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EXISTENCE OF SOLUTION IN WEIGHTED SOBOLEV
SPACES FOR A STRONGLY NONLINEAR DEGENERATE

ELLIPTIC EQUATIONS HAVING NATURAL
GROWTH TERMS AND L1 DATA

ALBO CARLOS CAVALHEIRO

In this paper we are interested in the existence of a solution for the
nonlinear degenerate elliptic equations Lu(x)+H(x,u,∇u)ω2 = f in the
setting of the weighted Sobolev space W 1,p

0 (Ω,ω1,ω2), where H is a non-
linear term with natural growth with respect to ∇u and f ∈L1(Ω) .

1. Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev
space W 1,p

0 (Ω,ω1,ω2) for the nonlinear degenerate elliptic problem with Dirich-
let boundary conditions

(P)


Lu(x)+H(x,u,∇u)ω2 = f ∈L1(Ω),
H(x,u,∇u)∈L1(Ω,ω2),

u∈W 1,p
0 (Ω,ω1,ω2),

where L is the partial differential operator Lu = −div(ω1A(x,u,∇u)) and the
function H(x,u,∇u) is a non linear lower order term having natural growth (of
order p) with respect to |∇u| (with respect to |u| we do not assume any growth
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restrictions, but we assume the sign-condition H(x,η ,ξ )η≥0), Ω is a bounded
open set in Rn, ω1 and ω2 are two weight functions, 1 < p < ∞, f ∈L1(Ω) and
the functionsA : Ω×R×Rn→Rn and H : Ω×R×Rn→R satisfy the following
conditions:
(H1) x 7→A(x,η ,ξ ) is measurable on Ω for all (η ,ξ )∈R×Rn,

(η ,ξ ) 7→A(x,η ,ξ ) is continuous on R×Rn for almost all x∈Ω;
(H2) |A(x,η ,ξ )|≤K(x)+h1(x) |η |p−1 +h2(x) |ξ |p−1, K∈Lp ′(Ω,ω1) and
h1,h2∈L∞(Ω) (with 1/p+1/p′ = 1);
(H3) [A(x,η ,ξ )−A(x,η ′,ξ ′)].(ξ −ξ ′)≥0, whenever ξ ,ξ ′∈Rn, ξ 6=ξ ′, where
A(x,η ,ξ ) = (A1(x,η ,ξ ), ...,An(x,η ,ξ )), a dot denote here the Euclidian sca-
lar product in Rn;
(H4) A(x,η ,ξ ).ξ ≥α |ξ |p, where α is a positive constant;
(H5) x 7→H(x,η ,ξ ) is measurable on Ω for all (η ,ξ )∈R×Rn,

(η ,ξ ) 7→H(x,η ,ξ ) is continuous on R×Rn for almost all x∈Ω;

(H6) |H(x,η ,ξ )|≤b(η)
(
|ξ |p ω1(x)

ω2(x)
+h(x)

)
, where h∈L1(Ω,ω2), h≥0 and

0≤b(η)≤β for all η∈R;
(H7) H(x,η ,ξ )η≥0;
(H8) There exist σ > 0 and γ > 0 (0 < γ < β ) such that

|H(x,η ,ξ )|≥γ|ξ |p ω1(x)
ω2(x)

if |η |≥σ .
By a weight, we shall mean a locally integrable function ω on Rn such that

0 < ω(x) < ∞ for a.e. x∈Rn. Every weight ω gives rise to a measure on the
measurable subsets on Rn through integration. This measure will be denoted by
µ . Thus, µi(E) =

∫
E ωi(x)dx for measurable sets E⊂Rn, i = 1,2.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [5], [9],[10], [13] and [17]).

In various applications, we can meet boundary value problems for elliptic
equations whose ellipticity is disturbed in the sense that some degeneration or
singularity appears. This bad behaviour can be caused by the coefficients of
the corresponding differential operator as well as by the solution itself. The so-
called p-Laplacian is a prototype of such an operator and its character can be
interpreted as a degeneration or as a singularity of the classical (linear) Laplace
operator (with p = 2). There are several very concrete problems from practice
which lead to such differential equations, e.g. from glaceology, non-Newtonian
fluid mechanics, flows through porous media, differential geometry, celestial
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mechanics, climatology, petroleum extraction, reaction-diffusion problems (see
some examples of applications of degenerate elliptic equations in [4], [8] and
[18]).

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[15]). These classes have found many useful applications in harmonic analysis
(see [16]). Another reason for studying Ap-weights is the fact that powers of the
distance to submanifolds of Rn often belong to Ap (see [14]). There are, in fact,
many interesting examples of weights (see [13] for p-admissible weights).

Note that, in the proof of our main results, many ideas have been adapted
from [1], [2], [3], [5], [6] and [7]. This problem is a generalization of [3] by L.
Boccardo and T. Gallouet. In [3] the existence of a solutions has been proved in
W 1,p

0 (Ω) (non degenerate case, i.e., when ω1 = ω2 = 1).
The following theorem will be proved in section 3.

Theorem 1.1. Assume (H1)-(H8). If ω1,ω2∈Ap (with 1 < p < ∞) and ω2≤ω1,
then there exist a solution u∈W 1,p

0 (Ω,ω1,ω2) of problem (P).

2. Definitions and Basic Results

Let ω be a locally integrable nonnegative function in Rn and assume that 0 <
ω(x)< ∞ almost everywhere. We say that ω belongs to the Muckenhoupt class
Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C = Cp,ω such
that (

1
|B|

∫
B

ω(x)dx
)(

1
|B|

∫
B

ω
1/(1−p)(x)dx

)p−1

≤Cp,ω

for all balls B⊂Rn, where |.| denotes the n-dimensional Lebesgue measure in
Rn. If 1 < q≤ p, then Aq⊂Ap (see [12], [13],[14] or [17] for more informa-
tion about Ap-weights). The weight ω satisfies the doubling condition if there
exists a positive constant C such that µ(B(x;2r))≤C µ(B(x;r)) for every ball
B = B(x;r)⊂Rn, where µ(B) =

∫
B ω(x)dx. If ω∈Ap, then µ is doubling (see

Corollary 15.7 in [13]).
As an example of Ap-weight, the function ω(x) = |x|α , x∈Rn, is in Ap if and

only if −n < α < n(p−1) (see Corollary 4.4, Chapter IX in [16]).

Definition 2.1. Let ω be a weight, and let Ω⊂Rn be open. For 1≤ p < ∞ we
define Lp(Ω,ω) as the set of measurable functions f on Ω such that

‖ f‖Lp(Ω,ω) =

(∫
Ω

| f (x)|pω(x)dx
)1/p

< ∞.
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If ω∈Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω,ω)⊂L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [17]). It thus
makes sense to talk about weak derivatives of functions in Lp(Ω,ω).

Definition 2.2. Let Ω⊂Rn be open and let ω1 and ω2 be Ap-weights (1 < p <
∞). We define the weighted Sobolev space W 1,p(Ω,ω1,ω2) as the set of func-
tions u∈Lp(Ω,ω2) with weak derivatives D ju∈Lp(Ω,ω1) for j = 1, ...,n. The
norm of u in W 1,p(Ω,ω1,ω2) is defined by

‖u‖W 1,p(Ω,ω1,ω2)
=

(∫
Ω

|u(x)|p ω2(x)dx+
∫

Ω

|∇u(x)|p ω1(x)dx
)1/p

. (1)

We also define W 1,p
0 (Ω,ω1,ω2) as the closure of C∞

0 (Ω) with respect to the norm
(1).

Remark 2.3. (a) If ω∈Ap, then C∞(Ω) is dense in W 1,p(Ω,ω)=W 1,p(Ω,ω,ω)
(see Corollary 2.1.6 in [17]).
(b) If ω2≤ω1 then W 1,p

0 (Ω,ω1)⊂W 1,p
0 (Ω,ω1,ω2)⊂W 1,p

0 (Ω,ω2).

The spaces W 1,p(Ω,ω1,ω2) and W 1,p
0 (Ω,ω1,ω2) are Banach spaces. The dual

space of W 1,p
0 (Ω,ω1,ω2) is the space [W 1,p

0 (Ω,ω1,ω2)]
∗ =W−1,p′(Ω,ω1,ω2),

[W 1,p
0 (Ω,ω1,ω2)]

∗ =

{
T = f0−div(F), F = ( f1, .., fn) :

f0

ω2
∈Lp′(Ω,ω2),

f j

ω1
∈Lp′(Ω,ω1), j =,1, ..,n

}
.

If T ∈ [W 1.p
0 (Ω,ω1,ω2)]

∗, and ϕ∈W 1,p
0 (Ω,ω1,ω2) we denote

〈T,ϕ〉=
∫

Ω

f0 ϕ dx+
n

∑
j=1

∫
Ω

f j D jϕ dx,

‖T‖∗ = ‖ f0/ω2‖Lp′ (Ω,ω2)
+

n

∑
j=1
‖ f j/ω1‖Lp′ (Ω,ω1)

,

|〈T,ϕ〉|≤‖T‖∗‖ϕ‖W 1,p
0 (Ω,ω1,ω2)

.

In this article we use the following results.

Theorem 2.4. Let ω∈Ap, 1 < p < ∞, and let Ω be a bounded open set in
Rn. If um→u in Lp(Ω,ω) then there exist a subsequence {umk} and a function
Φ∈Lp(Ω,ω) such that
(i) umk(x)→u(x), mk→∞, µ-a.e. on Ω;
(ii) |umk(x)|≤Φ(x), µ-a.e. on Ω;
(where µ(E) =

∫
E ω(x)dx).
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Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [11].

Theorem 2.5. (The weighted Sobolev inequality) Let Ω be an open bounded set
in Rn and ω∈Ap (1 < p < ∞). There exist positive constants CΩ and δ such that
for all u∈W 1,p

0 (Ω,ω) and all θ satisfying 1≤θ≤n/(n−1)+δ ,

‖u‖Lθ p(Ω,ω)≤CΩ‖∇u‖Lp(Ω,ω). (2)

Proof. Its suffices to prove the inequality for functions u∈C∞
0 (Ω) (see Theorem

1.3 in [10]). To extend the estimates (2) to arbitrary u∈W 1,p
0 (Ω,ω), we let

{um} be a sequence of C∞
0 (Ω) functions tending to u in W 1,p

0 (Ω,ω). Applying
the estimates (2) to differences um1 − um2 , we see that {um} will be a Cauchy
sequence in Lθ p(Ω,ω). Consequently the limit function u will lie in the desired
spaces and satisfy (2).

Lemma 2.6. If ω∈Ap, then
(
|E|
|B|

)p

≤Cp,ω
µ(E)
µ(B)

, whenever B is a ball in Rn

and E is a measurable subset of B.

Proof. See Theorem 15.5 Strong doubling of Ap-weights in [13].

By Lemma 2.6, if µ(E) = 0 then |E|= 0. Therefore, µ(E) = 0 if and only
if |E|= 0.

Lemma 2.7. Let ω1 and ω2 be Ap-weights, 1 < p < ∞, and a sequence {un},
un∈W 1,p

0 (Ω,ω1,ω2) satisfies
(i) un⇀u in W 1,p

0 (Ω,ω1,ω2) and µ1-a.e. in Ω;

(ii)
∫

Ω

〈A(x,un,∇un)−A(x,un,∇u),∇(un−u)〉ω1 dx→0 with n→∞.

Then un→u in W 1,p
0 (Ω,ω1,ω2).

Proof. The proof of this lemma follows the line of Lemma 5 in [2].

Definition 2.8. We say that u∈W 1,p
0 (Ω,ω1,ω2) is a solution of problem (P) if

for any ϕ∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω) we have∫

Ω

A(x,u,∇u).∇ϕ ω1 dx+
∫

Ω

H(x,u,∇u)ϕ ω2 dx =
∫

Ω

f ϕ dx, (3)

H(x,u,∇u)∈L1(Ω,ω2). (4)
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Definition 2.9. For a given constant k > 0 we define the cut-function Tk : R→R
as

Tk(s) =
{

s if |s|≤k,
k sign(s) if |s|> k.

Remark 2.10. (i) Note that for given h > 0 and k > 0 we have

Th(u−Tk(u)) =


0 if |u|≤k,
(|u|− k)sign(u) if k < |u|≤k+h,
hsign(u) if |u| > k+h.

And if α∈R, α 6=0, we have Tk(α u) = α Tk/|α|(u).
(ii) If u∈W 1,1

loc (Ω,ω) then we have ∇Tk(u) = χ{|u|≤k}∇u, where χE denotes the
characteristic function of a measurable set E⊂Rn.
(iii) If u1,u2∈W 1,p

0 (Ω,ω) then ϕ = Tk(u1 +u2)∈W 1,p
0 (Ω,ω)∩L∞(Ω), and we

have ∇ϕ = ∇Tk(u1 +u2) = ∇(u1 +u2)χ{|u1+u2|≤k}.

3. Proof of Theorem 1.1

To prove Theorem 1.1. we will apply the same technique as introduced in [3]
(which is the non degenerate case when ω1 = ω2 ≡ 1).
Step 1. If f ∈Lp ′(Ω,ω2) then the problem (P) has a solution (see [6]). Consi-
dering a sequence of functions { fε}, fε ∈C∞

0 (Ω) ( fε ∈Lp ′(Ω,ω2)), ε > 0, which
fε→ f in L1(Ω) and ‖ fε‖L1(Ω)≤‖ f‖L1(Ω), there exists a unique solution

uε ∈W 1,p
0 (Ω,ω1,ω2) to the Dirichlet problem

(Pε)


L(uε)+H(x,uε ,∇uε)ω2 = fε in Ω,

uε ∈W 1,p
0 (Ω,ω1,ω2),

H(x,uε , ∇uε)∈L1(Ω,ω2).

Hence,∫
Ω

A(x,uε ,∇uε).∇ϕ ω1 dx+
∫

Ω

Hε(x,uε ,∇uε)ϕ ω2 dx =
∫

Ω

fε ϕ dx, (5)

for all ϕ∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω). In particular, for ϕ = Tk(uε) we have∫

Ω

A(x,uε ,∇uε).∇Tk(uε)ω1 dx +
∫

Ω

Hε(x,uε ,∇uε)Tk(uε)ω2 dx

=
∫

Ω

fε Tk(uε)dx. (6)
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Since ∇Tk(uε) = ∇uε χ{|uε |≤k} and by (H4) we have∫
Ω

A(x,uε ,∇uε).∇Tk(uε)ω1 dx =
∫

Ω

A(x,uε , ∇Tk(uε)).∇Tk(uε)ω1 dx

≥ α

∫
Ω

|∇Tk(uε)|p ω1 dx,

and using (H7) we have that

H(x,uε ,∇uε)Tk(uε) =

{
H(x,uε ,∇uε)uε if |uε |≤k,
k sign(uε)H(x,uε ,∇uε) if |uε |> k,

≥0.

Hence, in (6) we obtain

α

∫
Ω

|∇Tk(uε)|p ω1 dx ≤
∫

Ω

fε Tk(uε)dx≤
∫

Ω

| fε | |Tk(uε)|dx

≤ k
∫

Ω

| fε |dx = k‖ fε‖L1(Ω). (7)

Step 2. We will prove that, for any t > 0,∫
{|uε |>t}

|H(x,uε , ∇uε)|ω2 dx≤
∫
{|uε |>t}

| fε |dx.

We follow a technique of [3]. Let {ψi} be a sequence of real smooth increas-
ing bounded functions with ψ ′i ∈L∞(R) and ψi(0) = 0. We have ∇(ψi(uε)) =

ψ ′i (uε)∇uε . Then ψi(uε)∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω), and using ψi(uε) as test

function in (5) we obtain∫
Ω

A(x,uε ∇uε).∇(ψi(uε))ω1 dx +
∫

Ω

H(x,uε ,∇uε)ψi(uε)ω2 dx

=
∫

Ω

fε ψi(uε)dx.

By (H4) and ∇(ψi(uε)) = ψ ′i (uε)∇uε we have∫
Ω

A(x,uε ,∇uε).∇(ψi(uε))ω1 dx =
∫

Ω

(
A(x,uε ,∇uε).∇uε

)
ψ
′
i (uε)ω1 dx≥0,

and we obtain ∫
Ω

H(x,uε ,∇uε)ψi(uε)ω2 dx≤
∫

Ω

fε ψi(uε)dx. (8)

Now, we can choose a sequence {ψi} that converges to the function ψ ,

ψ(s) =


1 if s≥ t,
0 if − t < s < t,
−1 if s≤ − t,



268 ALBO CARLOS CAVALHEIRO

(where t > 0). Hence, we obtain∫
{|uε |>t}

|H(x,uε ,∇uε)|ω2 dx≤
∫
{|uε |>t}

| fε |dx. (9)

Step 3. The sequence {uε} is bounded in W 1,p
0 (Ω,ω1,ω2). In fact, by (H8) we

obtain for t≥σ∫
{|uε |>t}

|H(x,uε ,∇uε)|ω2 dx ≥ γ

∫
{|uε |>t}

|∇uε |p
ω1

ω2
ω2 dx

= γ

∫
{|uε |>t}

|∇uε |p ω1 dx,

and by (9) we obtain (for t≥σ )

γ

∫
{|uε |>t}

|∇uε |p ω1 dx≤
∫
{|uε |>t}

| fε |dx.

Hence, if t≥σ , we have∫
{|uε |>t}

|∇uε |p ω1 dx≤ 1
γ

∫
{|uε |>t}

| fε |dx. (10)

Using (7) we have, for all k > 0,

α

∫
{|uε |≤k}

|∇uε |p ω1 dx≤k
∫

Ω

| fε |dx, (11)

and from (10) and (11) we obtain∫
Ω

|∇uε |p ω1 dx =
∫
{|uε |≤σ}

|∇uε |p ω1 dx+
∫
{|uε |>σ}

|∇uε |p ω1 dx

=
∫

Ω

|∇Tσ (uε)|p ω1 dx+
∫
{|uε |>σ}

|∇uε |p ω1 dx

≤σ

α

∫
Ω

| fε |dx+
1
γ

∫
{|uε |>σ}

| fε |dx

≤
(

σ

α
+

1
γ

)
‖ fε‖L1(Ω)

≤
(

σ

α
+

1
γ

)
‖ f‖L1(Ω).

By Theorem 2.5 (with θ = 1) and ω2≤ω1, we have that the sequence {uε} is
bounded in W 1,p

0 (Ω,ω1,ω2). Therefore, there exits a subsequence (still denoted
by {uε}) and a function u∈W 1,p

0 (Ω,ω1,ω2) such that

uε ⇀u in W 1,p
0 (Ω,ω1,ω2), (12)

uε → u in Lp(Ω,ωi) (i = 1,2), (13)

uε→u µi−a.e. (14)
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Step 4. We will prove that u+ε→u+ and u−ε→u− in W 1,p
0 (Ω,ω1,ω2).

First, we will prove that u+ε →u+ in W 1,p
0 (Ω,ω1,ω2). For this, we split the

demonstration in two parts.

Part 1. Let k > σ , and considering the test function ϕ = Tk((u+ε −u+)+) in (5)
we obtain

∫
Ω

A(x,uε ,∇uε).∇Tk((u+ε −u+)+)ω1 dx

+
∫

Ω

H(x,uε ,∇uε)Tk((u+ε −u+)+)ω2 dx

=
∫

Ω

fε Tk((u+ε −u+)+)ω dx. (15)

If Tk((u+ε (x)−u+(x))+)> 0 then u+ε (x)> 0 and we have uε(x)> 0. Hence, by
(H7) we have H(x,uε ,∇uε)≥0. Therefore, in (15) we obtain

∫
Ω

A(x,uε ,∇uε).∇Tk((u+ε −u+)+)ω1 dx≤
∫

Ω

fεTk((u+ε −u+)+)dx. (16)

Since uε(x) = u+ε (x) on the set {x∈Ω : u+ε (x) − u+(x) > 0} and
∇Tk((u+ε −u+)+) = 0 on the set {x∈Ω : u+ε (x)−u+(x)≤0}, we can also write
(16) as

∫
Ω

A(x,uε ,∇u+ε ).∇Tk((u+ε −u+)+)ω1 dx≤
∫

Ω

fε Tk((u+ε −u+)+)dx, (17)

which implies

lim
ε→0

∫
Ω

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇Tk((u+ε −u+)+)ω1 dx = 0. (18)

Using that u+ε (x) = uε(x) where (u+ε (x)− u+(x))+ > 0, and also by condition
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(H2), we obtain

∫
{u+ε −u+>k}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)+)ω1 dx

≤
∫
{uε>k}

(
A(x,uε ,∇uε)−A(x,uε ,∇u+)

)
.∇(uε −u+)ω1 dx

≤
∫
{uε>k}

(
|A(x,uε ,∇uε)|+ |A(x,uε ,∇u+)|

)
|∇(uε −u+)|ω1 dx

≤
∫
{uε>k}

(
(K(x)+h1|uε |p−1 +h2|∇uε |p−1)

+(K(x)+h1|uε |p−1 +h2|∇u+|p−1
)

)
(|∇uε |+ |∇u+|)ω1 dx

=
∫
{uε>k}

(
2K(x)+2h1|uε |p−1 +h2|∇uε |p−1 +h2|∇u+|p−1

)
×(|∇uε |+ |∇u+|)ω1 dx

=
∫
{uε>k}

(
2K(x)|∇uε |+2h1|uε |p−1|∇uε |+h2|∇uε |p +h2|∇u+|p−1|∇uε |

)
ω1 dx

+
∫
{uε>k}

(
2K(x)|∇u+|+2h1|uε |p−1|∇u+|+h2|∇uε |p−1|∇u+|+h2|∇u+|p

)
ω1 dx

= I,
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hence

I≤2
(∫
{uε>k}

K p ′
ω1 dx

)1/p ′(∫
{uε>k}

|∇uε |pω1 dx
)1/p

+2‖h1‖L∞(Ω)

(∫
{uε>k}

|uε |pω1 dx
)1/p ′(∫

{uε>k}
|∇uε |pω1 dx

)1/p

+‖h2‖L∞(Ω)

∫
{uε>k}

|∇uε |pω1 dx

+‖h2‖L∞(Ω)

(∫
{uε>k}

|∇u+|pω1 dx
)1/p ′(∫

{uε>k}
|∇uε |pω1 dx

)1/p

+2
(∫
{uε>k}

K p ′
ω1 dx

)1/p ′(∫
{uε>k}

|∇u+|pω1 dx
)1/p

+2‖h1‖L∞(Ω)

(∫
{uε>k}

|uε |pω1 dx
)1/p ′(∫

{uε>k}
|∇u+|pω1 dx

)1/p

+‖h2‖L∞(Ω)

(∫
{uε>k}

|∇uε |pω1 dx
)1/p ′(∫

{uε>k}
|∇u+|pω1 dx

)1/p

+‖h2‖L∞(Ω)

∫
{uε>k}

|∇u+|pω1 dx = II, (19)

and by Young’s inequality and (10), we obtain

II≤C1

(∫
{uε>k}

|∇uε |pω1 dx+
∫
{uε>k}

|uε |pω1 dx+
∫
{uε>k}

|∇u+|pω1 dx

+
∫
{uε>k}

K p ′
ω1 dx

)
≤C1

(
1
γ

∫
{uε>k}

| fε |dx+
∫
{uε>k}

|uε |pω1 dx+
∫
{uε>k}

|∇u+|pω1 dx

+
∫
{uε>k}

K p ′
ω1 dx

)
= Rε(k), (20)

where C1 is a positive constant which depends only of ‖h1‖L∞(Ω), ‖h2‖L∞(Ω) and
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p. We have lim
k→∞

Rε(k) = 0 (uniformly with respect to ε) and from (18) we obtain

lim
ε→0

∫
Ω

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)+)ω1 dx

= lim
ε→0

[∫
{0≤(u+ε −u+)+≤k}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)+)ω1 dx

+
∫
{(u+ε −u+)+>k}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)+)ω1 dx

]
= lim

ε→0

[∫
Ω

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇Tk((u+ε −u+)+)ω1 dx

+
∫
{(u+ε −u+)+>k}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)+)ω1 dx

]
= 0. (21)

Part 2. Now, let us consider the function g−ε = (u+ε − Tk(u+))−. We have
0≤g−ε ≤k, hence g−ε ∈L∞(Ω).

We define the function vε = ϕλ (g−ε ), where ϕλ (s) = seλ s2
, and λ = β 2/4α2∈R

(where α is the constant in (H4) and β is the constant in (H6)).
If vε(x)6=0 then 0≤u+ε (x)≤k. Hence, vε ∈W 1,p

0 (Ω,ω)∩L∞(Ω) and using
as test function vε in (5), we obtain

∫
Ω

A(x,uε ,∇uε).∇g−ε ϕ
′
λ
(g−ε )ω1 dx +

∫
Ω

H(x,uε ,∇uε)ϕλ (g
−
ε )ω2 dx

=
∫

Ω

fε ϕλ (g
−
ε )dx. (22)

Now we can follow the proof of [1],[3] and [6], because the left-hand side of
(22) is exactly the left-hand side of (3.10) of [6].

Since ϕλ (g−ε )6=0 where 0≤u+ε (x)≤k, we have ϕλ (g−ε )∈L∞(Ω), and then

lim
ε→0

∫
Ω

fε ϕλ (g
−
ε )dx =

∫
Ω

f ϕλ ((u
+−Tk(u+))−)dx = 0.

Now, analogously to (3.18) of [6] we obtain (for k fixed)

lim
ε→0

∫
Ω

−
(
A(x,uε ,∇u+ε )−A(x,uε ,∇Tk(u+)

)
.∇((u+ε −Tk(u+))−)ω1 dx≤0.

(23)
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We can write

∫
Ω

−
(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)−)ω1 dx

=
∫
{Tk(u+)<u+ε ≤u+}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(u+ε −u+)ω1 dx

+
∫
{u+ε ≤Tk(u+)}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(u+ε −u+)ω1 dx = III,

and using that

{x∈Ω : Tk(u+)< u+ε ≤u+}
= {x∈Ω : k < u+ε ≤u+}∪{x∈Ω : Tk(u+)< u+ε ≤u+, with u+ε ≤k}

and also that {x∈Ω : Tk(u+)< u+ε ≤u+, with u+ε ≤k}= /0, we obtain

III =
∫
{k<u+ε =uε≤u+}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(u+ε −u+)ω1 dx

+
∫

Ω

−
(
A(x,uε ,∇u+ε )−A(x,uε ,∇Tk(u+))

)
.∇(u+ε −Tk(u+))ω1 dx

+
∫

Ω

−
(
A(x,uε ,∇Tk(u+)−A(x,uε ,∇u+)

)
.∇((u+ε −Tk(u+))−)ω1 dx

+
∫
{u+ε ≤Tk(u+)}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(Tk(u+)−u+)ω1 dx

= III1 + III2 + III3 + III4. (24)

We have
(i) For III1,

III1 =
∫
{k<u+ε =uε≤u+}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(u+ε − u+)ω1 dx→0

for k→∞, uniformly with respect to ε , analogously to (20),
(ii) For III2,

III2 =
∫

Ω

−
(
A(x,uε ,∇u+ε )−A(x,uε ,∇Tk(u+))

)
.∇(u+ε −Tk(u+))−ω1 dx

we have the limit (23),
(iii) For III3,

III3 =
∫

Ω

−
(
A(x,uε ,∇Tk(u+))−A(x,uε ,∇u+)

)
.∇((u+ε −Tk(u+))−)ω1dx→0,

for k fixed and ε→0,
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(iv) For III4 we have

|III4|

=

∣∣∣∣∫{u+ε ≤Tk(u+)}

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(Tk(u+)−u+)ω1 dx

∣∣∣∣
≤
(∫

Ω

|A(x,uε ,∇u+ε )−A(x,uε ,∇u+)|p
′
ω1 dx

)1/p ′

×
(∫

Ω

|∇(Tk(u+)−u+)|p ω1 dx
)1/p

→0 for k→∞. (25)

Therefore, by (24), (i), (ii), (iii) and (iv) we obtain

lim
ε→0

∫
Ω

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇((u+ε −u+)−)ω1 dx = 0. (26)

Hence, from (21) and (26) we obtain

lim
ε→0

∫
Ω

(
A(x,uε ,∇u+ε )−A(x,uε ,∇u+)

)
.∇(u+ε −u+)ω1 dx = 0.

Therefore, by Lemma 2.7, we have

u+ε →u+ in W 1,p
0 (Ω,ω1,ω2). (27)

Step 5. We will prove that u−ε→u− in W 1,p
0 (Ω,ω1,ω2). Using the test function

ϕ = Tk((u−ε − u−)+) and ṽε = ϕλ ((u−ε −Tk(u−))−) we obtain, analogously to
Step 4, that

u−ε →u− in W 1,p
0 (Ω,ω1,ω2). (28)

Step 6. By (27) and (28) there exists a subsequence (which will be denoted by
{uε}) such that

∇uε→∇u in Lp(Ω,ω1), (29)

∇uε→∇u µ1−a.e. in Ω, (30)

(and, by Lemma 2.6, ∇uε→∇u a.e. in Ω). Using (H5), H(x,η ,ξ ) is continuous
in (η ,ξ ), we have

H(x,uε(x),∇uε(x))→H(x,u(x),∇u(x) a.e., (31)

and H(x,uε(x),∇uε(x))→H(x,u(x),∇u(x) µ2−a.e..
Step 7. We will prove that H(x,uε ,∇uε)→H(x,u,∇u) in L1(Ω,ω2). For m > 0
we define

Xε
m = {x∈Ω : |uε(x)|≤m},

Y ε
m = {x∈Ω : |uε(x)| > m}.
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For any measurable subset E⊂Ω we have∫
E
|H(x,uε ,∇uε)|ω2 dx =

∫
E∩Xε

m

|H(x,uε ,∇uε)|ω2 dx

+
∫

E∩Y ε
m

|H(x,uε ,∇uε)|ω2 dx.

Using (H6) and (9), we obtain∫
E
|H(x,uε ,∇uε)|ω2 dx

≤β

∫
E

(
|∇uε |p

ω1

ω2
+h(x)

)
ω2 dx+

∫
{|uε |>m}

| fε |dx

= β

(∫
E
|∇uε |pω1 dx+

∫
E

h(x)ω2 dx
)
+
∫
{|uε |>m}

| fε |dx.

Hence, for m→∞, we have∫
E
|H(x,uε ,∇uε)|ω2 dx≤β

(∫
E
|∇uε |p ω1 dx+

∫
E

h(x)ω2 dx
)
,

and since |∇uε |→|∇u| in Lp(Ω,ω1), we obtain

lim
ε→0

∫
E
|H(x,uε ,∇uε)|ω2 dx≤β

(∫
E
|∇u|p ω1 dx+

∫
E

h(x)ω2 dx
)
< ∞.

Now, by Vitali’s Theorem we have lim
µ2(E)→0

∫
E
|H(x,uε ,∇uε)|ω2 dx = 0, uni-

formly in ε . Hence,

H(x,uε ,∇uε)→H(x,u,∇u) in L1(Ω,ω2). (32)

Step 8. In (5) we have∫
Ω

A(x,uε ,∇uε).∇ϕ ω1 dx+
∫

Ω

H(x,uε ,∇uε)ϕ ω2 dx =
∫

Ω

fε ϕ dx,

for any ϕ∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω). Since uε→u in Lp(Ω,ω2), ∇uε→∇u in

Lp(Ω,ω1), fε→ f in L1(Ω) and (32), for ε→0 we obtain∫
Ω

A(x,u,∇u).∇ϕ ω1 dx+
∫

Ω

H(x,u,∇u)ϕ ω2 dx =
∫

Ω

f ϕ dx,

for any ϕ∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω).

Therefore, u∈W 1,p
0 (Ω,ω1,ω2)∩L∞(Ω) is a solution to problem (P).
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Example 3.1. Let Ω = {(x,y)∈R2 : x2 + y2 < 1}, and consider the weights
ω1(x,y) = (x2 +y2)−1/2 and ω2(x,y) = (x2 +y2)1/2 (ω1,ω2∈A2 and p = 2), the
functions A : Ω×R×R2→R2 and H : Ω×R×R2→R defined by

A((x,y),η ,ξ ) = h2(x,y)ξ ,

H((x,y),η ,ξ ) =

(
|ξ |2 (sin2(xy)+1)

(x2 + y2)
+ h(x,y)

)
arctan(η),

where h2(x,y) = ex2+y2
, h(x,y) = (x2+y2)1/2cos2(xy), b(η) = |arctan(η)|, α =

1, β =
π

2
, σ = 1 and γ =

π

8
. Let us consider the partial differential operator

Lu(x,y) =−div
[

ω(x,y)A((x,y),u,∇u)
]

and f (x,y) = (x2 + y2)−1/4 cos(1/(x2 + y2))∈L1(Ω). Therefore, by Theorem
1.1, the problem

(P)


Lu(x,y)+H(x,u,∇u)ω2 = f in Ω,
H(x,u,∇u)∈L1(Ω,ω2),

u∈W 1,p
0 (Ω,ω1,ω2),

has a solution.
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