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ON THE EXISTENCE OF MILD SOLUTIONS FOR NONLOCAL
IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS IN

BANACH SPACES

M. DIEYE - M. A. DIOP - K. EZZINBI - H. HMOYED

In this paper, we prove the existence of mild solutions for a class of
nonlinear impulsive integrodifferential equations with a nonlocal initial
conditions. Sufficient conditions for the existence are derived with the
help of the resolvent operator. In the end, an example is given to show the
application of our result.

1. Introduction

Integrodifferential equations have attracted much attention because of their ap-
plications in many areas : physics, population dynamics, electrical engineering,
finance, biology, ecology, sociology and other areas of science and engineering.
Qualitative properties such as existence, uniqueness, controllability and stability
for various integrodifferential equations have been extensively studied by many
researchers, see for instance [2, 9–13].

As a practical application, we note that the following equation

d
dt

[
ρ(t)−λ

∫ t

−∞

C(t− s)ρ(s)ds
]
= Aρ(t)+λ

∫ t

−∞

B(t− s)ρ(s)ds− p(t)+q(t)
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arises in the study of the dynamics of income, employment, value of capital
stock, and cumulative balance of payment ; see [6] for details. In the above
system, λ is a real number, the state ρ(t) ∈ Rn,C(·),B(·) are n× n continuous
functions matrices, A is a constant n×n matrix, p(·) represents the government
intervention, and q(·) the private initiative.
Abstract integrodifferential equations also appear in the theory of heat conduc-
tion. In the classic theory of heat conduction, it is assumed that the internal
energy and the heat flux depend linearly on the temperature v and on its gradi-
ent ∇ρ . Under these conditions, the classic heat equation describes sufficiently
well the evolution of the temperature in different types of materials. However,
this description is not satisfactory in materials with fading memory. In the the-
ory developed in [18, 24], the internal energy and the heat flux are described as
functionals of v and vx. The next system, see for instance [5, 7, 8, 22], has been
frequently used to describe this phenomenon,

d
dt

[
ρ(t,x)+

∫ t

−∞

k1(t− s)ρ(s,x)ds
]

= c
n

∑
i=1

∂ 2ρ(t,x)
∂x2

i
+
∫ t

−∞

k2(t− s)
n

∑
i=1

∂ 2ρ(t,x)
∂x2

i
ds,

ρ(t,x) = 0,x ∈ ∂Ω,

where Ω⊂ Rn is open, bounded, and with smooth boundary ; (t,x) ∈ [0,∞[×Ω

; ρ(t,x) represents the temperature in x at the time t ; c is a physical constant ki :
R→R, i= 1,2, are the internal energy and the heat flux relaxation, respectively.

The aim of this work is to study the existence and uniqueness of mild and
solutions for the following nonlinear impulsive integrodifferential equation with
nonlocal conditions

x′(t) = Ax(t)+
∫ t

0
ϒ(t− s)x(s)ds+ f (t,x(t)),0≤ t ≤ T, t 6= ti,

x(0)+g(x) = x0,

x(t+i )− x(t−i ) = Ii(x(ti)), i = 1,2, · · · , p,0 < t1 < t2 < · · ·< tp < T,

(1)

where A generates a C0-semigroup on a Banach space X, ϒ(t) is a closed linear
operator on X with time independent domain D(A)⊂D(ϒ). f : [0,T ]×X→ X
and g : PC([0,T ],X)→ X are continuous functions where the set PC([0,T ],X) is
given later in Section 3.

The nonlocal condition has a better effect on the solution and is more precise
for physical measurements than the classical condition x(0) = x0 alone.The non-
local condition has advantages over traditional initial value problems because it
can be used to model phenomena that cannot be modeled by traditional initial
value problems, such as the dynamics of populations subject to abrupt changes
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(harvesting, diseases, etc.). See [1, 3, 4, 17, 25, 26] and the references therein
for more comments and citations.

This manuscript is particularly inspired by following works [20, 21] in
which the authors investigated deeply the nonlocal problems for integrodiffer-
ential equations and the nonlocal impulsive problems for nonlinear differential
equations in Banach spaces, respectively. Indeed, the arguments used in this
paper generalize the work in [20] to a larger class of impulsive system. Using
the compactness of the resolvent operator (R(t))t≥0 (find below), we found an
intermediate result needed to establish the existence of mild solutions, under
various conditions on the given data, of a class of integrodifferential equation of
Volterra type.

The rest of the manuscript is organized as follows. In Section 2, we give
some necessary preliminaries. We study the existence of the mild solutions of
equation (1) in Section 3. Finally in Section 4, an example is provided which
illustrates our results.

2. Integrodifferential equations

Let X and Y be Banach spaces. L(X,Y) denotes the space of bounded linear
operator from X to Y, simply L(X) when X = Y. For the question of existence
of mild solution of the integrodifferential equations, we recall some fundamental
results needed. Regarding the theory of resolvent operators, we refer the reader
to [14]. Let Y be the Banach space D(A) equipped with the graph norm given
by |y|Y := |Ay|+ |y| for y ∈ Y . The notation C(R+;Y ) stands for the space of
all continuous functions from R+ into Y . We consider the following Cauchy
problem : v′(t) = Av(t)+

∫ t

0
ϒ(t− s)v(s)ds for t ≥ 0

v(0) = v0 ∈ X.
(2)

Definition 2.1. [14] A resolvent operator for equation (2) is a bounded linear
operator-valued function R(t) ∈ L(X) for t ≥ 0,verifying the following condi-
tions :

(i) R(0) = I(the identity map of X) and ‖R(t)‖ ≤ Neηt for some constants
N > 0 and η ∈ R.

(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
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(iii) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y,R(.)x ∈ C1(R+;X)
⋂
C(R+;Y ) and

R′(t)x = AR(t)x+
∫ t

0
ϒ(t− s)R(s)xds

= R(t)Ax+
∫ t

0
R(t− s)ϒ(s)xds f or t ≥ 0.

From now on, we assume that

(R1) The operator A is the infinitesimal generator of a C0-semigroup (S(t))t≥0
on X.

(R2) For all t ≥ 0, ϒ(t) is closed linear operator from D(A) to X and ϒ(t) ∈
L(Y,X). For any y ∈ Y , the map t 7→ ϒ(t)y is bounded, differentiable and
the derivative t 7→ ϒ′(t)y is bounded uniformly continuous on R+.

The following theorem gives a satisfactory answer to the problem of existence
of solutions.

Theorem 2.2. [14] Assume that (R1)− (R2) hold. Then there exists a unique
resolvent operator for the Cauchy problem (2).

The resolvent operator gives some results for the existence of solutions for
the following integrodifferential equation:v′(t) = Av(t)+

∫ t

0
ϒ(t− s)v(s)ds+µ(t) for t ≥ 0

v(0) = v0 ∈ X,
(3)

where µ : R+→ X is a continuous function.

Definition 2.3. [14] A continuous function v : R+ → X is said to be a strict
solution of equation (3) if v ∈ C1(R+;X)

⋂
C(R+;Y ) and v satisfies equation

(3).

Theorem 2.4. [14] Assume that (R1)− (R2) hold. If v is a strict solution of
equation (3), then

v(t) = R(t)v0 +
∫ t

0
R(t− s)µ(s)ds f or t ≥ 0.

Lemma 2.5. [15] Assume that (R1)-(R2) hold.The resolvent operator
(R(t))t≥0 is compact for t > 0 if and only if the semigroup (S(t))t≥0 is compact
for t > 0.
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Lemma 2.6. [19] Assume that (R1)− (R2) hold. If the resolvent operator
(R(t))t≥0 is compact for t > 0 then it is norm continuous (or continuous in the
uniform operator topology) for t > 0.

Lemma 2.7. [19] For any T > 0 there exists a positive constant γ = γ(T ) such
that

‖R(t +h)−R(h)R(t)‖L(X) ≤ γh for 0≤ h≤ t ≤ T.

The resolvent operator plays an important role to study the existence of so-
lutions and gives a variation of constant formula for semilinear systems. For
more details on resolvent operators, we refer to [14, 16].

3. Existence of mild solutions of equation (1)

Let PC ≡ PC([0,T ],X) be the set of all function x from [0,T ] into X such that
x(t) is continuous at t 6= ti and left continuous at t = ti and the right limit x(t+i )
exists for i= 1,2, · · · , p. We recall from [20] that PC([0,T ],X) is a Banach space
with the following norm

‖x‖PC = sup
t∈[0,T ]

‖x(t)‖X.

Accordingly, we make the following definition.

Definition 3.1. A function x ∈ PC([0,T ],X) is a mild solution of equation (1) if
it satisfies :

x(t) = R(t)[x0−g(x)]+
∫ t

0
R(t− s) f (s,x(s))ds

+ ∑
0<ti<t

R(t− ti)Ii(x(ti)),0≤ t ≤ T. (4)

Remark 3.2. The integral term in (4) is not always well defined. It is if f sent
bounded set into bounded once .

The mild solutions of (1) will be established under various conditions on the
functions f , g, the functions Ii, and the resolvent operator (R(t))t≥0.

3.1. Lipschitz nonlocal function

In this subsection, we prove the existence and uniqueness of mild solution of
(1) by means of the fixed point theory. To develop this result, we make the
following assumptions
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(L1) The functions Ii, f and g are continuous. There exist constants L f >
0,LG > 0,Li > 0, i = 1,2, · · · , p, such that :

‖ f (t,x)− f (t,y)‖X ≤ L f ‖x− y‖X, t ∈ [0,T ],x,y ∈ X

‖g(u)−g(v)‖|X ≤ LG‖u− v‖PC, u,v ∈ PC
‖Ii(x)− Ii(y)‖|X ≤ Li‖x− y‖X, x,y ∈ X

(L2) Moreover, we assume that

MT

(
LG +L f T +

p

∑
i=1

Li

)
< 1,

where MT = sup
t∈[0,T ]

‖R(t)‖L(X).

Theorem 3.3. Assume that (R1), (R2), (L1) and (L2) hold. Then for every
x0 ∈ X, equation (1) has a unique mild solution on [0,T ].

Proof. Let x0 ∈ X be fixed. Define the operator Q on PC([0,T ],X) by

(Qv)(t) = R(t)[x0−g(v)]+
∫ t

0
R(t− s) f (s,v(s))ds

+ ∑
0<ti<t

R(t− ti)Ii(v(ti)),0≤ t ≤ T.

From the strong continuity of the resolvent operator, we get that Q maps
PC([0,T ],X) to itself. Using the Lipschitz conditions in assumption (L1), we
have the following estimations :

‖(Qv)(t)− (Qw)(t)‖X ≤ ‖R(t)[g(v)−g(w)]‖PC

+
∫ t

0
‖R(t− s)‖L(X)‖ f (s,v(s))− f (s,w(s))‖Xds

+ ∑
0<ti<t

‖R(t− ti)‖L(X)‖Ii(v(ti))− Ii(w(ti))‖X

≤ MT (LG +L f T )‖v−w‖PC+ ∑
0<ti<t

MT Li‖v(ti)−w(ti)‖

≤ MT (LG +L f T )‖v−w‖PC+MT‖v−w‖PC
p

∑
i=1

Li

≤ MT (LG +L f T )‖v−w‖PC+
p

∑
i=1

Li‖v−w‖PC, v,w ∈ PC.

From assumption (L2), it follows that Q is a strict contraction operator on
PC([0,T ],X). Consequently, by Banach’s fixed point Theorem, Q has a unique
fixed point which is a unique mild solution of (1). The proof is completed.
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3.2. Compact nonlocal function

This present subsection deals with the existence of mild solution where g is
compact. Note that a compact operator is a continuous operator which maps
a bounded set into a precompact set. We need weaker conditions on the data
according to [20]. We give the following assumptions to set the problem.

(C1) f is continuous and maps a bounded set into a bounded set.

(C2) g, and Ii : X→ X, i = 1,2, · · · , p, are compact operators, and R(t) the re-
solvent operator is compact for any t > 0).

(C3) For each x0 ∈ X, there exists a constant r > 0 such that :

MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X+T sup
s∈[0,T ],ϕ∈Yr

‖ f (s,ϕ(s))‖X

)

+MT

(
sup

ϕ∈Yr

p

∑
i=1
‖Ii(ϕ(ti))‖X

)
≤ r,

where

Yr := {ϕ ∈ PC([0,T ],X) : ‖ϕ(t)‖ ≤ r f or t ∈ [0,T ]} . (5)

Remark 3.4. If the operators g, f , and Ii : X→ X, i = 1,2, · · · , p, are compact
then assumption (C1) is satisfied.

Theorem 3.5. Assume that the resolvent operator (R(t))t≥0 is compact for t > 0.
Let m> 1. Define

(Θ`)(t) =
∫ t

0
R(t− s)`(s)ds for t ∈ [0,T ], ` ∈ Lm([0,T ],X).

Then Θ : Lm([0,T ],X)→C([0,T ],X) is compact.

Proof. Let {`k}k≥1 a bounded sequence on Lm([0,T ],X) such that
‖`k‖Lm([0,T ],X) ≤ 1, for all k ≥ 1. We need to prove that {Θ`k}k≥1 is relatively
compact in C([0,T ],X). To this end, we first prove that for each t ∈ [0,T ], the
set {(Θ`k)(t)}k≥1 is relatively compact in X. In fact, the case where t = 0 is
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trivial. We let t ∈ (0,T − ε] and ε > 0. Then

(Θε`k)(t) :=
∫ t−ε

0
R(t− r)`k(r)dr

=
∫ t−ε

0
[R(t− r)−R(ε)R(t− r− ε)+R(ε)R(t− r− ε)]`k(r)dr

=
∫ t−ε

0
[R(t− r)−R(ε)R(t− r− ε)]`k(r)dr

+
∫ t−ε

0
R(ε)R(t− r− ε)`k(r)dr

=
∫ t−ε

0
[R(t− r)−R(ε)R(t− r− ε)]`k(r)dr

+R(ε)
∫ t−ε

0
R(t− r− ε)`k(r)dr

= Kε +R(ε)
∫ t−ε

0
R(t− r− ε)`k(r)dr, (6)

where

Kε =
∫ t−ε

0
[R(t− r)−R(ε)R(t− r− ε)]`k(r)dr f or ε ∈ (0, t].

Using Lemma 2.7, we have the following estimations

‖Kε‖X ≤
∫ t−ε

0
‖[R(t− r)−R(ε)R(t− r− ε)]`k(r)‖X dr

≤
∫ t−ε

0
‖R(t− r)−R(ε)R(t− r− ε)‖L(X)‖`k(r)‖Xdr

≤
∫ t−ε

0
γε‖`k(r)‖Xdr

≤
∫ T

0
γε‖`k(r)‖Xdr

≤ εγT (m−1)/m.

We deduce that Kε converges to zero whenever ε goes to zero unformly in k,
that is, Kε =O(ε). Thus (6) takes the following form

(Θε`k)(t) =O(ε)+R(ε)
∫ t−ε

0
R(t− r− ε)`k(r)dr.

The term
∫ t−ε

0
R(t− r− ε)`k(r)dr is bounded uniformly in k. By the compact-

ness of R(ε) the set {(Θε`k)(t)}k≥1 is relatively compact for ε ∈ (0, t].
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Then, for any ε0 > 0, there exists a finite set {xi}1≤i≤m in X such that

{(Θε`k)(t)}k≥1 ⊂
m⋃

i=1

B(xi,ε0/2),

where B(xi,ε0/2) is an open ball in X with center xi and radius ε0/2. We have
the following inequalities :

‖(Θ`k)(t)− (Θε`k)(t)‖X =

∥∥∥∥∫ t

t−ε

R(t− s)`k(s)ds
∥∥∥∥
X

≤ MT

∫ t

t−ε

‖`k(s)‖Xds

≤ MT ε
(m−1)/m < ε0/2.

Then, for any ε0 > 0, we get that

‖(Θ`k)(t)− xi‖X ≤ ‖(Θ`k)(t)− (Θε`k)(t)‖X+‖(Θε`k)(t)− xi‖X
< ε0/2+ ε0/2 = ε0

Hence

{(Θ`k)(t)}k≥1 ⊂
m⋃

i=1

B(xi,ε0).

Next, we show that {(Θ`k)}k≥1 is equicontinuous on [0,T ]. In fact, for 0 < τ1 <
τ2 ≤ T and 0 < τ ≤ τ1,

(Θ`k)(τ2)− (Θ`k)(τ1) =
∫

τ2

τ1

R(τ2− s)`k(s)ds

+
∫

τ1

0
(R(τ2− s)−R(τ1− s))`k(s)ds

=: J1 +J2,
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respectively. Then, we have the following estimations :

‖J1‖X ≤
∫

τ2

τ1

‖R(τ2− s)`k(s)‖Xds

≤ MT

∫
τ2

τ1

‖`k(s)‖Xds

≤ MT |τ2− τ1|(m−1)/m
(∫

τ2

τ1

‖`k(s)‖p
Xds
)1/m

≤ MT |τ2− τ1|(m−1)/m (7)

‖J2‖X ≤
∫

τ1

0
‖R(τ2− s)−R(τ1− s)‖L(X) ‖`k(s)‖Xds

≤
∫

τ1

0
‖R(τ2− s)−R(τ1− s)‖L(X) ‖`k(s)‖Xds

≤
(∫

τ1

0
‖R(τ2− τ1 + s)−R(s)‖m/(m−1)

L(X) ds
)(m−1)/m

×
(∫

τ1

0
‖`k(τ1− s)‖mXds

)1/m

(8)

≤
(∫

τ1

0
‖R(τ2− τ1 + s)−R(s)‖m/(m−1)

L(X) ds
)(m−1)/m

(9)

which are independent of k. From Lemma 2.7, we know that the resolvent
operator is continuous in the operator norm on (0,+∞). Thus, we obtain the
equicontinuity of the set {(Θ`k)}k≥1 on [0,T ]. Then by the Ascoli-Arzelà’s
Theorem, we obtain the compactness of the operator Θ.

Lemma 3.6. Let K be a compact set of X. Then

lim
h→0+

(
sup
x∈K
‖R(t +h)x−R(t)x‖

)
= 0, for t ≥ 0.

where (R(t))t≥0 is the resolvent operator.

Proof. Let t ≥ 0 and (hn)n≥1 ⊂ R+ be a sequence of positive numbers going to
zero. We define a sequence (αn)n≥1 ⊂ R+ by

αn = sup
x∈K
‖R(t +hn)x−R(t)x‖.

Since K is compact, then, there exists xn ∈ K such that

αn = ‖R(t +hn)xn−R(t)xn‖.
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Thus we get, (xn)n≥1, a sequence of K. (xn)n≥1 has a converging subsequence
noted (xnk)k≥0. Denoting y the limit of (xnk)k≥0, then, we have

‖R(t +hnk)xnk −R(t)xnk‖ ≤ ‖R(t +hnk)xnk −R(t +hnk)y‖
+‖R(t +hnk)y−R(t)y‖+‖R(t)y−R(t)xnk‖

≤ Neηt
[
eηhn +1

]
‖xnk − y‖+‖R(t +hnk)y−R(t)y‖.

It follows that (αnk)k≥1 converges to zero.
Claim : (αn)n≥1 converges to zero.
If there exists a diverging subsequence (αnk)k≥1, that is, there exists ε > 0 such
that αnk > ε .
Define the sequence (βk)k≥1 by βk = αnk . Repeating the previous argument, one
has a subsequence (βkp)p≥1 converging to zero. Impossible, since βkp = αnkp

>
ε . The proof is completed.

Theorem 3.7. Assume that (R1)-(R2), (C1), (C2) and (C3) hold. Then for
every x0 ∈ X, equation (1) has at least a mild solution.

Proof. Let x0 ∈ X be fixed. Define an operator Q on PC([0,T ],X) by

(Qv)(t) = R(t)[x0−g(v)]+
∫ t

0
R(t− s) f (s,v(s))ds

+ ∑
0<ti<t

R(t− ti)Ii(v(ti)),0≤ t ≤ T

:= (Q1v)(t)+(Q2v)(t)+(Q3v)(t),

where

(Q1v)(t) = R(t)[x0−g(v)],0≤ t ≤ T,

(Q2v)(t) =
∫ t

0
R(t− s) f (s,v(s))ds,0≤ t ≤ T,

(Q3v)(t) = ∑
0<ti<t

R(t− ti)Ii(v(ti)),0≤ t ≤ T.

We show, by Schauder’s fixed point Theorem, that Q has at least a fixed point in
Yr given by (5), which is a mild solution of equation (1).

Clearly Q maps PC([0,T ],X) to itself. Let u,v ∈ PC([0,T ],X), then we have
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the following estimations :

‖(Qv)(t)− (Qu)(t)‖X ≤ ‖R(t)[g(u)−g(v)]+(Q2u)(t)− (Q2v)(t)

+ ∑
0<ti<t

R(t− ti)(Ii(u(ti))− Ii(v(ti)))

∥∥∥∥∥
X

≤ MT‖g(u)−g(v)‖X+‖(Q2u)(t)− (Q2v)(t)‖X
+ ∑

0<ti<t
MT‖(Ii(u(ti))− Ii(v(ti)))‖X

≤ MT‖g(u)−g(v)‖X+‖Q2u−Q2v‖

+MT

p

∑
i=1
‖Ii(u)− Ii(v)‖. (10)

By Theorem 3.5, we have that Q2 is compact (therefore continuous). From
assumption (C1), all the involved functions in (10) are continuous. Then,

‖Qv−Qu‖PC ≤C‖v−u‖PC

where C is a positive constant depending T,MT ,g, Ii, i = 1,2, · · · , p. We deduce
the continuity of the map Q on PC([0,T ],X). Let v ∈ Yr ; we have, by assump-
tion (C3), the following estimations :

‖(Qv)(t)‖X ≤ ‖R(t)‖L(X) (‖x0‖X+‖g(v)‖X)+
∫ t

0
‖R(t− s)‖L(X)‖ f (s,v(s))‖Xds

+ ∑
0<ti<t

‖R(t− ti)‖L(X)‖Ii(v(ti))‖X,

≤ MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X

)
+
∫ t

0
MT sup

r∈[0,T ],ϕ∈Yr

‖ f (r,ϕ(r))‖Xds

+ ∑
0<ti<t

MT sup
ϕ∈Yr

‖Ii(ϕ(ti))‖X,

≤ MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X

)
+T MT sup

r∈[0,T ],ϕ∈Yr

‖ f (r,ϕ(r))‖X

+MT ∑
0<ti<t

sup
ϕ∈Yr

‖Ii(ϕ(ti))‖X,

≤ MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X+T sup
r∈[0,T ],ϕ∈Yr

‖ f (r,ϕ(r))‖X

+ ∑
0<ti<t

sup
ϕ∈Yr

‖Ii(ϕ(ti))‖X

)
≤ r,
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for 0≤ t ≤ T . Therefore, Q is a continuous mapping from Yr to Yr.
Now, we establish the compactness of Q1 and Q3. First, note that

(Q3v)(t) = ∑
0<ti<t

R(t− ti)Ii(v(ti)) =



0 i f t ∈ [0, t1],
R(t− t1)I1(v(t1)) i f t ∈ (t1, t2],
...

...
...

p

∑
i=1

R(t− ti)Ii(v(ti)) i f t ∈ (tp,T ],

where 0 < t1 < t2 < · · ·< tp < T a finite subintervals of [0,T ]. We set

Λ = {σ : σ(t) = R(t− t1)I1(v(t1)), t ∈ [t1, t2],v ∈ Yr}

and prove that Λ is precompact in C([t1, t2],X).
From assumption (C2), we have that, for each t ∈ [t1, t2], the set

{σ(t) = R(t− t1)I1(v(t1)) : v ∈ Yr}

is precompact in X . Next, we show that the functions in Λ are equicontinuous.
Let σ ∈ Λ, for t1 ≤ s < t ≤ t2, we have that

‖σ(t)−σ(s)‖ ≤ ‖R(t− t1)I1(v(t1))−R(s− t1)I1(v(t1))‖
≤ sup

x∈K
‖R(t− t1)x−R(s− t1)x‖

where K = {I1(v(t1)) : v ∈ Yr} . By Lemma 3.6, the functions in Λ are equicon-
tinuous due to the compactness of I1 and the resolvent operator (R(t))t≥0 for
t > 0. By Ascoli-Arzela Theorem Λ is precompact in C([t1, t2],X). Using the
same method, the precompactness in the cases for other subintervals follows.
Therefore, Q3 is a compact operator.

To prove the compactness of Q1, we use the same above method. For each
t ∈ [0,T ], the set {R(t)[x0−g(v)] : v∈Yr} is precompact in X since g is compact.
Therefore, Q1 is a compact operator by the Ascoli-Arzela Theorem. Hence Q is
also a compact operator.
Schauder’s fixed point Theorem implies that Q has a fixed point, which is a mild
solution. The proof is completed.

3.3. Neither Lipschtz nor compact nonlocal function

In this subsection, we establish the existence of mild solution Eq.(1) with more
general nonlocal function. We assume that the values of x(t) for t near zero do
not affect g(x). For example, it is the case when

g(x) =
q

∑
j=1

c jx(s j),0 < s1 < s2 < · · ·< sq < T.
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We established the existence of mild solutions under the following assumptions.

(N1) f is continuous, and there exists a constant L f > 0 such that

‖ f (t,x)− f (t,y)‖X ≤ L f ‖x− y‖X, t ∈ [0,T ],x,y ∈ X.

(N2) Ii :X→X, i= 1,2, · · · , p, are compact and the resolvent operator (R(t))t≥0
is also compact for t > 0.

(N3) For each x0 ∈ X, there exists a constant r > 0 such that

MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X+T sup
s∈[0,T ],ϕ∈Yr

‖ f (s,ϕ(s))‖X

)

+MT

(
sup

ϕ∈Yr

p

∑
i=1
‖Ii(ϕ(ti))‖X

)
≤ r.

(N4) g : PC([0,T ],X)→ X is continuous, maps Yr into a bounded set, and there
is a δ = δ (r) ∈ (0, t1) such that g(ϕ) = g(ψ) for any ϕ,ψ ∈ Yr with
ϕ(s) = ψ(s),s ∈ [δ ,T ].

Theorem 3.8. Assume that (R1)-(R2), (N1)-(N3) and (N4) hold. Then for
every x0 ∈ X, equation (1) has at least a mild solution.

Proof. For δ = δ (r) ∈ (0, t1), set

Y(δ ) := PC([δ ,T ],X) = restrictions of functions in PC([0,T ],X) on [δ ,T ],

Yr(δ ) := {ϕ ∈ Y(δ ) : ‖ϕ(t)‖ ≤ r for t ∈ [δ ,T ]} .

For v ∈ Yr(δ ) fixed, we define a mapping Fv on Yr by

(Fvϕ)(t) = R(t)(x0−g(ṽ))+
∫ t

0
R(t− s) f (s,ϕ(s))ds+ ∑

0<ti<t
R(t− ti)Ii(v(ti)),

t ∈ [0,T ], where ṽ(t) =
{

v(t) if t ∈ [δ ,T ],
v(δ ) if t ∈ [0,δ ].

From our assumptions, Fv is a continuous mapping from Yr to Yr.
Moreover, by iterative process involving repeated substitution of the expres-

sion of Fv into itself we obtain after m iterations the following inequality

‖(Fm
v ϕ)(t)− (Fm

v ψ)(t)‖ ≤
(ML f t)m

m!
sup

s∈[0,t]
‖ϕ(s)−ψ(s)‖,

t ∈ [0,T ],ϕ,ψ ∈ Yr,m = 1,2, · · · .
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Therefore, for m large enough Fm
v is a contraction operator on Yr. Thus, by

Banach’s fixed Theorem Fv has a unique fixed point ϕv ∈ Yr, i.e.,

ϕv(t) = R(t)(x0−g(ṽ))+
∫ t

0
R(t− s) f (s,ϕv(s))ds+ ∑

0<ti<t
R(t− ti)Ii(v(ti)),

t ∈ [0,T ]. Using the above procedure, we define a mapping G from Yr(δ ) to
itself by :

(Gv)(t) = ϕv(t)|[δ ,T ]

= R(t)(x0−g(ṽ))+
∫ t

0
R(t− s) f (s,ϕv(s))ds

+ ∑
0<ti<t

R(t− ti)Ii(v(ti)), t ∈ [δ ,T ].

In fact, let v ∈ Yr(δ ), we have that

(Gv)(t) = ϕv(t)|[δ ,T ] = (Fvϕ)(t)|[δ ,T ] .

In order to prove the Theorem, we need the following Lemmas.

Lemma 3.9. Under the assumptions (N1)-(N4), the linear map v 7→ ṽ on
PC([0,T ],X) to itself is bounded and {ṽ,v ∈ Yr} ⊂ Yr.

Proof. Let u,v ∈ PC([0,T ],X) and α ∈ R, we get the following relations

ũ+ v(t) =

{
(u+ v)(t) if t ∈ [δ ,T ]
(u+ v)(δ ) if t ∈ [0,δ ]

=

{
ũ(t)+ ṽ(t) if t ∈ [δ ,T ]
ũ(δ )+ ṽ(δ ) if t ∈ [0,δ ]

ũ+ v(t) = (ũ+ ṽ)(t), t ∈ [0,T ] ⇒ ũ+ v = ũ+ ṽ

α̃v(t) = αv(t) = α ṽ(t), t ∈ [0,T ] ⇒ α̃v = α ṽ

‖ṽ(t)‖X ≤ ‖v‖PC, t ∈ [0,T ] ⇒ ‖ṽ‖PC ≤ ‖v‖PC

•

Lemma 3.10. Under the assumptions (N1)-(N4), let x0 be fixed. The map v 7→
ϕv on Yr to itself is continuous.
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Proof. Let u,v ∈ Yr, by Lemma 3.9 and the assumptions (N1)-(N4) we have
that

‖ϕu(t)−ϕv(t)‖X =

∥∥∥∥R(t)(−g(ũ)+g(ṽ))+
∫ t

0
R(t− s) [ f (s,ϕu(s))− f (s,ϕv(s))]ds

+ ∑
0<ti<t

R(t− ti) [Ii(u(ti))− Ii(v(ti))]

∥∥∥∥∥
X

≤ MT‖(−g(ũ)+g(ṽ))‖X+MT L f

∫ t

0
‖ϕu(s)−ϕv(s)‖Xds

+MT ∑
0<ti<t

‖Ii(u(ti))− Ii(v(ti))‖X

≤ C‖u− v‖PC+MT L f

∫ t

0
‖ϕu(s)−ϕv(s)‖Xds

where the positive constant C involve g,MT , Ii, i = 1, · · · , p. Gronwall’s Lemma
implies that

‖ϕu(t)−ϕv(t)‖X ≤ eMT L f tC‖u− v‖PC

The continuity result follows. •

Using the Lemmas 3.9 and 3.10, we get that G is continuous on Yr(δ ). Sim-
ilarly to the above, using the Lemmas 3.9 and 3.10, we established the equicon-
tinuity and then apply the Ascoli-Arzela Theorem to get that G is a compact
operator. Therefore, by Schauder’s fixed point Theorem, we conclude that G
has a fixed point v∗ ∈ Yr(δ ). Put x = ϕv∗ . Then

x(t) = R(t)(x0−g(ṽ∗))+
∫ t

0
R(t− s) f (s,x(s))ds

+ ∑
0<ti<t

R(t− ti)Ii(v∗(ti)), t ∈ [0,T ]. (11)

But g(ṽ∗) = g(x) and ṽ∗(ti) = x(ti), since v∗(t) = (Gv∗)(t) = ϕv∗(t) = x(t), t ∈
[δ ,T ], by the definition of G. This concludes, together with (11), that x is a mild
solution of equation (1). The proof is completed.

4. Example

In this section, we apply the abstract results which we have obtained in the
preceding sections to study the existence of solutions for a partial differential
equation submitted to nonlocal initial conditions. This type of equation arises in
the study of heat conduction in materials with memory see [21, 23]. We study
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the impulsive effects on the following problem heat conduction in materials with
memory :

∂

∂ t
u(t,y) = ∑

N
i=1

∂ 2

∂y2
i

u(t,y)+∑
N
i=1

∫ t

0
b(t− s)

∂ 2

∂y2
i

u(s,y)+ c0 sin(u(t,y)),

t ∈ [0,T ], t 6= ti,y ∈Ω

∂

∂n
u(t,y) = 0, t ∈ [0,T ],y ∈ ∂Ω

u(0,y)+g(u(·, ·))(y) = u0(y), y ∈Ω

u(t+i ,y)−u(t−i ,y) = Ii(u(ti,y)), y ∈Ω, i = 1,2, · · · , p,
(12)

Let Ω be a bounded domain in RN with smooth boundary, 0 < s1 < s2 < · · · <
sq < T,0 < t1 < t2 < · · · < tp < T,c j ∈ R ( j = 0,1,2, · · · ,q),h ∈ C([0,T ]×
Ω,R),αi > 0,ρi ∈ C(Ω×Ω,R) for each i = 1,2, · · · , p. The nonlocal and im-
pulsive function will be precised in the next.

To illustrate our above abstract results, we set the following conditions

(E1) X= C
(
Ω
)
,A =

N

∑
i=1

∂ 2

∂y2
i

and ϒ(t) = b(t)A with

D(A) :=

{
ϕ ∈

⋂
k≥1

W 2,k(Ω);ϕ,
N

∑
i=1

∂ 2ϕ

∂y2
i
∈ X,

∂ϕ

∂n
= 0

}
,

x(t)(y) = u(t,y) and b : R+→ R is a bounded and C1 function such that
b′ is bounded and uniformly continuous.

(E2) f (t,ψ)(ξ ) = c0sin(ψ(ξ )), t ∈ [0,T ],ξ ∈Ω,ψ ∈ X.

Then, we obtain from [22, Corollary 3.1.24] A generates a strongly continuous
semigroup (S(t))t≥0 on X which is compact for t > 0. Since b is a bounded
and C1 function such that b′ is bounded and uniformly continuous. (E1) saisfies
the assumptions of Theorem 2.2, then there exists a unique resolvent operator
for equation (1). By Lemma 2.5 the resolvent operator (R(t))t≥0 is compact for
t > 0. Under condition (E1), equation (1) has a resolvent operator (R(t))t≥0
which is compact for t > 0.

For the function g, we propose the following forms

(E3) g(ϕ)(ξ ) =
q

∑
j=1

c jϕ(s j)(ξ ), ξ ∈Ω,ϕ ∈ PC([0,T ],X).

(E4) g(ϕ)(ξ ) =
∫ T

0
h(t,ξ )γ(|ϕ(t)|)dt, ξ ∈Ω,ϕ ∈ PC([0,T ],X),γ : R→ R

is continuous and bounded.
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(E5) g(ϕ)(ξ ) =
q∧p

∑
j=2

c jϕ
2(t j)(ξ ), ξ ∈Ω,ϕ ∈ PC([0,T ],X).

and for the functions Ii, we take the following functions

(E6) Ii(ψ)(ξ ) = αi/(|ψ(ξ )|+ ti), ξ ∈Ω,ψ ∈ X,1≤ i≤ p.

(E7) Ii(ψ)(ξ ) =
∫

Ω

ρi(ξ ,y)cos2(ψ(y))dy, ξ ∈Ω,ψ ∈ X,1≤ i≤ p.

When c j ( j = 0,1, · · · ,q) and αi(i = 1, · · · , p) are small enough, the con-
ditions (E1)-(E3) and (E6) imply the assumptions of Theorem 3.3. Then, we
have

Proposition 4.1. The nonlocal impulsive problem (1) has a unique mild solution
on [0,T ].

Proof. One can compute and see that L f = c0,LG =
q

∑
j=1

c j,Li =
αi

ti
. There-

fore when c j ( j = 0,1, · · · ,q) and αi(i = 1, · · · , p) are small enough, we get

MT

(
c0T +

q

∑
j=1

c j +
p

∑
i=1

αi

ti

)
< 1 where MT = sup

t∈[0,T ]
‖R(t)‖L(X). Theorem 3.3

gives the desired conclusion.

The conditions (E1), (E2), (E4) and (E7) give the assumptions in Theorem
3.7 for large r > 0. Then, we have

Proposition 4.2. The nonlocal impulsive problem (1) has at least a mild solu-
tion on [0,T ].

Proof. Let ε > 0 et condisder g(Yε) = {g(ϕ) : ϕ ∈ Yε}, it is clear that for each
ξ ∈Ω

|g(ϕ)(ξ )| ≤ T sup
(t,y)∈[0,T ]×Ω

|h(t,y)|sup
z∈R
|γ(z)| for any ϕ ∈ Yε .

For any ϕ ∈ Yε we have that

|g(ϕ)(ξ )−g(ϕ)(ξ ′)| ≤ sup
z∈R
|γ(z)|

∫ T

0
|h(t,ξ )−h(t,ξ ′)|dt −→ 0 when ξ −→ ξ

′.

Thus g is a compact operator.
Further, denoting B(0,ε) ⊂ X the ball of radius ε centred at 0 we have that

for each ξ ∈Ω

|Ii(ψ)(ξ )| ≤ |Ω| sup
(z,y)∈Ω×Ω

|ρi(t,y)| for any ψ ∈ B(0,r).
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For any ψ ∈ B(0,r) we have that

|Ii(ψ)(ξ )− Ii(ψ)(ξ ′)| ≤
∫

Ω

|ρi(ξ ,y)−ρi(ξ
′,y)|dy−→ 0 when ξ −→ ξ

′.

The compactness of Ii follows for each i = 1,2, · · · , p. By verification, we
have for r > 0 that

MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X+T sup
s∈[0,T ],ϕ∈Yr

‖ f (s,ϕ(s))‖X+ sup
ϕ∈Yr

p

∑
i=1
‖Ii(ϕ(ti))‖X

)

≤MT

(
‖x0‖X+T sup

(t,y)∈[0,T ]×Ω

|h(t,y)|sup
z∈R
|γ(z)|+T c0 + |Ω|

p

∑
i=1

sup
z,y∈Ω

|ρi(z,y)|

)
= η .

Therefore if r > η assumption (C3) is satisfied. All the other assumptions of
Theorem 3.7 being held the desired conclusion follows.

The conditions (E1), (E2), (E5) and (E7) make the assumptions in Theorem
3.8 satisfied for large r > 0. Therefore, we give

Proposition 4.3. The nonlocal impulsive problem (1) has at least a mild solu-
tion on [0,T ].

Proof. Among assumption (N3) all the assumptions of Theorem 3.8 are satis-
fied. Nevertheless, we have that

MT

(
‖x0‖X+ sup

ϕ∈Yr

‖g(ϕ)‖X+T sup
s∈[0,T ],ϕ∈Yr

‖ f (s,ϕ(s))‖X

+ sup
ϕ∈Yr

p

∑
i=1
‖Ii(ϕ(ti))‖X

)
− r

≤MT

(
‖x0‖X+

q∧p

∑
j=2

c j sup
ϕ∈Yr

‖ϕ‖2
PC+T c0 + |Ω|

p

∑
i=1

sup
z,y∈Ω

|ρi(z,y)|

)
− r

≤MT

(
‖x0‖X+

q∧p

∑
j=2

c jr2 +T c0 + |Ω|
p

∑
i=1

sup
z,y∈Ω

|ρi(z,y)|

)
− r

≤MT

(
‖x0‖X+T c0 + |Ω|

p

∑
i=1

sup
z,y∈Ω

|ρi(z,y)|

)
+MT

q∧p

∑
j=2

c jr2− r

=: ar2− r+b

Choosing c j ( j = 2, · · · ,q∧ p) small enough, we get

r ∈ (0,+∞)
⋂[1−

√
1−4ab
2a

;
1
√

1+4ab
2a

]



32 M. DIEYE - M. A. DIOP - K. EZZINBI - H. HMOYED

and assumption (N3) is held. Consequently the existence of mild solution fol-
lows.
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