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AN EXAMPLE OF BERGLUND-HÜBSCH MIRROR
SYMMETRY FOR A CALABI-YAU COMPLETE

INTERSECTION

STEFANO FILIPAZZI - FRANCO ROTA

We study an example of complete intersection Calabi-Yau threefold
due to Libgober and Teitelbaum [11], and verify mirror symmetry at a co-
homological level. Direct computations allow us to propose an analogue
to the Berglund-Hübsch mirror symmetry setup for this example [2]. We
then follow the approach of Krawitz to propose an explicit mirror map
[9].

1. Introduction

This note is an account of a calculation which we carried out during the Sum-
mer School “Pragmatic 2015”, and represents a first step in our project of gen-
eralizing the Krawitz-Chiodo-Ruan cohomological isomorphisms to Berglund-
Hübsch mirror pairs of Calabi-Yau complete intersections.

In 1993, Berglund and Hübsch describe a procedure to construct the mirror
manifold of a large class of Calabi-Yau hypersurfaces in weighted projective
space, using the formalism of Landau-Ginzburg models [2]. Later, Krawitz
gives an explicit description of the mirror map between the state spaces of two
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Berglund-Hübsch mirror LG models [9], and Borisov re-proves and generalizes
his statements [3].

Since the work by Berglund and Hübsch, the role of Landau-Ginzburg mod-
els in mirror symmetry has increased in importance, particularly after Fan, Jarvis
and Ruan defined their quantum invariants in [7] (FJRW theory), and extended
the definition to an even more general setting in [8]. In a subsequent work,
Chiodo and Nagel recognize the state space of Landau-Ginzburg isolated singu-
larities defined in [7] as an instance of relative orbifold Chen-Ruan cohomology
[4]. This allows to define the cohomology of hybrid Landau-Ginzburg models,
and to identify it with the cohomology of Calabi-Yau complete intersections
in weighted projective space. In this sense, [4] extends the LG/CY correspon-
dence, which was proven to hold for hypersurfaces in [5], to the case of complete
intersection Calabi-Yau. The situation in the hypersurface case can be summa-
rized by the following diagram,

CY CY∨

LG LG∨

where an arrow indicates an isomorphism of the corresponding state spaces.
Existence of the vertical arrows has been established in [5], while the horizontal
one is the object of [9] and [3].

In the case of a complete intersection, [4] provides the vertical arrows of the
diagram

CY CY∨

LG LG∨

by proving an orbifold version of the Thom isomorphism. A related result by
Libgober [10] shows the invariance of the elliptic genus for complete intersec-
tions and other examples of GIT quotients.

The object of this work is to exhibit a horizontal arrow in a particular exam-
ple by Libgober and Teitelbaum [11]. In this way, we aim at making progress
towards a definition of a mirror symmetry construction for Calabi-Yau com-
plete intersections of the same type as the Berglund-Hübsch construction. We
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describe a complete intersection Calabi-Yau threefold and its mirror orbifold
using an analogue of the Berglund-Hübsch formalism, and propose a general-
ization of Krawitz’s mirror map.

The direction of this paper is suggested by the classical result of Batyrev
and Borisov on cohomological mirror symmetry for Calabi-Yau complete inter-
sections [1], although at the moment it is unclear how to explicitly relate to their
work.

Starting from a paper by Libgober and Teitelbaum [11], we consider the
complete intersection of two cubics in P5 together with its mirror. We recall the
setup for hybrid Landau-Ginzburg models in Section 2. In Section 3, using the
Chiodo-Nagel CY/LG-correspondence [4], we rephrase the example of [11] in
terms of hybrid Landau-Ginzburg models. Then, in Section 4, we generalize the
construction of Krawitz for the quintic Fermat hypersurface in P4 with the lan-
guage proposed for complete intersections. Finally, in Section 5, we verify that
the state spaces of the complete intersection and of its mirror are isomorphic,
and present an explicit mirror map generalizing Krawitz’s formula.
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2. Hybrid Landau-Ginzburg models

In this section, we recall the notion of hybrid Landau-Ginzburg models. Our
setup follows closely the one in [4], whose notation we adopt for the most part.
The main difference is that we consider a broader class of groups of symmetries.
This is in line with the groups considered in [11].

Let WWW := {W1, . . . ,Wr} be a set of quasi-homogeneous polynomials of de-
grees d1, . . . ,dr defining a complete intersection

XWWW := {W1 = . . .=Wr = 0} ⊂ P(w1, . . . ,wn)
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in weighted projective space. Assume furthermore that XWWW is non-degenerate,
i.e.

• the choice of weights wi is unique;

• XWWW is smooth outside the origin.

The maximal group of diagonal symmetries of XWWW is the maximal subgroup
Γmax ⊂ (C∗)n of diagonal matrices γ preserving XWWW . More explicitly, γ has
diagonal entries of the form (γ1, . . . ,γn) = αλ̄ := (α1λ w1

, . . . ,αnλ wn), where
λ ∈ C∗, and α = α 1̄ is a vector whose entries are all non-zero. By definition,
for any 1 ≤ i ≤ r and admissible choice of α , there exists βi,α ∈ C∗ such that
Wi(α1x1, . . . ,αnxn) = βi,αWi(x1, . . . ,xn). By a group of diagonal symmetries we
mean a subgroup of Γmax.

Example 2.1. The group Γmax contains the following special element. Let d
denote the greatest common divisor of the di, and define

J :=


e2πi w1

d

. . .

e2πi wn
d

 .

The element J is analogous to the generator of the group µµµd in the hypersurface
case. The group 〈J〉 will play an important role later.

Example 2.2. Among the subgroups of Γmax, one can consider the special linear
group of diagonal symmetries of a complete intersection, denoted SL(WWW ). It
contains elements of Γmax of determinant 1.

Definition 2.3. Let γ be a diagonal symmetry acting on Cn as a diagonal matrix
with entries exp(2πiγi), with γi ∈ [0,1). Then, we denote γ by (γ1, . . . ,γn). If we
have γi =

ci
d for all i, we write (γ1, . . . ,γn) =

1
d (c1, . . . ,cn). The age of the element

γ , denoted aγ , is the sum ∑i γi.

Unless otherwise stated, we will follow the classic literature (see [6, Ch. 3]),
and assume that any group of diagonal symmetries Γ contains the torus

Γ0 :=
{

λ̄ = (λ w1 , . . . ,λ wn)|λ ∈ C∗
}
.

Then, Γ0 is the connected component of the identity in Γ, and we denote by G
the quotient Γ/Γ0.

Now, consider Cn+r with coordinates (x1, . . . ,xn, p1, . . . , pr). We can extend
the action of Γ to Cn+r by setting

αλ̄ (xxx, ppp) := (α1λ
w1

x1, . . . ,αnλ
wnxn,β

−1
1,αλ

−d1 p1, . . . ,β
−1
r,α λ

−dr pr). (1)
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It is useful to introduce a notation for the fixed points of an element γ ∈ Γ. We
set

Cn
γ

:= {xxx ∈ Cn|γ · xxx = xxx} , nγ := dimCn
γ ,

where the action of γ is restricted to the first set of coordinates. Similarly, we
define

Cr
γ

:= {ppp ∈ Cr|γ · ppp = ppp} , rγ := dimCr
γ .

The integer nγ (respectively rγ ) counts the dimension of the space spanned by
the xxx (resp. ppp) variables that are fixed by γ . For a polynomial V ∈ C[xxx, ppp], we
let Vγ denote V |Cn

γ×Cr
γ
.

For an element V ∈ C[xxx, ppp], its chiral algebra QV is defined as

QV := dxxx∧d ppp⊗ Jac(V ),

where we are formally tensoring the Jacobi ring

Jac(V ) :=
C[x1, . . . ,xn, p1, . . . , pr]

( ∂V
∂x1

, . . . , ∂V
∂xn

, ∂V
∂ p1

, . . . , ∂V
∂ pr

)

by the top form dxxx∧d ppp := dx1∧ . . .∧dxn∧d p1∧ . . .∧d pr. For brevity, in the
following we will often omit the wedge symbol and write dxxxd ppp := dxxx∧d ppp. We
assign bidegree (D− k,k) to the elements of QV which have degree k in the ppp
variables, where D = n− r−1, .

By construction, γ∗(piWi) = piWi for all γ ∈ Γ and all i. Then we can define
the Γ-invariant function

W : Cn+r→ C
(xxx, ppp) 7→ p1W1(xxx)+ . . .+ prWr(xxx).

Consider the open set in Cn+r defined as ULG :=Cn× (Cr r{000}). The quotient
of ULG by the action of C∗ is the total space of the vector bundle

[ULG/C∗] =
n⊕

j=1

OP(ddd)(−wi) =:Oddd(−www).

Let M :=
{

W = t0
}

denote the fiber over any point t0 6= 0.

Definition 2.4. The datum (Oddd(−www),W ,Γ) is a hybrid Landau-Ginzburg model
with superpotential

W : [Oddd(−www)/G]→ C.
We define the generalized state space of the hybrid Landau-Ginzburg model
(Oddd(−www),W ) as

Hp,q
Γ

(W1, . . . ,Wr) := H p+r,q+r
CR ([Oddd(−www)/G] , [F/G]) ,

where F is the quotient stack [M/C∗] inside Oddd(−www).
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For any two non-negative integers r ≥ n we need to consider the bigraded
ring dt(−n)⊗C[t]/(tr−n), where the element dt(−n)⊗ tk has bidegree (n+
k,n+ k). We will make use of the following theorem due to Chiodo and Nagel
[4].

Theorem 2.5 ([4, Theorem 4.3]). Let Wi, r and n be as introduced above. Let
W̃ = ∑i piWi ∈ C[xxx, ppp]. Then, we have

H∗Γ(W1, . . . ,Wr) =
⊕
γ∈Γ

Hγ(−aγ + r),

where Hγ with its double grading is given by

Hγ =


(
QW̃γ

)Γ

if rγ < nγ (2a)

dt(−nγ)⊗C[t]/(trγ−nγ ) if rγ ≥ nγ . (2b)

and carries the Tate twist (−aγ + r).

3. Description of the example

In this section, we introduce the complete intersection Calabi-Yau object of this
work. This example was first described by Libgober and Teitelbaum [11].

Consider P5 with coordinates [x1 : x2 : x3 : X1 : X2 : X3]. Let X ⊂ P5 be the
vanishing locus of the polynomials

W1 = x3
1 + x3

2 + x3
3−3τX1X2X3

W2 = X3
1 +X3

2 +X3
3 −3τx1x2x3.

For generic choice of τ ∈ C, it is a Calabi-Yau threefold. Since we are in the
standard projective space P5, and we are considering two polynomials of degree
3, the group 〈J〉 introduced in Example 2.1 is isomorphic to µµµ3.

Introduce two new variables, p1 and p2, and form the polynomial W :=
p1W1+ p2W2. Extend the action of the group 〈J〉 to C6×C2 by letting J act with
weights (1, . . . ,1,−3,−3). Similarly, following equation (1), we can extend the
action of any group Γ of diagonal symmetries to the variables p1 and p2.

According to the hypersurface case of Berglund-Hübsch mirror symmetry
(see [6, Ch. 3]), to study the generalized state spaces of the Hybrid Landau-
Ginzburg model induced by W1 and W2, we have to make choices for a mirror
set of polynomials and for a pair of groups. As suggested by Libgober and
Teitelbaum, we choose the same set of polynomials for the mirror. Indeed, this
is analogous to the Fermat hypersurface case. Then, let Γ := Γ0 · 〈J〉, and ΓT :=
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Γmax ·SL(WWW ). This choice is in line with the Berglund-Hübsch prescription (see
Rmk. 3.1).

By Theorem 2.5, the only elements of a group of diagonal symmetries Σ

contributing to the generalized state space of (Oddd(−www),W ,Σ) are the elements
fixing at least one of the coordinates (x1,x2,x3,X1,X2,X3, p1, p2).

By direct inspection, one checks that the only elements of Γ that fix at least
one of the variables are the elements of 〈J〉. Analogously, when considering ΓT ,
one is left with those elements γ ∈ SL(WWW ) that fix at least one of the variables.
These γ generate a subgroup Γ′ ⊂ SL(WWW ) whose elements gλ ,µ,α,β ,δ ,ε act on
(x1,x2,x3,X1,X2,X3, p1, p2) via multiplication by

(λξ
α
3 ξ

µ

9 ,λξ
β

3 ξ
µ

9 ,λξ
µ

9 ,λξ
−δ

3 ξ
−µ

9 ,λξ
−ε

3 ξ
−µ

9 ,λξ
−µ

9 ,λ−3
ξ
−µ

3 ,λ−3
ξ

µ

3 ).

Here ξ3 is a primitive third root of unity, ξ9 is a primitive ninth root of unity,
and λ ∈ µµµ9. Furthermore, the condition

α +β = 3µ = δ + ε mod 3

is satisfied.

Remark 3.1. The group ΓT also contains Γ0, and the quotient ΓT/Γ0 coincides
with the group G81 described in [11]. We have Γ/Γ0 = 〈J〉.

As a consequence of Libgober and Teitelbaum’s work [11] and an applica-
tion of Chiodo and Nagel’s CY/LG-correspondence [4, Thm. 5.1], one knows
that the generalized state spaces Hp,q

Γ
(W1,W2) and H3−p,q

ΓT (W1,W2) have the
same dimension. The object of this work is to further investigate this corre-
spondence, and propose a possible mirror map. The main idea is summarized in
the following.

Definition 3.2. We define an explicit mirror mapH1,1
ΓT (W1,W2)→H2,1

Γ
(W1,W2),

generalizing Krawitz’s map for hypersurfaces.

Remark 3.3. The mirror map in Definition 3.2 is expected to extend to a map
H∗

ΓT (W1,W2) → H∗Γ(W1,W2). At this point, the main difficulty is to choose
appropriate representatives among the 73 generators of H1,2

Γ
(W1,W2) in order

to recognize a pattern similar to the one occurring among the generators of
H2,1

Γ
(W1,W2), which are listed in Table 1.

4. Krawitz’s mirror map revisited

In this section, we discuss how the map mentioned in Definition 3.2 is related to
the work of Krawitz. More precisely, we show how the approach suggested for
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Calabi-Yau complete intersections is a generalization of the one already known
for hypersurfaces.

We will focus on a concrete example, the Fermat quintic XW ⊂ P4. This is
given as the vanishing locus of the polynomial

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5.

First, we consider the group 〈J〉 as group of diagonal symmetries. Thus, we
first consider the pair (W,〈J〉). Berglund-Hübsch mirror symmetry guarantees
the existence of a mirror model, denoted by (W T ,〈J〉T ) [6, 9]. In our case,
W = W T , and 〈J〉T = SL(W T ) = SL(W ) is a well known group, denoted by
G125.

Now, we would like to regard the hypersurface XW as a “complete inter-
section of one hypersurface”. Therefore, we introduce one auxiliary variable
p, and, as explained in equation (1), extend the action of the diagonal symme-
tries acting on XW to p. We can then regard pW as a function on C5×C∗, and
consider the induced Landau-Ginzburg model.

Among the groups fixing XW , there is C∗ · 〈J〉. In particular, C∗ acts on xi

with weight 1, and on p with weight −5. We can compute the corresponding
state spaces. By Theorem 2.5, only the elements λ · Ja ∈ C∗ · 〈J〉 that fix some
variable contribute to the computations. In this case, it is easy to check that
λ ∈ C∗ is forced to satisfy |λ |= 1. More precisely, λ is either 1, or a primitive
fifth-root of unity. Therefore, we can identify the elements of C∗ · 〈J〉 that give
non-trivial contributions to cohomology with elements of 〈J〉. There are two
possibilities: If γ ∈ 〈J〉 is the identity, then all variables are fixed, otherwise,
just p remains unchanged.

The element γ = id contributes to the state space with a summand of the
form (

d pppdxxx⊗ C[p,x1, . . . ,x5]

(px4
1, . . . , px4

5,∑
5
i=1 x5

i )

)C∗

.

Its elements carry a bigrading (3− k,k), where k is the degree of the variable
p in the element. As d pppdxxx is C∗ invariant, and we are looking for C∗-invariant
elements, we need polynomial coefficients containing five among x1, . . . ,x5 for
every appearance of p. There is just a one-dimensional family in degree (3,0),
there are spaces with dimension 101 in degree (2,1) and (1,2), and there is one
more one-dimensional family in degree (0,3).

If γ acts by a primitive fifth-root of unity, we have rγ = 1 and nγ = 0.
Therefore, each one of these elements contributes with a one-dimensional vector
space, generated by one element, denoted by 1|g〉.

Taking into account the grading of the above pieces, we recover the well
known Hodge diamond
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1

1

1

1

101 11011

Now, we want to consider the mirror of (pW,C∗ ·〈J〉). As W is a polynomial
of Fermat type, we will let the mirror polynomial be pW as well. As C∗ is the
minimial group of diagonal symmetries containing C∗, we consider the maximal
group of symmetries fixing the polynomial pW . Let Γ be such group. It can be
checked by direct computation that Γ = C∗ ·G125. It acts as

(x1,x2,x3,x4,x5, p) 7→ (λx1,λξ
ax2,λξ

bx3,λξ
cx4,λξ

−a−b−cx5,λ
−5 p),

where λ ∈ C∗, ξ is a primitive fifth-root of unity, and a,b,c ∈ Z.

Remark 4.1. In [4], Chiodo and Nagel consider the maximal group fixing W ,
and then they extend its action to pW . On the other hand, for our purposes, such
a group turns out to be too rigid, and does not recover the right cohomologies.

As above, the only elements γ ∈ Γ contributing to the state spaces are the
ones where λ is a fifth-root of unity. In particular, p is fixed by any relevant
element γ ∈ Γ. This highlights how the variable p is not necessary for the com-
putations in the hypersurface case.

Since λ needs to be a fifth-root of unity, we can absorb it in the contribution
of ξ . Therefore, any element γ contributing to the computations can be encoded
by a 6-tuple

(a1,a2,a3,a4,a5;0),

where the action on xi is given by multiplication by ξ ai . We will use this formal-
ism as a slight modification of the one in Definition 2.3, in order to distinguish
the p and the x variables.

Now, we are left with direct computations. We will proceed by cases.

• Assume that p is the only variable fixed. In such case, rγ = 1, and nγ =
0. Therefore, each element contributes with a one-dimensional vector
space. There are 204 of these elements, and their ages groups them in
four families of dimension 1, 101, 101 and 1 respectively. These compute
the twisted sector of the cohomology ring.

• If p and some but not all of the xi are fixed, there is no contribution.
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• The identity element, represented by the string (0,0,0,0,0;0), contributes
to the untwisted sector. We have to consider the ring(

d pppdxxx⊗ C[p,x1, . . . ,x5]

(px4
1, . . . , px4

5,∑
5
i=1 x5

i )

)C∗·G125

.

This ring has dimension four as vector space, with basis

(d pppdxxx⊗1,d pppdxxx⊗ px1 . . .x5,d pppdxxx⊗ (px1 . . .x5)
2,d pppdxxx⊗ (px1 . . .x5)

3).

Each one of these elements has a different bidegree.

If we put the above facts together, we recover the Hodge diamond

1

101

101

1

1 111

With the elements explicitly listed, we can proceed and rewrite Krawitz’s
mirror map with this new notation. First, we consider the generators of the
untwisted sector of the mirror. These are mapped according to

(px1 . . .x5)
a−1⊗d pppdxxx |id〉 7→ 1 |(a,a,a,a,a;0)〉 ,

where a ∈ {1,2,3,4}.
Symmetrically, the twisted elements of the mirror are mapped to the un-

twisted sector of the quintic. The map is given by

1 |(a,b,c,d,e;0)〉 7→ d pppdxxx⊗ p
a+b+c+d+e

5 −1xa−1
1 xb−1

2 xc−1
3 xd−1

4 xe−1
5 |id〉 . (3)

Remark 4.2. The quantity a+b+c+d+e
5 is the age aγ of the group element γ con-

sidered. Therefore, under the mirror map introduced by Krawitz [9], the auxil-
iary variable p appears with exponent aγ −1.

5. The mirror map

In this section, we construct the mirror map in Definition 3.2. As we noticed in
the example of the Fermat quintic, there is no harm in dropping the assumption
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that the diagonal symmetries have determinant 1. Indeed, the new group ele-
ments coming into the picture do not contribute to the computation of the state
spaces. Recall that we consider the groups Γ = Γ0 · 〈J〉 and ΓT acting on the
same set of polynomials (see Section 3).

In the following, we first compute the state space associated to Γ. Then, we
consider the one associated to ΓT , and we conclude describing the mirror map.

5.1. The state spacesHp,q
Γ

(W1,W2)

We follow the notation of Theorem 2.5. Notice that for γ ∈Γ, if rγ = nγ = 0, then
Hγ = 0 gives no contribution to the state space. Then, only the three elements
of 〈J〉 ⊂ Γ give non-trivial contributions. We will proceed by cases.

• The non-trivial elements have ages 2 and 4 respectively. They both con-
tribute with the cohomology of a projective line P(3,3) ∼= P1, and form
the twisted sectors ofH∗

Γ
(W1,W2).

• The contribution of the identity element is encoded in QΓ
W . This ring

carries a bigrading (D−k,k), where D = n−r−1= 3, and k ∈ {0,1,2,3}
is the degree in the variables p1 and p2. The relations in Jac(V ) are:

x3
1 + x3

2 + x3
3−3τX1X2X3,

X3
1 +X3

2 +X3
3 −3τx1x2x3,

p1x2
i − p2x jxk,

p2X2
i − p1X jXk,

where all the i, j,k are assumed to be distinct. The form

d pppdxxxdXXX := d p1∧d p2∧dx1∧dx2∧dx3∧dX1∧dX2∧dX3

is invariant under the action of Γ. Hence, the degree (3,0) component
is generated by d pppdxxxdXXX ⊗ 1. Table 1 contains a list of 73 independent
generators of H2,1

Γ
(W1,W2). They determine the whole untwisted sector,

which is completed byH1,2
Γ
(W1,W2) andH0,3

Γ
(W1,W2), whose dimensions

are 73 and 1 respectively.

We can summarize the above computations with the following Hodge dia-
mond.
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1

1

1

1

73 1731

5.2. The state spacesHp,q
ΓT (W1,W2)

Now, we consider the mirror side. We will list the elements of ΓT , and study
their contributions to the state spaces. As explained in Definition 2.3, we write
(γ1, . . . ,γ8) if γ acts on C6×C2 as a diagonal matrix with entries exp(2πiγi).

As showed in Theorem 2.5, the contribution of an element γ has two differ-
ent behaviors, depending on how rγ and nγ compare to each other. Therefore,
we will proceed by cases.

• If rγ < nγ , we are in the case given by equation (2a). These elements are
listed in Table 3. One of these elements is the identity of ΓT . It corre-
sponds to the untwisted sector of H∗

ΓT (W1,W2), which is 4-dimensional
and generated by powers of d pppdxxxdXXX⊗ p1x3

1 in the Jacobi ring.

The other four elements all give a two dimensional Jacobi ring, and be-
have in a similar way. For instance, γ = 1

9(0,0,0,3,3,3;0,0) induces a di-
rect summand Hγ = span(d pppdxxxdXXX⊗x3

1,d pppdxxxdXXX⊗x3
2), which contributes

as two-dimensional subspace of H1,1
ΓT (W1,W2). A second one of these

elements contributes with a two-dimensional subspace of H1,1
ΓT (W1,W2).

Similarly, the two remaining elements correspond to two two-dimensional
subspaces ofH2,2

ΓT (W1,W2).

• If rγ ≥ nγ , we are in the case given by equation (2b). Each element in
Table 2 contributes to the state space with rγ−nγ elements. If rγ−nγ = 2,
the two generators belong one to

Haγ−r+nγ ,aγ−r+nγ

ΓT (W1,W2),

and the other to
Haγ+1−r+nγ ,aγ+1−r+nγ

ΓT (W1,W2).

There are four such elements. The first one of them contributes with
one generator to H0,0

ΓT (W1,W2), and with one to H1,1
ΓT (W1,W2). Similarly,

a second element generates the top cohomology, contributing with one
generator to H3,3

ΓT (W1,W2), and with one to H2,2
ΓT (W1,W2). Then, the two
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remaining elements behave in the same way: Each one of them has one
generator lying inH1,1

ΓT (W1,W2), and one inH2,2
ΓT (W1,W2).

On the other hand, if rγ − nγ = 1, there is only one generator, which be-
longs to

Haγ−r+nγ ,aγ−r+nγ

ΓT (W1,W2).

The last column in Table 2 counts the elements of the same type. For
example, from the element 1

9(3,3,3,3,0,6;0,0) we can obtain 5 more
by permuting X1,X2 and X3 via the action of the symmetric group S3.
These new elements are considered of the same type as the starting one,
and are not explicitly listed in Table 2. They are taken into account
by counting 6 elements, including their representative, of the type of
1
9(3,3,3,3,0,6;0,0).

We can summarize the above computations with the following Hodge dia-
mond.

1

73

73

1

1 111

5.3. The mirror map

We present the explicit isomorphism between the vector spaces H1,1
ΓT (W1,W2)

andH2,1
Γ
(W1,W2) mentioned in Definition 3.2. Its main feature is that it respects

the structure emerging from the lists in Tables 1, 3 and 2, where it becomes
evident that these two vector spaces admit a further interesting subdivisions into
direct summands.

We follow the notation in [9] and Theorem 2.5: Given an element σ of a
group of diagonal symmetries Σ, we denote by ω|σ〉 the element of the state
spaceH∗

Σ
determined by ω ∈ Hσ .

Now, we explain the mirror map via its action on some elements listed in
Table 2, which represent the different possible behaviors. For the complete
action of the mirror map, we refer to Table 4 in the Appendix.

First, we notice that there is a correspondence between direct summands in
H1,1

ΓT (W1,W2) andH2,1
Γ
(W1,W2). For the reader’s convenience, we will list them

relying on Tables 1, 3 and 2.
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• InH2,1
Γ
(W1,W2), we isolated six groups of generators, each one consisting

of nine elements. These correspond to the six groups of nine elements
γ ∈ ΓT having rγ = 1, nγ = 0, and aγ = 3.

• The two groups of six generators of H2,1
Γ
(W1,W2) correspond to the two

groups of six elements γ ∈ ΓT having rγ = 2, nγ = 1, and aγ = 2.

• In ΓT there are two elements with rγ = 2, nγ = 3 and aγ = 1. These
contribute with two two-dimensional vector spaces. These correspond
to the subspaces 〈p1X3

1 , p1X3
2 〉 and 〈p2x3

1, p2x3
2〉 of H2,1

Γ
(W1,W2). Notice

that, by the relations in the Jacobi ring, these spaces contain p1X3
3 and

p2x3
3 respectively.

• To conclude, among the elements γ ∈ ΓT with rγ = 2 and nγ = 0, three of
these contribute with a one-dimensional subspace of H1,1

ΓT (W1,W2) each.
These will correspond to the three sporadic polynomials listed at the top
of Table 1.

Before getting into the details of the mirror map, it is worth asking the fol-
lowing interesting question.

Question 5.1. Do the aforementioned direct summands of H1,1
ΓT (W1,W2) and

H2,1
Γ
(W1,W2) have an interpretation from a geometric or physical point of view?

Now, we will proceed to describing the mirror map, analyzing each one of
the cases listed above.

The two first groups of elements present a fundamental common feature,
namely rγ − nγ = 1. This is essentially the only case occurring in the twisted
sector for the hypersurface case [9]. As showed in equation (3), once we in-
troduce a p in the hypersurface case, the exponents of the xi contribute to the
exponent of this new variable. We will follow this idea, bearing in mind that p1
is related to the set of variables xi, while p2 to the set Xi.

For the elements with rγ −nγ = 1, we then propose the assignment

dt
∣∣∣∣19(b1,b2,b3,c1,c2,c3;a1,a2)

〉
7→

d pppdxxxdXXX⊗ p
min{b

b j
3 c}

1 p
min{b

c j
3 c}

2

3

∏
i=1

x
b bi

3 c−min{b
b j
3 c}

i X
b ci

3 c−min{b
c j
3 c}

i |id〉 .
(4)

Indeed, from Table 2, it is clear that exactly one set of variables has an action
which is a rotation of at least e

2πi
3 on each single coordinate. We record this

information choosing the corresponding variable pi to appear in the assigned
polynomial. Then, in order to choose the exponent appearing for each variable
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in the polynomial in output, we compare the action within each group xi and
Xi. This is where the normalizing exponents −min{bb j

3 c} and −min{b c j
3 c}

come from. Finally, we point out that looking at quantities of the form bn
3c is

consistent with distinguishing the action of third-roots of unity from the one of
primitive ninth-roots.

As example of the assignments described in equation (4), we have

dt
∣∣∣∣19(3,3,3,3,0,6;0,0)

〉
7→ d pppdxxxdXXX⊗ p1X1X2

3 |id〉,

and

dt
∣∣∣∣19(2,2,5,6,3,6;3,0)

〉
7→ d pppdxxxdXXX⊗ p2x3X1X3|id〉.

Now, we can study how the mirror map acts on the subspaces corresponding
to the elements γ ∈ ΓT with rγ = 2, nγ = 3, and aγ = 1. The first element is

1
9
(0,0,0,3,3,3;0,0),

which contributes with the subspace

〈d pppdxxx⊗ x3
1,d pppdxxx⊗ x3

2〉.

Following the ideas already discussed, the output of the mirror map should carry
the variable p2, in order to record the action on the Xi variables. Furthermore, it
is natural to keep track of the two distinct generators d pppdxxx⊗ x3

1 and d pppdxxx⊗ x3
2

via their polynomial part. Therefore, we define

d pppdxxx⊗ x3
i

∣∣∣∣19(0,0,0,3,3,3;0,0)
〉
7→ d pppdxxxdXXX⊗ p2x3

i |id〉. (5)

Notice that this assignment is valid also for i = 3.
Similarly, we define

d pppdXXX⊗X3
i

∣∣∣∣19(0,0,0,3,3,3;0,0)
〉
7→ d pppdxxxdXXX⊗ p2X3

i |id〉 (6)

Notice that the assignments in equations (5) and (6) could be regarded as fol-
lowing an extension of the rule in equation (4), where we allow some degree of
complexity in the polynomial part of the input as well.

Thus, we are left with assigning a mirror element for the three elements
arising in from γ ∈ ΓT , with rγ = 2 and nγ = 0. In the case of the elements

dt
∣∣∣∣19(3,3,3,6,6,6;0,0)

〉
, dt

∣∣∣∣19(6,6,6,3,3,3;0,0)
〉
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we can follow the algorithm in equation (4). In this way, we get

dt
∣∣∣∣19(3,3,3,6,6,6;0,0)

〉
7→ d pppdxxxdXXX⊗ p2X1X2X3|id〉,

and

dt
∣∣∣∣19(6,6,6,3,3,3;0,0)

〉
7→ d pppdxxxdXXX⊗ p1x1x2x3|id〉.

Now, we have to consider the element

tdt
∣∣∣∣19(3,3,3,3,3,3;0,0)

〉
.

This element does not follow directly in the patter of equation (4). On the other
hand, it comes from the most symmetric element γ ∈ ΓT \ {0}. Analogously,
there is a highly symmetric generator ofH2,1

Γ
(W1,W2), namely

d pppdxxxdXXX⊗ p1X1X2X3 = d pppdxxxdXXX⊗ p2x1x2x3

= d pppdxxxdXXX⊗ p2X3
i

= d pppdxxxdXXX⊗ p1x3
i .

Given the common symmetries, we suggest the choice

tdt
∣∣∣∣19(3,3,3,3,3,3;0,0)

〉
7→ d pppdxxxdXXX⊗ p1X1X2X3|id〉.

The above assignments determine a bijective correspondence between a ba-
sis of H1,1

ΓT (W1,W2) and one of H2,1
Γ
(W1,W2), so we can extend the map by

linearity. This completes the definition of the mirror map in Definition 3.2.
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A. Tables

Here we collect the tables referenced above.

TABLE 1

Generator #

p1X1X2X3 = p2x1x2x3 = p2X3
i = p1x3

i 1

p1x1x2x3 = p1 ∑X3
i 1

p2X1X2X3 = p2 ∑x3
i 1

p1X3
1 1

p1X3
2 1

p2x3
1 1

p2x3
2 1

p1xix jXk 9

p2xiX jXk 9

p1XiX jxk = p2X2
l xk 9

p1x2
i X j = p2x jxkX j 9

p1X2
i x j 9

p2x2
i X j 9

p1x2
i x j = p2x2

jxk 6

p1X2
i X j = p2XiX2

k 6

Table 1: A basis of H2,1
Γ

(W1,W2). All in-
dices i, j,k, l range from 1 to 3, distinct
indices have distinct values. On every
row there are all the possible ways of
writing a generator, and the number of
generators of that form.

TABLE 2

rγ nγ element type aγ #

2 0 1
9(3,3,3,3,3,3;0,0) 2 1

2 0 1
9(6,6,6,3,3,3;0,0) 3 1

2 0 1
9(3,3,3,6,6,6;0,0) 3 1

2 0 1
9(6,6,6,6,6,6;0,0) 4 1

2 1 1
9(3,3,3,3,0,6;0,0) 2 6

2 1 1
9(3,0,6,3,3,3;0,0) 2 6

2 1 1
9(6,6,6,3,0,6;0,0) 3 6

2 1 1
9(3,0,6,6,6,6;0,0) 3 6

1 0 1
9(2,2,5,6,3,6;3,0) 3 9

1 0 1
9(6,3,6,2,2,5;0,3) 3 9

1 0 1
9(3,6,3,1,7,1;0,6) 3 9

1 0 1
9(1,7,1,3,6,3;6,0) 3 9

1 0 1
9(3,6,3,4,4,1;0,6) 3 9

1 0 1
9(4,4,1,3,6,3;6,0) 3 9

1 0 1
9(6,6,3,8,2,8;0,3) 4 9

1 0 1
9(8,2,8,6,6,3;3,0) 4 9

1 0 1
9(6,6,3,5,5,8;0,3) 4 9

1 0 1
9(5,5,8,6,6,3;3,0) 4 9

1 0 1
9(7,4,7,3,3,6;6,0) 4 9

1 0 1
9(3,3,6,7,4,7;0,6) 4 9

Table 2: Elements of ΓT for which rγ ≥ nγ .

TABLE 3

rγ nγ element aγ

2 6 (0,0,0,0,0,0;0,0) 0

2 3 1
9(0,0,0,3,3,3;0,0) 1

2 3 1
9(3,3,3,0,0,0;0,0) 1

2 3 1
9(0,0,0,6,6,6;0,0) 2

2 3 1
9(0,0,0,6,6,6;0,0) 2

Table 3: Elements of ΓT for which rγ < nγ .
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TABLE 4

H1,1
ΓT (W1,W2) → H2,1

Γ
(W1,W2) H1,1

ΓT (W1,W2) → H2,1
Γ

(W1,W2)

tdt|19(3,3,3,3,3,3;0,0)〉 7→ p1x3
1|id〉

dt|19(3,3,3,6,6,6;0,0)〉 7→ p2X1X2X3|id〉 dt|19(3,6,3,1,7,1;0,6)〉 7→ p1x2X2
2 id〉

dt|19(6,6,6,3,3,3;0,0)〉 7→ p1x1x2x3|id〉 dt|19(3,6,3,7,1,1;0,6)〉 7→ p1x2X2
1 id〉

d pppdxxxx3
1|

1
9(0,0,0,3,3,3;0,0)〉 7→ p2x3

1|id〉 dt|19(6,3,3,1,7,1;0,6)〉 7→ p1x1X2
2 id〉

d pppdxxxx3
2|

1
9(0,0,0,3,3,3;0,0)〉 7→ p2x3

2|id〉 dt|19(6,3,3,7,1,1;0,6)〉 7→ p1x1X2
1 id〉

d pppdXXXX3
1 |

1
9(3,3,3,0,0,0;0,0)〉 7→ p1X3

1 |id〉 dt|19(3,3,6,1,1,7;0,6)〉 7→ p1x3X2
3 id〉

d pppdXXXX3
2 |

1
9(3,3,3,0,0,0;0,0)〉 7→ p1X3

2 |id〉 dt|19(3,6,3,1,1,7;0,6)〉 7→ p1x2X2
3 id〉

dt|19(3,3,3,3,0,6;0,0)〉 7→ p1X1X2
3 |id〉 dt|19(6,3,3,1,1,7;0,6)〉 7→ p1x1X2

3 id〉

dt|19(3,3,3,0,3,6;0,0)〉 7→ p1X2X2
3 |id〉 dt|19(3,3,6,1,7,1;0,6)〉 7→ p1x3X2

2 id〉

dt|19(3,3,3,0,6,3;0,0)〉 7→ p1X2
2 X3|id〉 dt|19(3,3,6,7,1,1;0,6)〉 7→ p1x3X2

1 id〉

dt|19(3,3,3,6,0,3;0,0)〉 7→ p1X2
1 X3|id〉 dt|19(3,6,3,4,4,1;0,6)〉 7→ p1x2X1X2id〉

dt|19(3,3,3,6,3,0;0,0)〉 7→ p1X2
1 X2|id〉 dt|19(6,3,3,4,4,1;0,6)〉 7→ p1x1X1X2id〉

dt|19(3,3,3,3,6,0;0,0)〉 7→ p1X1X2
2 |id〉 dt|19(3,3,6,4,1,4;0,6)〉 7→ p1x3X1X3id〉

dt|19(0,3,6,3,3,3;0,0)〉 7→ p2X2X2
3 |id〉 dt|19(3,3,6,1,4,4;0,6)〉 7→ p1x3X2X3id〉

dt|19(3,0,6,3,3,3;0,0)〉 7→ p2X1X2
3 |id〉 dt|19(3,6,3,4,1,4;0,6)〉 7→ p1x2X1X2id〉

dt|19(6,0,3,3,3,3;0,0)〉 7→ p2X2
1 X3|id〉 dt|19(3,6,3,1,4,4;0,6)〉 7→ p1x2X2X3id〉

dt|19(0,6,3,3,3,3;0,0)〉 7→ p2X2
2 X3|id〉 dt|19(6,3,3,4,1,4;0,6)〉 7→ p1x1X1X3id〉

dt|19(3,6,0,3,3,3;0,0)〉 7→ p2X1X2
2 |id〉 dt|19(6,3,3,1,4,4;0,6)〉 7→ p1x1X2X3id〉

dt|19(6,3,0,3,3,3;0,0)〉 7→ p2X2
1 X2|id〉 dt|19(3,3,6,4,4,1;0,6)〉 7→ p1x3X1X2id〉

dt|19(2,2,5,6,3,6;3,0)〉 7→ p2x3X1X3|id〉 dt|19(1,1,7,3,3,6;6,0)〉 7→ p2x2
3X3id〉

dt|19(2,2,5,3,6,6;3,0)〉 7→ p2x3X2X3|id〉 dt|19(1,7,1,3,6,3;6,0)〉 7→ p2x2
2X2id〉

dt|19(2,2,5,6,6,3;3,0)〉 7→ p2x3X1X2|id〉 dt|19(1,7,1,6,3,3;6,0)〉 7→ p2x2
2X1id〉

dt|19(2,5,2,6,3,6;3,0)〉 7→ p2x2X1X3|id〉 dt|19(7,1,1,3,6,3;6,0)〉 7→ p2x2
1X2id〉

dt|19(2,5,2,3,6,6;3,0)〉 7→ p2x2X2X3|id〉 dt|19(7,1,1,6,3,3;6,0)〉 7→ p2x2
1X1id〉

dt|19(5,2,2,6,3,6;3,0)〉 7→ p2x1X1X3|id〉 dt|19(1,1,7,3,6,3;6,0)〉 7→ p2x2
3X2id〉

dt|19(5,2,2,3,6,6;3,0)〉 7→ p2x1X2X3|id〉 dt|19(1,1,7,6,3,3;6,0)〉 7→ p2x2
3X1id〉

dt|19(2,5,2,6,6,3;3,0)〉 7→ p2x2X1X2|id〉 dt|19(1,7,1,3,3,6;6,0)〉 7→ p2x2
2X3id〉

dt|19(5,2,2,6,6,3;3,0)〉 7→ p2x1X1X2|id〉 dt|19(7,1,1,3,3,6;6,0)〉 7→ p2x2
1X3id〉

dt|19(6,3,6,2,2,5;0,3)〉 7→ p1x1x3X3|id〉 dt|19(4,4,1,3,6,3;6,0)〉 7→ p2x1x2X2id〉

dt|19(3,6,6,2,2,5;0,3)〉 7→ p1x2x3X3|id〉 dt|19(4,4,1,6,3,3;6,0)〉 7→ p2x1x2X1id〉

dt|19(6,3,6,2,5,2;0,3)〉 7→ p1x1x3X2|id〉 dt|19(4,1,4,3,3,6;6,0)〉 7→ p2x1x3X3id〉

dt|19(6,3,6,5,2,2;0,3)〉 7→ p1x1x3X1|id〉 dt|19(1,4,4,3,3,6;6,0)〉 7→ p2x2x1X3id〉

dt|19(3,6,6,2,5,2;0,3)〉 7→ p1x2x3X2|id〉 dt|19(4,4,1,3,3,6;6,0)〉 7→ p2x1x2X3id〉

dt|19(3,6,6,5,2,2;0,3)〉 7→ p1x2x3X1|id〉 dt|19(4,1,4,3,6,3;6,0)〉 7→ p2x1x3X2id〉

dt|19(6,6,3,2,2,5;0,3)〉 7→ p1x1x2X3|id〉 dt|19(4,1,4,6,3,3;6,0)〉 7→ p2x1x3X1id〉

dt|19(6,6,3,2,5,2;0,3)〉 7→ p1x1x2X2|id〉 dt|19(1,4,4,3,6,3;6,0)〉 7→ p2x2x3X2id〉

dt|19(6,6,3,5,2,2;0,3)〉 7→ p1x1x2X1|id〉 dt|19(1,4,4,6,3,3;6,0)〉 7→ p2x2x3X1id〉

Table 4: The complete description of the mirror map on the generators
of H1,1

ΓT , grouped according to the subdivision described above.
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