discuss the solvability of the previous problem for all values of the
quantity c/

√
gH (Froude number); to this aim, we first recall the solutions of

the free problem (no obstacles):

– if c >
√
gH , i.e. νH < 1 (supercritical flow) we have only the trivial

solution φ(x , y) = φ0 (φ0 arbitrary constant);
– if c <

√
gH , i.e. νH > 1 (subcritical flow) there are two independent

solutions

(3.1)
S(x , y)= sin(ν0x ) cosh[ν0(y + H )],

C(x , y) = cos(ν0x ) cosh[ν0(y + H )],

where ν0 > 0 satisfies ν0/ν = tanh(ν0H ), i.e. ν0 = 2π/λ is the wave number
of the dispersion relation (1.1).

The same difference between supercritical and subcritical flows also concerns
the (a priori) asymptotic properties of the solutions of the Neumann-Kelvin
problem (2.8)–(2.13); in fact, for |x | large enough (away from the obstacles)
we have:

– if νH < 1 : sup eμ1|x| |∇φ(x , y)| < +∞, where μ1 is the first positive
solution of μ/ν = tan(μH ).
– if νH > 1 : φ(x , y) ≈ φ0 + A S(x , y)+ B C(x , y) for x → +∞, where

A, B are suitable constants.

From the above discussion, it follows in particular that in the subcritical regime
one will not get, in general, solutions of finite energy; hence the proof of unique
solvability of the linear problem is more delicate in this regime. In any case,
the standard approach to solvability relies on integral equation techniques [1],
which apply when the boundaries of the obstacles are sufficiently regular, in-
cluding piecewise smooth contours with corner points (but no cusps). Recently,
an alternative variational approach has been proposed for the problem of ship
waves generated by submerged or partially submerged bodies in uniformmotion
(including the limit case of a surface beam, see [4] and references therein).
As a result, one can prove unique solvability for all supercritical velocities both
in the case of semi submerged and submerged obstacles. The situation is differ-
ent in the subcritical case: for a given obstacle, there could be a sequence (for
surface-piercing bodies) or a finite number (for immersed bodies) of ”singular”
velocities such that unique solvability does not hold. Unique solvability for all
subcritical velocities has been proved only for special obstacles, see [3] (sub-
merged circular cylinder), [4] (surface-piercing symmetric body), [7] (surface
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beam). Actually, there are examples of non uniqueness of the solution (trapped
modes) for exceptional values of ν in the Neumann-Kelvin problem for a sur-
face piercing tandem [2] and in the problem of the flow over a submerged hollow
(of rectangular shape) in a channel’s bed [8].
It is worthwhile to illustrate the application of the variational method in the
case of a supercritical flow, νH < 1. For the sake of brevity, we only consider a
problemwith completely submerged obstacles as represented in Figure 3 below.

F νφy + φxx = 0 ξ

B φy = 0

SξS σ2
D2

σ1

D1

Figure 3

On the obstacles’ boundaries σi , i = 1, 2, we require the conditions ∂φ

∂ni
= ki .

A variational form of the problem can be stated in the functional space

H (S) :=
{

φ :
∫ ∫

S
|∇φ|2 +

∫
F

φ2x < ∞
}

.

Then, by standard methods we get from (2.8)–(2.11):

(3.2)
∫ ∫

S
∇φ∇χ − 1

ν

∫
F

φxχx =
2∑
i=1

∫
σi

kiχ, ∀χ ∈ H (S).

It is readily verified that the left hand side of (3.2) is a continuous bilinear form
on H (S); however, coercivity does not hold, due to the minus sign between the
two terms. We get over to this problem by restricting the form (3.2) to a closed
subspace of H (S), whose definition is suggested by suitable a priori conditions
satisfied by finite energy solutions. In order to find these conditions, let us
consider the semi infinite strip Sξ represented in fig. 3 above; if φ is a solution
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with finite energy, by the relation
∫
∂ Sξ

∂φ

∂n = 0 and by the boundary conditions
on F and on B , we readily get

(3.3) φx (ξ, 0) = ν

∫ 0

−H
φx (ξ, y) dy.

Hence, by Hölder inequality and integrating from ξ to infinity, we get the
estimate

(3.4)
1

ν

∫ +∞

ξ

φx (x , 0)
2 dx ≤ νH‖∇φ‖2L2(Sξ )

.

A similar bound can be obtained when ξ lies above the obstacles by extending
φ to S ∪ D1 ∪ D2 (D1 , D2 open sets) with �φ = 0 in D1 ∪ D2 and

−∂φint

∂n

∣∣∣∣∣
σi

= ∂φext

∂n

∣∣∣∣∣
σi

= ki , i = 1, 2.

In fact, by the divergence theorem it follows that the so extended solution still
satisfies (3.3); we conclude that (3.4) holds for (almost) every real ξ .

Now, in the new space

H (S ∪ Di ) =
{

φ :
∫ ∫

S∪Di

|∇φ|2 +
∫
F

φ2x < ∞
}

,

we can formulate the weak problem for the extended solution:∫ ∫
S∪Di

∇φ∇χ − 1

ν

∫
F

φxχx =(3.5)

2∑
i=1

∫
σi

ki (χ
ext − χ int), ∀χ ∈ H (S ∪ Di ),

where χ ext, χ int are the traces of χ on σi , respectively from outside and inside
the domain Di . By taking the limit for ξ → −∞ in (3.4) and recalling that
νH < 1, we can now prove:

Theorem. The bilinear form (3.5) is coercive in the subspace

V :=
{

φ : φx (ξ, 0) = ν

∫ 0

−H
φx (ξ, y)dy, a.e. ξ ∈ R

}
.
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Thus, we have unique solvability for the variational problem in V ; more-
over, one can show that the weak solution is harmonic in S and satisfies the
boundary conditions of the original problem.
We remark that an analogous argument applies to the problem of a subcritical
flow past a semi submerged body; in this case, the subspace of H (S) where
coercivity holds is defined by a different condition, involving the functions
(3.1). The resulting variational solution, however, is (in general) not harmonic
in S and a regularization procedure is needed in order to obtain a solution of
(2.8)–(2.13); as a consequence, the proof of unique solvability for all subcritical
velocities requires additional assumptions on the shape of the obstacle [4].

4. Solvability of the non linear problem.

In this final section, we briefly review some results about solvability of
the non linear, free boundary problem (2.1)–(2.7). Existence of a solution to
this problem has been established in the study of the ship waves generated by
the uniform motion of a single ”thin” body. In the case of a surface-piercing
obstacle, we have solvability both in the supercritical and subcritical regime
[6], [7], while for a completely submerged body in a supercritical flow we
have a unique solution with prescribed circulation around the body [5]. All
these results are obtained by assuming that the equation of the hull’s profile is
y = ε f (x ), (y = ε f±(x ) for a submarine) with ε > 0, and by considering the
linear problem which turns out in the limit ε → 0; then, the solution of the
nonlinear problem is obtained for small ε by local methods (implicit function
theorems and bifurcation theory) which can be applied after an appropriate
reformulation of the problem in the hodograph plane. Clearly, a crucial step in
this approach is the study of the linearized limit problem; in the case of a semi
submerged obstacle, this is the Neumann-Kelvin problem for a surface beam
and it is uniquely solvable for all values of the flow velocity; on the contrary, it
is not clear whether unique solvability holds for all subcritical velocities in the
problem of a submerged beam. Hence, the solvability of the non linear problem
for a submerged (thin) body in a subcritical stream is still an open problem.

Moreover, in order to provide a correct functional formulation of the
nonlinear boundary conditions, we need some regularity of the weak solutions
of the limit problem. In particular, a careful investigation is required in the
Neumann-Kelvin problem for a surface beam, where two different boundary
conditions meet at the end points of the beam; actually, one can show that there
are uniquely determined α± in conditions (2.13)–(2.14), such that the velocity
field ∇φ is continuous at P± .
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Finally, we point out that we are able to derive some qualitative features
of the solutions to the non linear problem; in particular, in the problem with
a surface-piercing obstacle, we find that the free surface h and the submerged
hull ε f form a C1 streamline, which is exponentially vanishing for x → −∞.
Furthermore, in the supercritical case, the function h is negative (that is, the free
surface lies below the level of calm water), monotone increasing for x > x+ and
decreasing for x < x−; in the subcritical case, we have oscillations of the free
surface for x → +∞, with wave length as in (1.1). We remark that these
properties of the free surface agree with existing numerical results.
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