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MOSER TYPE ESTIMATES IN NONLINEAR
NEUMANN PROBLEMS

ANGELA ALBERICO - ANDREA CIANCHI

Sharp exponential estimates for solutions to homogeneous Neumann
problems for nonlinear elliptic equations in open subsets ! of Rn are estab-
lished, with data from limiting Lebesgue spaces, or, more generally, Lorentz
spaces.

The aim of the present note is to announce some recent results dealing
with sharp exponential estimates for solutions to nonlinear elliptic equations in
limiting cases.

Exponential integrability properties of functions from borderline Sobolev
spaces have been known for a long time, and go back to [22], [24]. The optimal
constant in the corresponding Sobolev inequality for compactly supported func-
tions was found in a by now classical paper by Moser [21] in the case of rst
order Sobolev spaces, and extended to Sobolev spaces of arbitrary order in [1].
More recently, similar properties have been shown to hold also for solutions to
elliptic equations - see e.g. [5], [15]. In particular, Moser type inequalities,
involving sharp constants, for solutions to Dirichlet problems have been estab-
lished in [16], [6], [4], [12], [13], [14].

Here, we are concerned with solutions to homogeneous Neumann prob-
lems, which, in their basic form, read

(1)
{
−div

(
a(x , u,∇u)

)
= divF in !

a(x , u,∇u) · ν = 0 on ∂!,
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where ! is a sufciently regular bounded domain in Rn , n ≥ 3, a : ! × R ×
Rn → Rn is a Carathéodory function; the function F : ! → Rn is given and
satises suitable integrability conditions; ∇u denotes the gradient of u; ν is
the unit normal vector on ∂!, and �“·�” stands for scalar product in Rn . As an
ellipticity condition, we assume that there exists p ∈ (1, n] such that, for a.e.
x ∈!,

(2) a(x , t, ξ ) · ξ ≥ |ξ |p for every (t, ξ )∈R×Rn .

We deal with weak solutions to (1), namely with functions u from the Sobolev
space W 1,p(!) satisfying

(3)
∫

!

a(x , u,∇u) · ∇φ dx =
∫

!

F · ∇φ dx

for every φ ∈W 1,p(!).
By the Sobolev embedding theorem, the membership of |F | in the

Lebesgue space L p′ (!), where p′ = p
p−1 , entails that the right-hand side of

(3) is convergent for every test function φ ∈W 1,p(!), and hence that weak so-
lutions to (3) are well-dened, as long as a(x , t, ξ ) is such that the left-hand side
converges as well. This is certainly true, for instance, if there exists a constant
K such that, for a.e. x ∈!,

|a(x , t, ξ )| ≤ K |ξ |p−1 for every (t, ξ )∈R× Rn .

A higher summability of |F | reects on the regularity of solutions u. Speci-
cally, u is known to belong to Ls (!) where s = nq(p−1)

n−q(p−1) , the Sobolev conjugate
of q(p − 1), if |F | ∈ Lq(!) with q < n

p−1 , and to L
∞(!) if q > n

p−1 . Roughly
speaking, our main result ensures that, in the borderline cases where q = n

p−1 ,
the function λ|u|n′ is exponentially integrable for every λ > 0, provided that the
domain is of class C1,α , and, what is most interesting, exhibits the largest value
of λ for which such an integrability property is uniform in F . In fact, our con-
clusions hold for data F from the larger class of Lorentz spaces L

n
p−1 ,

q
p−1 (!).

Recall that

‖ |F | ‖
L

n
p−1 ,

q
p−1 (!)

=
( ∫ |!|

0
F∗(s)

q
p−1 s

q
n−1ds

) p−1
q

,

where |!| is the Lebesgue measure of !, and F∗ denotes the decreasing
rearrangement of |F |.
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Theorem 1. Let ! be a bounded connected domain in Rn , n ≥ 3, of class
C1,α , for some α ∈ (0, 1]. Let p ∈ (1, n] and let |F | ∈ L

n
p−1 ,

q
p−1 (!) for some

q ∈ (1,∞]. Let u be a weak solution to problem (1).

(i) Case 1 < q <∞. A constant C = C (!, q) exists such that

(4)
∫

!

exp
(
n
(ωn

2

)1/n |u −m(u)|
‖ |F | ‖

L
n
p−1 ,

q
p−1

)n′

dx ≤ C ,

where ωn = πn/2/*
(
1+ n

2
)
, the measure of the unit ball in Rn, and

m(u) = sup
{
t ∈R : |{u > t}| ≥ |!|/2

}
,

the median of u. Moreover, the constant n(ωn/2)
1
n is sharp. Indeed, domains

!∈C1,α exist such that the left-hand side of (4), with n(ωn/2)
1
n replaced by any

larger constant, cannot be uniformly bounded as |F | ranges among all functions
from L

n
p−1 ,

q
p−1 (!) and u is a weak solution to (1) with a(x , t, ξ ) = |ξ |p−2ξ .

(ii) Case q = +∞. For every γ < n(ωn/2)
1
n , a constant C = C (!, γ ) exists

such that

(5)
∫

!

exp
(
γ

|u −m(u)|
‖ |F | ‖

L
n
p−1 ,∞

)
dx ≤ C.

The result is sharp. Indeed, there exist domains ! ∈ C1,α , functions F , with
|F | ∈ L

n
p−1 ,∞(!), and weak solutions to (1), with a(x , t, ξ ) = |ξ |p−2ξ , such

that the left-hand side of (5) diverges for every γ ≥ n(ωn/2)
1
n .

Remark 1. Results in the spirit of Theorem 1 for linear Neumann problems are
contained in our earlier paper [2], of which the present work is a continuation.
Apart from the nonlinearity of the equations considered here, another novelty
is that, in contrast to [2], right-hand sides in divergence form are taken into
account.

Remark 2. Let us notice that the best constant n(ωn/2)
1
n in (4)�–(5) depends

only on the dimension n. Loosely speaking, this can be explained by the fact
that the boundary of smooth domains is asymptotically at. Of course, the
geometry of ! enters in the constant C on the right-hand side. A version of
Theorem 1 holds even for irregular domains ! having singularities of conical
type. However, in this case, the optimal constant in the exponential does depend
on geometric properties of ∂! at its irregular points, and, in particular, on the
minimum of the solid apertures of ∂! at these points.
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Remark 3. Equations containing lower order terms depending on ∇u can be
included in our discussion, at least for values of p ≥ 2. The conclusions are
analogous to those of Theorem 1, provided that the coefcients of the new term
belong to appropriate Lorentz spaces.

Precise statements and proofs of the extensions of Theorem 1 to which we
allude in Remark 2 and 3 can be found in [3]. We refer to this paper also for the
proof of Theorem 1.
Let us just outline here the basic ingredients in our approach. The starting
point is an estimate for (u − m(u)) in terms of rearrangements, in the spirit
of those of [23] and [9] for Dirichlet problems, and of [17], [10], [8] for
Neumann problems. Unlike the case of solutions to Dirichlet problems, such
an estimate depends on ! through its isoperimetric function h!. Recall that
h! : (0, |!|)→ [0, +∞) is dened as

(6) h!(s) = inf{P(E;!) : E ⊂ !, |E | = s} for s ∈ (0, |!|),

where P(E;!) denotes the perimeter of E relative to! (see e.g. [7], Denition
3.35), which agrees with the (n−1)-dimensional Hausdorff measure of ∂E ∩!

if E is sufciently regular.
The importance of isoperimetric inequalities relative to a domain and of the
related isoperimetric function in the study of Sobolev embeddings and of a priori
estimates in Neumann problems was pointed out in the work by V.G. Maz�’ya
([18], [19], [20]). The point is that the isoperimetric function h! is very difcult
to compute in general, and it is explicitly known only for very special domains,
such as balls, half-spaces and convex cones. Nevertheless, we can show that
what plays a role in connection to inequalities of type (4) and (5) is only a
precise description of the asymptotic behavior of h! at 0. Such a description
has been recently provided in [11], motivated by the study of Moser-Trudinger
inequalities for functions which do not necessarily vanish on the boundary of
their domain. With this material in place, the problem of estimates (4) and
(5) is reduced to one-dimensional inequalities for an integral operator whose
kernel satises suitable properties. The relevant inequalities can be studied via
techniques introduced in [21] and developed in [1], [6], [12], [13], [14].
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COMPARISON RESULTS FOR SOLUTIONS OF PARABOLIC
EQUATIONS WITH A ZERO ORDER TERM

ANGELO ALVINO - ROBERTA VOLPICELLI - BRUNO VOLZONE

We give a comparison result for solutions of Cauchy-Dirichlet problems
for parabolic equations by means of Schwarz symmetrization. The result
takes into account the inuence of the zero order term which could have a
singularity at the origin of the type 1/|x|2.

Let! be a bounded, open subset of RN and u be a real measurable function
on !, we dene the decreasing rearrangement of u as

u∗ (s) = sup {θ ≥ 0 : µu (θ) > s} , s ∈ (0, |!|)

where µu is the distribution function of u. Furthermore, we denote by !# the
ball of RN centered at the origin having the same measure as !, by u# and
u# the decreasing and the increasing spherical rearrangement of u. Roughly
speaking, u# and u# are spherically symmetric functions, dened on !# which
are respectively decreasing and increasing along the radius and preserve the
measure of the level sets of u.

It is well known that by using rearrangements sharp bounds for solutions
of elliptic and parabolic equations can be found. Indeed, for large class of
equations the solutions may be compared to the solution of a problem of the
same typewith spherical symmetry (the so-called �“symmetrized�” problem). The
rst results in this direction were obtained by G.Talenti [9] for elliptic equations
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and C. Bandle [5] for parabolic equations and since then, have been extended
in different directions by various authors (see, for instance, [1], [3], [10], [12]).
We consider the problem

(1)






ut −
(
ai j (x , t)uxi

)
xj

+ cu = f in !× (0, T )

u = 0 on ∂!× (0, T )

u (x , 0) = u0 (x) x ∈!,

where ! is a bounded, open subset of RN , T > 0.
Assume that the coefcients ai j are measurable, bounded functions satisfying
the condition

(2) ai j (x , t) ξiξj ≥ |ξ |2 for a.e. (x , t) ∈!× (0, T ) , ∀ξ ∈RN ,

c ∈ Lr (!) with r > N/2 if N ≥ 2, r ≥ 1 if N = 1, (3)

(4) f ∈ L2 (!× (0, T )) , u0 ∈ L2 (!) .

Our aim is to nd a comparison result between the solution u of the problem (1)
and the solution v of a spherically symmetric problem which keeps in mind the
zero order term. The candidate problem is the following

(5)






vt −-v +
((
c+)

# −
(
c−

)#)
v = f # in !# × (0, T )

v = 0 on ∂!# × (0, T )

v (x , 0) = u#0 (x) x ∈!#,

where c+, c− are the positive and the negative part of c and f # is the de-
creasing spherical rearrangement of f with respect to the space variable, for
t xed. We deal with weak solutions of the problem (1) i.e. functions
u ∈ L2 (0, T ; H 1

0 (!)
) ∩ C (

[0, T ] ; L2 (!)
)
such that ut ∈ L2 (!× (0, T )) and

(6)






∫

!

utϕ dx +
∫

!

ai j uxi ϕxj dx +
∫

!

cuϕ dx =
∫

!

f ϕ dx

u (0) = u0,

for all ϕ ∈ H 1
0 (!) and for a.e. t ∈ [0, T ]. The existence and the required

regularity of such a solution is guaranteed under suitable assumptions on the
data. We prove the following:
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Theorem 1. Let ! be a bounded, open subset of RN , assume that the data of
problem (1) satisfy (2)�–(4). Let u and v be the weak solutions of problems (1)
and (5) respectively, then for all t ∈ [0, T ],

(7)
∫ s

0
u∗ (σ, t) dσ ≤

∫ s

0
v∗ (σ, t) dσ, ∀s ∈ [0, |!|]

where u∗ and v∗ are the decreasing rearrangements of u and v with respect to
the space variable, for t xed.

The proof of Theorem 1 is given in [4]. In the case c ∈ L∞(!), the
estimate (7) improves the estimate given in the papers 5, 8 in which the inuence
of the zero order term cu is neglected, since it is essentially omitted in the
�“symmetrized�” problem using the sign assumption c (x) ≥ 0. The rst difculty
that appears in the proof of Theorem 1 and in general in the parabolic case
is the presence of the time derivative term. This term can be treated by two
different methods. Following the approach contained in a paper of C. Bandle
(see [5]), one has to prove a delicate derivation formula with respect to the time
variable for functions dened by integrals. In [5], such a formula is proved under
strong regularity assumptions on the solutions. These hypotheses have been
removed later in a paper of Mossino-Rakotoson (see [8]), where the formula
is proved for fuctions u ∈ H 1 (0, T ; L2 (!)

)
by using the notion of relative

rearrangement. Recently, generalizations of this result have been obtained in
[2], where a formula concerning the second derivatives is also given. Another
approach uses the implicit time discretization scheme. In this way the study
is reduced to the case of an elliptic operator with a zero order term, for which
comparison results are known (see [1], [10]). Obviously the case c bounded
from below can be reduced to the case c ≥ 0. In fact, if c (x) ≥ λ for a.e.
x ∈ !, we can replace the function u with the function eλt u. This situation
was already studied in [12]. We give a different proof that avoids to proceed
by means of the approximation used in [12]. More delicate is the proof when
c is not bounded from below, since we prefer to work straight on problem (1)
and do not want to use approximating problems having the troncations of c as
coefcients of the zero order terms. The motivation of this study, besides its
intrinsic interest, is also connected to some recent results obtained by various
authors (see [6], [7]), related to the existence of solutions of parabolic equations
when ! is bounded, open subset of RN (N > 2) containing the origin and
c (x) = −λ/|x |2. The equation

(8) ut −-u − λ |x |2 u = f
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is a borderline case in the classic theory of parabolic equations, indeed the
potential λ/ |x |2 belongs to LN/2

w , therefore it is not possible to use traditional
uniqueness and regularity results. This kind of problems were rstly studied by
Baras and Goldstein in [6], with the assumptions f, u0 ≥ 0, f, u0 /= 0. They
prove that the behaviour of solutions depends on the value of the parameter λ.
More precisely, there exists a critical value λN := (N − 2)2 /4, corresponding
to the best constant in the classical Hardy inequality, such that for λ ≤ λN , the
Cauchy-Dirichlet problem associated to equation (8) has a solution, while in
the case λ > λN the same problem has no local solution for any f , u0 /= 0.
Afterwards, this problem was studied in [11] removing the sign assumptions
on the data and pursuing a deeper analysis of the critical case λ = λN , and
in [7], where the corresponding nonlinear case is treated. The subcritical case
λ < λN is easier to study than the case λ = λN . Indeed it is possible to
use the classical methods of the Calculus of Variations, since by the classical
Hardy inequality it follows that the operator −-u − λ/(|x |2)u is coercive;
then for any f ∈ L2 (!× (0, T )), u0 ∈ L2 (!) there exists a unique solution
u ∈C

(
[0, T ] ; L2 (!)

)
∩ L2

(
0, T ; H 1

0 (!)
)
(see [6], [7], [11]). The situation is

very different in the critical case λ = λN , in which, there is a solution in L2 but
not in H 1

0 (see [7], [11]).
The above mentioned results, pursue us to obtain in [13] comparison results

for problem (1) under the weaker regularity assumption c ∈ LN/2
w (N > 2). We

send back to [13] for the detailed results concerning both the subcritical and the
critical case. In the subcritical case under the assumption

(9) c+ = 0
(
c−

)#
(x) ≤ λ

|x |2 ∀x ∈!#\ {0} , 0 < λ < λN

the solution u of (1) is compared with the solution v of the following problem

(10)






vt −-v − λ

|x |2 v = f # in !# × (0, T )

v = 0 on ∂!# × (0, T )
v (x , 0) = u#0 (x) x ∈!#.

More precisely, we prove:

Theorem 2. Let ! be a bounded, open subset of RN , such that 0∈!, assume
that the data of problem (1) satisfy (2), (4), (9). Let u and v be the weak
solutions of problems (1) and (10) respectively, then for all t ∈ [0, T ], (7) holds.
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Much more delicate is the study of the critical case: we have to make
suitable assumptions on the data in order to introduce a functional space in
which, there exists a unique solution of the problem (see [11]).
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FORMULA DI TAYLOR NEI GRUPPI DI CARNOT
E APPLICAZIONI

G. ARENA - A. O. CARUSO - A. CAUSA

In �’82 Folland and Stein dened, for a given function f ∈ C n (G), the
Taylor polynomial, where G is a connected and simply connected real Lie
group whose algebra is endowed with a family of dilations δλ. Although
the extensive studies in this eld, particularly in the case of stratied groups
nowadays called Carnot groups, an explicit representation of the nth -Taylor
polynomial in this last setting seems to be missing. In this note we announce
an explicit expression for the Taylor polynomial when G is the Heisenberg
group H1, and we present one application.

1. Introduzione.

In questo annuncio ci occupiamo di una particolare classe di gruppi di Lie
reali, i gruppi di Carnot, oggetto di intensi studi nell�’ultimo trentennio per via
dei legami con molti settori della matematica pura ed applicata come, per esem-
pio, equazioni differenziali alle derivate parziali ipoellittiche (vedi, per esem-
pio [12], [6], [21]), equazioni differenziali alle derivate parziali completamente

2000 Mathematics Subject Classication: 22E30, 26B05, 26C05
Key words and phrases: Carnot groups, Taylor formula.

I risultati qui presentati sono stati comunicati dal secondo autore: quelli relativi alla
formula di Taylor sono stati ottenuti con G. Arena ed A. Causa, le applicazioni con G.
Arena. Gli enunciati in forma completa e le relative dimostrazioni appariranno altrove.
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non lineari (vedi per esempio [15] e relativa bibliograa), funzioni debolmen-
te differenziabili ed argomenti correlati, con particolare riferimento alla teoria
geometrica della misura (vedi [9], [4], [19], [14] per una estesa bibliograa),
alla geometria sub�–Riemanniana (vedi [2], [18]) e le relative applicazioni alla
teoria geometrica del controllo (vedi per esempio [1] e relativa bibliograa), ai
modelli matematici della visione (vedi [3] e relativa bibliograa).

I gruppi di Carnot, che devono il loro nome ad un lavoro di Charatheodory
su una formulazione matematica del secondo principio della termodinamica, si
rivelano essere naturalmente gli spazi metrici tangenti nei punti regolari di una
varietà sub�–Riemanniana: in pratica i gruppi di Carnot costituiscono per le va-
rietà sub�–Riemanniane quello che gli spazi vettoriali Euclidei sono per le varietà
Riemanniane. Una varietà sub�–Riemanniana (M, D, g) è una varietà Rieman-
niana (M, g) sulla quale è stata assegnata una distribuzione D di sottospazi
vettoriali m�–dimensionali del brato tangente. Una curva assolutamente conti-
nua γ : R ⊃ I → M congiugente due dati punti p e q in M e tale che il
vettore γ̇ (t) appartiene, per q.o. t ∈ I, al sottospazio m�–dimensionale Dγ (t), si
dirà orizzontale. Una condizione che garantisce che, per una ssata distribuzio-
ne D, tali curve esistano, è la cosiddetta condizione di Hörmander. Sotto tale
condizione, possiamo denire una distanza (oggi detta C�–C , ovvero di Carnot�–
Caratheodory), d(p, q) come l�’inmum delle lunghezze delle curve orizzontali
congiungenti p e q. La topologia indotta da d è quella originale, tuttavia d e
dg, la metrica Riemanniana, non sono in generale equivalenti. Tale condizione,
che appare in un fondamentale lavoro di Hörmander (vedi [12]), richiede che,
assegnata una famiglia nita X1, X2, . . . , Xm di campi vettoriali lisci su una va-
rietà n�–dimensionale M, esista un intero r tale che, fra i campi vettoriali Xi ,
[Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], . . . , [Xi1 , [Xi2 , [Xi3 , · · · [Xir−1 , Xir ] · · ·]]], almeno
n siano linearmente indipendenti in ogni punto di M . L�’aspetto metrico tipico
della geometria sub�–Riemanniana, appare chiaramente in una serie di lavori tra
cui, per citarne alcuni, quello fondamentale di A. Nagel, E.M. Stein e S. Wain-
ger (vedi [20]), ed altri di C. Fefferman e D.H. Phong (vedi [5]), e B. Franchi
e E. Lanconelli (vedi [10], ed anche [13], [8]); passando poi dagli aspetti pu-
ramente metrici a quelli geometrici, ad esempio quello che realizza tali gruppi
come strutture tangenti alle varietà sub�–Riemanniane, una serie di idee succes-
sive in prevalenza dovute alla scuola facente capo a M.Gromov, ha condotto la
teoria generale di tali varietà allo stadio attuale (per approfondimenti vedi [2],
[18], vedi anche [17], [23], [24], [16], e relative bibliograe).

La problematica qui presentata è collegata all�’espressione esplicita della
formula di Taylor nei gruppi di Carnot (per una introduzione a questi, si riman-
da a [7], [22], [11], ed anche a [14], [19]). Infatti, la denizione originale di
polinomio di Taylor in tali gruppi, dovuta a Folland e Stein (vedi la Sezione 2,
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oltre che le pagg. 26�–27 di [7], non consente, a causa della particolare natura dei
campi dell�’algebra, di poter calcolare agevolmente l�’azione delle k�–derivazioni
su di un ssato monomio: cos̀ la denizione non sembra particolarmente conve-
niente qualora si voglia esplicitamente scrivere il polinomio di Taylor di grado
ssato. È tuttavia possibile aggirare il problema per via teorica; precisamente,
partendo dall�’usuale espansione in serie di Taylor in un gruppo di Lie, è possi-
bile congetturare la forma esplicita dell�’n-esimo polinomio di Taylor e, tramite
considerazioni di carattere algebrico, oltre che adattando argomenti standard
della geometria sub-Riemanniana, caratterizzarlo come nel caso euclideo.

Per semplicità annunciamo i risultati nel caso del più noto gruppo di
Carnot, il gruppo di Heisenberg H1, che presentiamo rapidamente nella sezione
seguente; il lettore potrà tuttavia facilmente realizzare le estensioni al caso
generale.

2. Notazioni e Preliminari.

H1 è l�’unico gruppo di Lie reale nilpotente connesso e semplicemente
connesso di dimensione 3 la cui algebra h1 ammette una decomposizione del
tipo h1 = h ⊕ t, con h generata dai campi vettoriali invarianti a sinistra
X = ∂

∂ x +2y ∂
∂ t , Y = ∂

∂y −2x ∂
∂ t , detti orizzontali, e t generato dal commutatore

T = − [X,Y ]
4 , dove, con (x , y, t), denotiamo le coordinate di un elemento di

h1 e, al solito, identichiamo i campi vettoriali con le derivazioni associate
dell�’algebra. Dalla formula di Baker�–Campbell�–Hausdorff segue che, dette
p = (x , y, t) e q = (x ′, y ′, t ′) le coordinate esponenziali di due elementi di
H1, l�’operazione di gruppo opera secondo la legge p q =

(
x + x ′, y + y ′, t +

t ′ + 2(yx ′ − xy ′)
)
: in particolare p 0 = 0 p = p e p−1 = −p, dove, se

p = (x , y, t), allora −p = (−x ,−y,−t). Inoltre, la struttura nilpotente di
h1 induce su H1 una famiglia di dilatazioni {δλ}λ≥0 , denite dalla posizione
δλ(x , y, t) = (λx , λy, λ2t). Inne, una funzione f : H1 → R si dirà omogenea
di grado α ∈ R, se f (δλ(p)) = λα f (p) per ogni λ > 0 e per ogni p ∈ H1;
in particolare, per ogni l,m, r = 0, 1, . . ., un monomio del tipo xl ymtr risulta
essere una funzione omogenea di grado l + m + 2r .

Introduciamo ora una metrica sub�–Riemanniana in H1 come segue. Fis-
sati due punti p e q , sia γ : [0, T ] → H1 una curva assolutamente conti-
nua, tangente, per q.o. t ∈ [0, T ], alla distribuzione dei sottospazi generati dai
campi X ed Y nei punti γ (t). Più precisamente, cerchiamo due funzioni reali
λ, µ : [0, T ] → R, misurabili, tali che λ2(t) + µ2(t) ≤ 1 e per le quali risulti
γ̇ (t) = λ(t)X (γ (t)) + µ(t)Y (γ (t)), per q.o. t ∈ [0, T ]: tali curve, dette oriz-
zontali, esistono grazie alla straticazione nilpotente di h1. Chiamiamo d(p, q)
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l�’estremo inferiore delle suddette T > 0. È possibile vericare che d è una
metrica inducente in H1 la topologia euclidea, ma non equivalente alla distanza
euclidea; in analogia a questa, tuttavia, d è invariante per traslazioni ed omo-
genea di grado 1, si ha cioè d(qp1, qp2) = d(p1, p2) e d(δλ(p1), δλ(p2)) = λ

d(p1, p2), per ogni q, p1, p2 ∈H1 e per ogni λ > 0.
Introduciamo inne le funzioni di classe Cn (H1), e la denizione di po-

linomio di Taylor. Se f : H1 → R e p0 ∈ H1, in accordo con l�’invarianza
dei campi X ed Y , diciamo che f è derivabile lungo X (risp. Y ) in p0, e scri-
veremo X f (p0) (risp. Y f (p0)), se l�’applicazione λ → f (p0 δλ(1, 0, 0)) (risp.
λ → f (p0 δλ(0, 1, 0))) è derivabile in λ = 0. Diciamo dunque che f ∈C1(H1)
se X f ed Y f esistono in ogni punto e sono continue in H1. Posto poi X1 = X ,
X2 = Y e X3 = T , diciamo k-derivazione orizzontale (risp. k-derivazione) un
operatore differenziale del tipo Z Jk = Xj1 · · · Xjk , con Jk = ( j1, . . . , jk) multi
indice e ji = 1, 2 (risp. ji = 1, 2, 3) per ogni i = 1, . . . , k; diciamo dunque che
f ∈ Cn (H1) se esiste ed è continua Z Jk f , per ogni k�–derivazione orizzontale,
con 0 ≤ k ≤ n. Inne, dati f ∈ Cn (H1) e p ∈ H1, un polinomio P in H1 di
grado n dicesi polinomio di Taylor di f in p, se risulta Z Jk (P − f )(p) = 0, per
ogni k-derivazione orizzontale, con 0 ≤ k ≤ n.

3. Polinomio di Taylor nel gruppo di Heisenberg ed applicazioni.
Allo scopo di ricavare esplicitamente la formula di Taylor in H1, suppo-

niamo dapprima che G sia un gruppo di Lie analitico e che f sia denita ed
analitica in un intorno dell�’identità e∈G: poichè operiamo con campi invarian-
ti a sinistra, possiamo cercare, senza perdita di generalità, il polinomio di Taylor
in e. Se X, Y, T ∈ g, l�’algebra di G, sussiste la seguente espansione in serie di
Taylor (vedi per esempio [25], ed anche l�’Appendice di [20]):

f (x , y, t) =
∞∑

k=0

1
k!

[(
x X + yY + tT

)k f
]
(e)(1)

=
∞∑

k=0

[ ∑

n1 ,n2 ,n3≥0
n1+n2+n3=k

(
σ (Xn1 ,Yn2 ,Tn3 )
(n1+n2+n3)! f

)
(e)

n1!n2!n3!
xn1 yn2 t n3

]
,

dove il simbolo σ (Xn1 , Yn2 , T n3 ) si denisce come segue.
Per ogni n1, n2, n3 = 0, 1, . . ., poniamo X1 = · · · = Xn1 = X , Xn1+1 = · · · =
Xn1+n2 = Y , Xn1+n2+1 = · · · = Xn1+n2+n3 = T , e

σ (Xn1 , Yn2 , Tn3 ) =
∑

π∈Sn1+n2+n3

Xπ(1) · · · Xπ(n1+n2+n3 ),



FORMULA DI TAYLOR NEI GRUPPI DI CARNOT. . . 379

dove Sn1+n2+n3 è il gruppo di permutazioni su {1, . . . , n1 + n2 + n3}. Avendo
in mente il caso G = H1, osserviamo che, nella (1), il grado del monomio
xn1 yn2 t n3 che appare nella k-esima somma, è n1 + n2 + 2n3, che in generale è
diverso da k; è dunque naturale modicare la (1) come segue

f (x , y, t) =
∞∑

k=0

[ ∑

n1 ,n2 ,n3≥0
n1+n2+2n3=k

(
σ (Xn1 ,Yn2 ,Tn3 )
(n1+n2+n3 )! f

)
(0)

n1!n2!n3!
xn1 yn2 t n3

]
.

Le precedenti considerazioni suggeriscono il candidato n-esimo polinomio
di Taylor di una data f ∈Cn(H1):

(Pn, f ) Pn, f (x , y, t) =
n∑

k=0

[ ∑

n1 ,n2 ,n3≥0
n1+n2+2n3=k

(
σ (Xn1 ,Yn2 ,Tn3 )
(n1+n2+n3 )! f

)
(0)

n1!n2!n3!
xn1 yn2 t n3

]
.

Si osservi subito che, se Sym(Xn1 , Yn2 , Tn3 ) denota la somma di tutte le (n1 +
n2+n3)-derivazioni contenenti ciascuna n1 volte la X , n2 volte la Y ed n3 volte
la T , è chiaro che

Sym(Xn1 , Yn2 , T n3 ) = σ (Xn1 , Yn2 , T n3 )
n1!n2!n3!

.

Volendo ora riscrivere più esplicitamente (Pn, f ) in termini di derivazioni, osser-
viamo dapprima che, per ogni k = 0, 1, . . ., nella potenza formale (X+Y+T )k ,
è opportuno raccogliere insieme tutti gli addendi contenenti n1 volte X , n2 volte
Y ed n3 volte T , per i quali n1 + n2 + 2n3 = k, ed interpretarli come un unica
(n1+n2+n3)�–derivazione, precisamente n1 !n2!n3 !

(n1+n2+n3 )! · Sym(X
n1 , Yn2 , T n3 ); detta

cos̀ (n1+n2+n3)-derivazione simmetrizzata di ordine n1+n2+n3, contenente
n1 volte la X , n2 volte la Y ed n3 volte la T , quella denita da

∂k

∂Xn1∂Yn2∂T n3
= n1!n2!n3!
(n1 + n2 + n3)!

· Sym(Xn1 , Yn2 , T n3 ),

dove, in tale scrittura, k denota il grado di derivazione effettivo, possiamo
riscrivere (Pn, f ) come segue

Pn, f (x , y, t) =
n∑

k=0

[ ∑

n1 ,n2 ,n3≥0
n1+n2+2n3=k

(
∂ k

∂Xn1 ∂Yn2 ∂Tn3 f
)
(0)

n1!n2!n3!
xn1 yn2 t n3

]
.
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Inne, osservando che, nel caso particolare di H1,

Sym(Xn1 , Yn2 , T n3 ) =
(
n1 + n2 + n3

n3

)
· Sym(Xn1 , Yn2 ) T n3

poichè T appartiene al centro di h1, possiamo anche scrivere

Pn, f (x , y, t) =
n∑

k=0

[ ∑

n1 ,n2 ,n3≥0
n1+n2+2n3=k

(
∂ n1+n2

∂Xn1 ∂Yn2 T
n3 f

)
(0)

n1!n2!n3!
xn1 yn2 t n3

]
.

Enunciamo dunque il risultato principale relativo alla formula di Taylor.

Teorema. Sia f ∈Cn(H1). Sussistono i seguenti fatti equivalenti:

i) Pn, f è l�’n-esimo polinomio di Taylor di f in zero;
ii) Pn, f (p)− f (p) = o

[
d(p, 0)

]n per p→ 0.

Sottolineiamo che, per vericare che Pn, f è l�’n-esimo polinomio di Taylor, fac-
ciamo ricorso ad argomentazioni di carattere puramente algebrico sui generatori
lineari graduati dell�’algebra libera K〈X, Y 〉.

Concludiamo questo annuncio presentando una generalizzazione al caso
H1 del classico teorema di H. Whitney sulla prolungabilità di funzioni regolari
denite in un chiuso di Rn (vedi [26]), qui enunciato per funzioni g ∈ C2(F),
F ⊆ H1 chiuso.

Qualche notazione. Sia g : H1 → R; se esistono Xg ed Yg, dicesi
gradiente orizzontaledi g la funzione vettoriale∇g = (Xg, Yg); se poi esistono
Xi X j g, per ogni i, j = 1, 2, dicesi Hessiana orizzontale la funzione a valori in
R2×2 Hg = (Xi X j g)i, j=1,2.

Teorema. (di estensione di Whitney) Siano F ⊆ H1 un chiuso, e siano f :
F → R, ∇ : F → R2, ed H = (Hij )i, j=1,2 : F → R2×2 funzioni continue.
Poniamo

T = − (H 12 − H 21)
4

, HS = H + HT

2
,

R0(p, q) = 1
[d(p, q)]2

{
f (p) −

[
f (q) +

2∑

i=1
∇ i (q)(q−1 p)i +

+ 1
2

2∑

i, j=1
H S

i j (q)(q
−1 p)i (q−1 p)j + T (q)(q−1 p)3

]}
,
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e, per ogni i = 1, 2,

Ri (p, q) =
∇ i (p) − ∇ i (q)−

∑2
j=1 H ji (q)(q−1 p)j

d(p, q)
.

Supponiamo che per ogni compatto C ⊆ F e per ogni i = 0, 1, 2, posto ρi (δ) =
sup

{|Ri (p, q)| : p, q ∈C, 0 < d(p, q) < δ
}
, risulti lim δ→0+ ρi (δ) = 0.

Allora, esiste f : H1 → R, f ∈C2(H1), tale che f |F = f , (∇ f )|F = ∇ ,
(H f )|F = H .
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THIN INCLUSIONS IN AN ELASTIC BODY

ELENA BERETTA - ELISA FRANCINI

We consider a plane isotropic homogeneous elastic body containing a
�“thin�” elastic inclusions in the form of a neighborhood of thickness 2ε of
some line segment. We derive an asymptotic expansion of the boundary
displacement eld as ε → 0.

Let! ⊂ R2 be a bounded smooth domain representing the region occupied
by an elastic material. Suppose that this material contains an inclusion ωε , with
different elastic properties, that can be represented as a small neighborhood of
a line segment σ0:

ωε = {x ∈! : d(x , σ0) < ε} .

Let C0 and C1 be the elastic tensor elds in ! \ ωε and ωε respectively.
Given a traction eld g : ∂! → R2 on the boundary of !, the displace-

ment eld uε , generated by this traction in the body containing the inclusion ωε ,
solves the following system of linearized elasticity

(1)






div
(
Cε∇̂uε

) = 0 in !

(Cε∇̂uε) · ν = g on ∂!,∫

∂!

uε = 0,
∫

!

(
∇uε − (∇uε)T

)
= 0,

where Cε = C0χ!\ωε
+ C1χωε

, ∇̂uε = 1
2
(∇uε + (∇uε)T

)
is the symmetric

deformation tensor and ν denotes the outward unit normal to ∂!.
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Let us also introduce the background displacement u0, namely the dis-
placement eld generated by the traction g in the body without the inclusion,
that is the solution to

(2)






div
(
C0∇̂u0

)
= 0 in !

(C0∇̂u0) · ν = g on ∂!,∫

∂!

u0 = 0,
∫

!

(∇u0 − (∇u0)T
) = 0,

The goal of this investigation is to nd an asymptotic expansion for
(uε − u0)|∂! as ε → 0. An analogous expansion has been derived in [6]
for the case of thin conductivity inclusions. These expansions represent a
powerful tool to solve the inverse problem of identifying the inclusions from
the knowledge of boundary measurements (see, [1] and [2] for the case of thin
conductivity inclusions and [3] for further references). In [4] the authors derive
an asymptotic expansion for the boundary displacement eld (uε − u0)|∂! in the
case of diametrically small inclusions, namely inclusions of the form z + εB ,
where z is a point in ! and B is a bounded domain containing the origin. The
approach they use does not seem to work for thin inclusions.

These are our main assumptions:

(H1) The segment σ0 is far from ∂! and has positive length, i.e., there is a
positive constant d0 such that

d(σ0, ∂!) ≥ d0, and length(σ0) ≥ d0.

(H2) ! and ωε are both homogeneous and isotropic, i.e. the elastic tensor
elds C0 and C1 are of the following form

(Cm)i jlk = λmδi jδkl+µm (δkiδl j +δkj δli), for i, j, k, l = 1, 2, m = 0, 1,

where (λ0, µ0) and (λ1, µ1) are the Lamè coefcients corresponding to
! \ ωε and ωε , respectively, and (λ0 − λ1)2 + (µ0 − µ1)2 /= 0.

(H3) There are two positive constants α0 and β0 such that

min(µ0, µ1) ≥ α0, min(2λ0 + 2µ0, 2λ1 + 2µ1) ≥ β0.

We note that these last conditions ensure that Cε is strongly convex in !.
(H4) g ∈ H−1/2(∂!) satises the compatibility condition

∫

∂!

g · r = 0,
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for every innitesimal rigid displacement r(x ) = c + Wx where c is a
constant and W is a skew 2× 2 matrix.
Let us introduce the Neumann function N related to ! and to the tensor

C0. For y ∈!, we will denote by N (·, y) the weak solution to the problem





div
(
C0∇̂N (·, y)

) = −δy Id in !,
(
C0∇̂N (·, y)

)
· ν = − 1

|∂!| Id on ∂!,
∫

∂!

N (·, y) = 0,
∫

!

(
∇N (·, y)− (∇N (·, y))T

)
= 0,

where Id is the identity matrix in R2.
We are now ready to state our main result:

Theorem 1. Let ! ⊂ R2 be a bounded smooth domain and let σ0 ⊂⊂ ! be a
line segment satisfying (H1). Assume (H2), (H3) and (H4) and let uε and u0 be
the solutions to (1) and (2) respectively. For every x ∈ σ0 , there exists a fourth
order symmetric tensor eld M(x ) such that, for y ∈ ∂! and ε → 0

(uε − u0)(y) = 2ε
∫

σ0

M(x )∇̂u0(x ) · ∇̂N (x , y) dσ0(x )+ o(ε).

The term o(ε) is bounded by Cε1+θ‖g‖H−1/2(∂!), with 0 < θ < 1 and C
depending only on θ , !, α0 , β0 and d0 .

Furthermore, for x ∈ σ0 we can write

M∇̂u0 = a div u0 Id + b∇̂u0 + c
(
∂(u0 · τ )

∂τ

)
τ ⊗ τ + d

(
∂(u0 · n)

∂n

)
n ⊗ n,

where τ and n are the tangential and normal directions on σ0 and

a = (λ1 − λ0)
λ0 + 2µ0
λ1 + 2µ1

, b = 2(µ1 − µ0)
µ0

µ1
,

c = 2(µ1 − µ0)
[(
2λ1 + 2µ1 − λ0

λ1 + 2µ1
− µ0

µ1

)]
,

and
d = 2(µ1 − µ0)

µ1λ0 − µ0λ1

µ1(λ1 + 2µ1)
.

An analogous result holds in the more general case of an inclusion that is
an ε-neighborhood of a simple regular curve. The proof of this result can be
found in [5].
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EINGENVALUE PROBLEMS AND GAUSS MEASURE

M. F. BETTA - F. CHIACCHIO - A. FERONE

We nd some precise estimates for the rst eigenvalue and for the
corresponding eigenfunction of a class of elliptic equations whose prototype
is −

(
γ uxi

)
xi = λγ u in ! ⊂ Rn with Dirichlet boundary condition, where

γ is the normalized Gaussian function in Rn . To this aim we make use of the
notion of rearrangement with respect to Gaussian measure.

We present some results contained in [4] where we nd some optimal
estimates for the rst eigenfunction of a class of elliptic equations whose
prototype is − (

γ uxi
)
xi

= λγ u in ! ⊂ Rn with Dirichlet boundary condition,
where γ is the normalized Gaussian function in Rn . Before to illustrate such
results we recall some known results for the following eigenvalue problem

(1)
{
−-u = λu in !

u = 0 on ∂!,

where ! is a bounded domain of Rn (n ≥ 2). It is well known that the rst
eigenvalue of the problem (1) is positive, simple and minimizes the Rayleigh
quotient, moreover the following Faber Krahn inequality holds: λ1 ≥ λ

6
1 where

λ
6
1 is the rst eigenvalue of the problem

(2)
{
−-u = λu in !6

u = 0 on ∂!6,

Mathematics Subject Classication (2000): 35B45, 35P15, 35J70.
Keywords: Gaussian rearrangement, Linear elliptic equations, Isoperimetric inequalities,
Eigenfunctions.
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where !6 is the ball centered at the origin having the same measure as !. Vari-
ous comparison results have been proved for the eigenfunction associated to the
the rst eigenvalue. For example if u is any eigenfunction of (1) corresponding
to the rst eigenvalue, then the following Payne Rayner inequality holds (see
[11] for the case n = 2, [8]):

‖u‖Lr (!) ≤ K (r, q, n, λ) ‖u‖Lq (!)
for any 0 < q < r < ∞ where K is a suitable constant. The inequalities
recalled are isoperimetric in the sense that equalities holds if and only if ! is
a ball. The previous results have been extended to more general linear and non
linear problems in bounded domains making use of Schwarz symmetrization
(see for instance [13], [8], [10], [2], and [1]).

In [4] we show that the properties we have recalled about the rst eigen-
value and the corresponding eigenfunction of the problem (1), can be proved
for the following eigenvalue problem

(3)





− ∂

∂xj

(
ai j (x )

∂u
∂xi

)
= λγ (x )u in !

u = 0 on ∂!,

where γ (x ) is the normalized Gaussian function of Rn dened by

γ (x ) = 1
(2π)n/2

exp
(
−|x |2
2

)
,

! is a domain of Rn (n ≥ 2) such that

(4) |!|γ =
∫

!

γ (x ) dx < 1 ,

(
ai j (x )

)
i j is an n × n symmetric matrix with measurable coefcients satisfying

(5) γ (x ) |ζ |2 ≤ ai j (x )ζiζj ≤ Cγ (x ) |ζ |2 ,

for some C ≥ 1, for a.e. x ∈ ! and for all ζ ∈ Rn , where, here and in the
following, we adopt the summation convention.

We consider nontrivial solution u of (3) from the weighted Sobolev space
H 1
0 (!, γ ) endowed with the norm

(6) ‖u‖H 1
0 (!,γ ) =

(∫

!

|Du|2 γ (x ) dx
) 1

2

,
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The assumption (4) guarantees that the embedding of H 1
0 (!, γ ) into

L2(!, γ ) is compact. This allows us to apply standard spectral theory and
to nd a sequence of eigenvalues {λn}n∈N strictly increasing and unbounded.
Furthermore, if λ1 is the rst eigenvalue of (3), then it minimizes the Rayleigh
quotient

λ1 = min
u∈H1

0
(!,γ )

u /=0

∫
! ai j (x )uxi uxj dx∫

!
u2γ (x ) dx

.

Moreover, by adapting classical techniques, one can easily verify that λ1 is
simple and u does not change sign.

To get sharp estimates for the rst eigenvalue λ1 and for the corresponding
eigenfunction u of (3), by the structure of the differential operator, and since
! is allowed to be unbounded, we use Gaussian symmetrization. This kind of
symmetrization transforms a given set ! into an half space

!6 ≡ {
x = (x1, ..., xn)∈Rn : x1 > a

}
,

where a is taken such that ! and !6 have the same Gaussian measure i.e.

|!6|γ = |!|γ .

The isoperimetric inequality for Gaussian measure states that (see [12], [5] and
[9])

Pγ (!) ≥ Pγ (!6)

and equality holds if and only if! = !6 modulo a rotation. Here Pγ (!) denotes
the Gaussian perimeter of ! that is, when ! is sufciently �“nice�”,

Pγ (!) =
∫

∂!

γ (x ) dHn−1,

where Hn−1 denotes the (n − 1)−dimensional Hausdorff measure.
In order to describe our results let us introduce the rearrangement, with

respect to Gaussian measure, of any measurable function u. To this end let µ

be the distribution function of u dened by

µ(t) ≡ |{x ∈! : u(x ) > t}|γ , t ∈R ,

let u∗ be its decreasing rearrangement dened by

u∗(s) ≡ inf {t ∈R : µ(t) ≤ s} , s ∈
]
0, |!|γ

[
,
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and nally let u6 be its Gaussian rearrangement which is the function having the
same distribution function of u whose level sets are half-spaces. More precisely

u6(x ) = u∗(k(x1)), x ∈!#,

where k(σ ) is the function

(8) k(t) ≡ 1√
2π

∫ ∞

t
exp(−σ 2/2) dσ .

The variational characterization together with the Pólya-Szegö principle
with respect to Gaussian measure (see [9], [14] and [6]) allow to get a �“Faber-
Krahn type inequality�”

Theorem 1. If λ1 is the rst eigenvalue of problem (3) then

(9) λ1 ≥ λ
6
1 ,

where λ
6
1 is the rst eigenvalue of the problem

(10)





− ∂

∂xi

(
γ (x )

∂u
∂xi

)
= λγ (x )u in!6

u = 0 on ∂!6,

Furthermore λ1 = λ
6
1 if and only if, modulo a rotation,! = !6 and

ai1(x ) = γ (x )δ1i, a.e. x ∈! .

In [4] we prove that any eigenfunction u of (3) corresponding to λ1 satises
the following �“Payne Rayner type inequality�”

Theorem 2. Let λ1 be the rst eigenvalue of problem (3) and let u be any
eigenfunction associated with it. Then for 0 < q < r <∞, we have

(11) ‖u‖Lr (!,γ ) ≤ β(r, q, λ1) ‖u‖Lq (!,γ ) ,

where β(r, q, λ1) is a constant depending only on r, q and λ1. Furthermore,
equality in (11) occurs if and only if, modulo a rotation, ! = !# , u = u# and
ai1(x ) = γ (x )δ1i , up to a set of measure zero.
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The rst step in the proof of Theorem 2 (see [4]) is a comparison result
between the rst eigenfunction of problem (3) and the rst eigenfunction of a
suitable �“symmetrized problem�”. Let u be a nonnegative eigenfunction of (3)
corresponding to λ1 and let Sa = {x ∈Rn : x1 > a} be the half-space such that
λ1 is also the rst eigenvalue of the problem

(12)





− ∂

∂xi

(
γ (x )

∂w

∂xi

)
= λγ (x )w in Sa

w = 0 on ∂Sa.

Observe that such an half-space always exists since the function λ1 : a ∈
R → λ1(a) ∈ ]0,∞[ , where λ1(a) is the rst eigenvalue of problem (12), is a
bijection.

Then the following comparison result holds:

Theorem 3. Let u be an eigenfunction of problem (3) corresponding to the rst
eigenvalue λ1 and let w be the eigenfunction of (12) associated with λ1 such
that

(13) ‖u‖L1(!,γ ) = ‖w‖L1(Sa,γ ) ,

then

(14)
∫ s

0
u∗(σ ) dσ ≤

∫ s

0
w∗(σ ) dσ, ∀s ∈

[
0, |Sa|γ

]
.

Moreover the above inequality reduces to equality if and only if, modulo a
rotation, ! = Sa, u(x ) = u6(x ) = w(x ) and ai1(x ) = γ (x )δ1i , up to a set
of measure zero.

Let us observe that as a consequence of the simplicity of λ1 we have that
(12) is actually a one-dimensional problem. Moreover, by standard theory
on hypergeometric functions (see [15] for instance) it follows that w has the
following asymptotic behavior

(15) w(x ) ∝ xλ1
1

(
1+ O(x−21 )

)
.

Therefore by (14) we can deduce information on the summability of u, compar-
ing the L p norms of u and w, with 1 ≤ p < ∞. More precisely ther following
result holds
Corollary 4. Let u be an eigenfunction of (3) corresponding to the rst eigen-
value λ1 . Then u ∈ Lq(!, γ ) for 1 ≤ q < ∞ and

(16) ‖u‖Lq (!,γ ) ≤ ‖w‖Lq (Sa,γ ) , 1 ≤ q <∞ .
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Corollary 4 allows us to consider the eigenfunction wq of (12), with
1 ≤ q <∞, such that

(17) ‖u‖Lq (!,γ ) =
∥∥wq

∥∥
Lq (Sa,γ )

,

and to prove the following result.

Theorem 5. Let u and wq be dened as above, with 1 ≤ q <∞. Then

(18)
∫ s

0

[
u∗(σ )

]q dσ ≤
∫ s

0

[
w∗q(σ )

]q dσ, ∀s ∈ [
0, |Sa|γ

]
.

Moreover, if any of above inequalities reduces to equalities, then, modulo a
rotation and up to a set of measure zero, ! = S, u(x ) = u6(x ) = wq (x ) and
ai1(x ) = γ (x )δ1i .

Let us observe that the reverse Hölder inequality (11), using Theorem 5,
follows with

β(r, q, λ1) =
∥∥wq

∥∥
Lr (Sa,γ )∥∥wq

∥∥
Lq (Sa,γ )

.
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REGULARITY FOR DEGENERATE ELLIPTIC
EQUATIONS UNDER MINIMAL ASSUMPTIONS

FRANCESCO BORRELLO

1. Introduction.

Let X1, . . . , Xm be a system of non-commuting Hörmander vector elds
in Rn (m ≤ n) and let X ∗j be the formal adjoint of the vector eld Xj . We
study the local regularity of the generalized solution to the Dirichlet problem
associated to the equation

(1.1) Lu ≡ X ∗i (ai j X j u) = f ,

under minimal assumptions on the function f . The case when f is a measure
follows with minor changes from our statements. Under our assumptions, weak
solutions do not always exist so we need to dene a �”very weak solution�” (see
e.g. [6] for the Euclidean case). The case of lower order terms is discussed in
[2]. Our results generalizes the case of uniformly elliptic equations considered
in [4] (see also [5]).

2. Preliminaries.

In this section we collect all the relevant denitions in order to for-
mulate our results. For precise denitions and proofs see [1]. Let X =
(X1, X2, . . . , Xm) be a given system of C∞ vector elds on Rn satisfying
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Hörmander condition in a bounded domain !, i.e. rank Lie{X1, X2, . . . , Xm}
= n, ∀x ∈!. We denote by ρ(x , y) the Carnot�–Caratheodory distance gener-
ated by the system X and Br ≡ B(x , r) = {y ∈Rn : ρ(x , y) < r} the metric
ball centered at x of radius r . Let Q be the homogenous dimension of !. We
briey recall the function spaces we need to formulate our results.

Denition 2.1. (Sobolev spaces) Let 1 ≤ p < +∞. We say that u belongs to
W 1,p(!,X) if u and Xju belong to L p(!), j = 1, 2, . . . ,m. We set

(2.2) ‖u‖W 1, p(!,X) ≡ ‖u‖L p(!) +
m∑

j=1
‖Xju‖L p(!).

We denote by W 1,p
0 (!,X) the completion of C∞0 (!) with respect to the above

norm.

Remark 2.2. Xju denotes the distributional derivative of u dened by

< Xju, φ >=
∫

!

uX ∗j φ dx , ∀ φ ∈C∞0 (!)

where X ∗j = −∑n
i=1 ∂i (ci j ·) is the formal adjoint of Xj = ∑n

i=1 ci j∂i .

Denition 2.3. (Schechter classes) Let ! be a bounded domain in Rn , n ≥ 3
and let 1 ≤ p < ∞. We say that u ∈ L1(!) belongs to the Schechter class
Mp(!,X) if

Mp(u) ≡
(∫

!

(∫

Bδ (x)∩!
|u(y)| ρ2(x , y)

|B(x , ρ(x , y))| dy
)p

dx

) 1
p

<∞

for some δ > 0.

Denition 2.3. (Stummel-Kato class) Let u : ! ⊆ RN → R. If

η(r) ≡ sup
x∈!

∫

{y∈!|ρ(x,y)<r}
|u(y)| ρ2(x , y)

|B(x , ρ(x , y))| dy <∞ ,

we say that u ∈ S̃(!,X). If limr→0+ η(r) = 0 we say that u ∈ S(!,X).
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Denition 2.5. (Morrey classes) Let ! be a bounded domain in Rn , 1 ≤ p <

∞ and λ > 0. We say that f ∈ L p
loc(!) belongs to the Morrey class L p,λ(!,X)

if

‖ f ‖p,λ ≡ sup
B

(
rλB
|B|

∫

B
| f (y)|p dy

) 1
p

<∞ .

We can compare Morrey and Lebesgue classes as follows.
Proposition 2.6. Let q ≥ p and µ

q ≤ λ
p . Then

Lq,µ(!,X) ⊆ L p,λ(!,X) .

Denition 2.7. (Weak Morrey classes) We say that f ∈ L p,λ
w (!,X) if there

exists C > 0, independent on r and x0, such that

sup
t>0

t p|{x ∈!∩ Br (x0) : | f (x )| > t}| ≤ C
|Bρ|
ρλ

.

Proposition 2.8. Let 1 ≤ q < p <∞ and 0 < λ < Q, then
L p,λ

w (!,X) ⊆ Lq,µ(!,X)
where µ = Q−λ

p q .

Proposition 2.9. Let 0 < λ < 2 ≤ µ < Q. We have
L1,λ(!,X) ⊆ S(!,X) ⊆ S̃(!,X) ⊆ L1,µ(!,X).

Proposition 2.10. Let ! ⊆ Rn4, n ≥ 3 be a bounded domain and 1 ≤ p <
q ≤∞.Then

S̃(!,X) ⊂ Mq (!,X) ⊂ Mp(!,X) ⊂ M1(!,X).

We have
Proposition 2.11. Let 0 < λ < 2 < Q. Then

L1,λ(!,X) ⊆ S̃(!,X) ⊆ L1,2(!,X) ⊆
⋂

1≤p<∞
Mp(!,X).

Denition 2.12. We say that f ∈ L1loc(!) belongs to the space BMO(!,X) if

sup
B

1
|B|

∫

B
| f (x )− fB | dx <∞ ,

where B ranges over the set of metric balls contained in !.
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3. Generalized solutions.

We consider the equation (1.1) under the assumptions in the previous
section. We also assume that ai j ∈ L∞(!), ai j = aji for i, j = 1, 2, . . . ,m
and there exist 0 < λ ≤ 9 <∞ such that

λ|ξ |2 ≤
m∑

i, j=1
ai j (x )ξiξj ≤ 9|ξ |2 ∀ ξ ∈Rm, a.e. x ∈! .

Denition 3.1. (see e.g. [6]) Let µ be a measure of bounded variation in !.
We say that u ∈ L1(!) is a very weak solution of Lu = µ (vanishing on ∂!), if

(3.3) < L∗v, u >=
∫

!

v dµ, ∀ v ∈ H 1
0 (!,X) ∩ C0b (!) , L∗v ∈C0b (!),

where C0b (!) is the set of all continuous functions, bounded on !.

We have

Theorem 3.2. Let ! be a bounded domain in Rn . Then there exists the very
weak solution of Lu = µ and it is unique. Moreover if 1 < p < Q

Q−1 then
u ∈W0

1,p(!,X) and there exists C = C(!, λ, Q) such that ‖u‖W 1, p
0
≤ C‖µ‖.

In general if µ is not in (H 1
0 (!,X))∗ then weak solutions do not exist.

However, when weak and very weak solutions of the Dirichlet problem exist,
they coincide.

We dene the Green function for the operator L and the domain ! with
pole at y ∈!, as the very weak solution of LGy = δy .

4. Regularity of generalized solutions.

Let ! be a bounded domain with smooth boundary without characteristic
points. We stress that the existence of such domains is not trivial to show (see
e.g. [7]).

Theorem 4.1. Let f ∈ L1,λ(!,X) and let u be the very weak solution of
Lu = f .

�– if 2 < λ ≤ Q, then u ∈ L pλ,λ
w (!,X), where 1

pλ
= 1 − 2

λ
. Moreover, there

exists C > 0, independent of u and f , such that ‖u‖q ≤ C‖ f ‖1,λ;
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�– if λ = 2, then u ∈ BMOloc(!,X) i.e. there exists r0 > 0 such that
∀ !′ !! with d := ρ(!′, ∂!) < r0 , x0 ∈!′ ∀ 0 < r < d/2 we have

∫
�—
Br (x)

|u(y)− uBr (x)| dy ≤ C ,

where C is independent on u and on the ball.
�– if 0 < λ < 2, then u ∈C0,β(!,X).

Theorem 4.2. Let u be the weak solution of Lu = f .

�– if f ∈ S̃(!) then u is bounded in !;
�– if f ∈ S(!, X ), then u is continuous in !.

We stress that, because of the inclusion S̃(!,X) ⊂ (H 1
0 (!,X)∗ , the

solution we consider is the weak one.
If we add a signum restriction on the function f we have

Theorem 4.3. Let u ∈ L1(!) the very weak solution of Lu = f and let f ≥ 0.
�– u ∈ Lqloc(!) iff f ∈ Mq

loc(!,X), 1 < q <∞;
�– u ∈ L∞(!) iff f ∈ S̃loc(!,X);
�– u ∈C0(!) iff f ∈ Sloc(!,X).

Theorem 4.4. Let f ∈ L1(!) f ≥ 0 and let u be the very weak solution of
Lu = f .
If u ∈C0,α(!,X) with 0 < α < 2 then f ∈ L1,αloc (!,X) .
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GAUSSIAN BOUNDS FOR HEAT KERNELS IN THE
SETTING OF HÖRMANDER VECTOR FIELDS

MARCO BRAMANTI

Let X1, X2, . . . , Xq be a family of Hörmander�’s vector elds in Rn . A
systematic study of the properties of nonvariational operators of the kinds

L =
q∑

i, j=1
ai j (x) Xi Xj

H = ∂t −
q∑

i, j=1
ai j (t, x) Xi Xj

has begun in recent years. Here the matrix
{
ai j

}
is symmetric positive de-

nite, and its entries are functions satisfying minimal smoothness assumptions.
In this context, we will discuss and announce some recent results regarding
the existence of a fundamental solution h of H and sharp Gaussian bounds
for h .

Let us consider a system of smooth real vector elds, dened in a domain
! ⊆ Rn

Xi =
n∑

j=1
bi j (x) ∂xj i = 1, 2, . . . , q (q ≤ n)

and assume they satisfy Hörmander�’s condition (of step s) in !: the vector
space spanned at every point of ! by: the elds Xi ; their commutators
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[Xi , Xj ] = Xi X j − Xj Xi ; the commutators of the Xk �’s with the commutators
[Xi , Xj ];. . .and so on, up to some step s , is the whole Rn .

Under these assumptions, it is known (Hörmander [11]) that the second
order differential operator �“Hörmander�’ sum of squares�”

L =
q∑

i=1
X 2i

is hypoelliptic in !, that is: if Lu = f in ! in distributional sense, and
f ∈ C∞ (A) with A ⊂ !, then u ∈ C∞ (A). Analogously, the evolution
operator

(1) H = ∂t −
q∑

i=1
X 2i

is hypoelliptic in R × !. Roughly speaking, Hörmander�’s theorem says that
an operator with nonnegative characteristic form, even though degenerate, still
shares some good properties of nondegenerate elliptic or parabolic operators,
whenever the �“missing directions�” in the derivatives involved in the equation
are recovered by the commutators of the vector elds. The most famous and
simple instance of this situation is the following:

Example 1. Kohn�’s Laplacian in 3 variables (x , y, z):

L = X 21 + X 22

X1 = ∂

∂x
+ 2y

∂

∂z
; X2 = ∂

∂y
− 2x ∂

∂z
; [X1, X2] = −4

∂

∂z
.

The vector elds X1, X2, [X1, X2] span R3 at any point: Hörmander�’s condition
holds; the operators L in R3 and ∂t − L in R4 are hypoelliptic.

There are two kinds of structures typically associated to a set of Hör-
mander�’s vector elds. The rst is a metric structure: whenever Hörman-
der�’s condition holds, it is possible to join any two points of the space by
arcs of integral curves of the vector elds (Rashevski-Chow�’s Theorem, 1938,
1939). Then, the minimal length of these �“piecewise integral curves�” denes
a distance between the two points, called Carnot-Carathéodory distance, or
�“distance induced by the vector elds�”. A relevant fact proved by Fefferman-
Phong [7] is that Lebesgue�’s measure is locally doubling with respect to this
distance:

|B (x , 2r)| ≤ c |B (x , r)|



GAUSSIAN BOUNDS FOR HEAT KERNELS IN THE. . . 405

at least for x ranging in a compact set and r ≤ r0. This fact allows to adapt many
typical arguments from real analysis to this context, in the spirit of Coifman-
Weiss�’ theory of spaces of homogeneous type [6].

A second structure is of algebraic nature. In several important instances
of systems of Hörmander vector elds in Rn (but not always!) the space Rn

happens to be endowed with a �“Carnot group�” structure, that is: a Lie group
operation (�“translation�”):

(x , y) 9→ x ◦ y
and a family of group automorphisms (�“dilations�”), of the kind:

(2) x 9→ D (λ) x = (λα1x1, ..., λαn xn)

(αi positive integers) such that the vector elds Xi are translation left invariant

Xx
i [ f (y ◦ x)] =

(
Xx
i f

)
(y ◦ x)

and homogeneous of degree 1:

Xx
i [ f (D (λ) x)] = λ

(
Xx
i f

)
(D (λ) x) .

Then, Folland [9] has proved that L has a fundamental solution of kind
*(x , y) = *(y−1 ◦ x ), homogeneous of degree 2 − Q , where Q = ∑n

i=1 αi
(see (2)) is the �“homogeneous dimension�” of the group:

* (D (λ) x) = λ2−Q* (x)

This is the starting point in order to apply to this context results from the
theory of singular and fractional integrals in spaces of homogeneous type. For
the �“parabolic�” operator H one has the analogous behavior, where the vector
eld ∂t is homogeneous of degree 2, like in the classical parabolic case.

We now come to our main topic, that is Gaussian bounds for the funda-
mental solution of �”heat-type�” operators. For operators of the kind (1) with left
invariant homogeneous vector elds on a Carnot group in Rn , Varopoulos ([15],
[16], see also [17]) has proved the following Gaussian bounds for the funda-
mental solution h:

c1
t Q/2 e

−‖x−1◦y‖2/c2t ≤ h (t, x , y)≤ c3
t Q/2 e

−‖x−1◦y‖2/c4t

∀x , y ∈ Rn, t > 0, where ‖·‖ is the �“homogeneous norm�” (with respect to
dilations (2)), so that

∥∥x−1 ◦ y
∥∥ is the distance in the group, equivalent to the
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distance induced by the vector elds. This bound is perfectly analogous to the
classical one which holds for standard parabolic operators.

For the operators of the same form, but without an underlying group
structure (that is, assuming that

{
X1, X2, ..., Xq

}
is any system of Hörmander�’s

vector elds), the analogous result is:

c1
e−d(x,y)2/c2t∣∣B

(
x ,
√
t
)∣∣ ≤ h (t, x , y)≤ c3

e−d(x,y)2/c4t∣∣B
(
x ,
√
t
)∣∣

∀x , y ∈ Rn , t ∈ (0,∞), where d (x , y) is the distance induced by the vector
elds, and B (x , r) the metric ball. This result has been accomplished in
several steps, by several authors, in two group of papers: Sanchez-Calle [14],
Fefferman, Sanchez-Calle [8], and Jerison, Sanchez-Calle [10], with analytical
techniques; Kusuoka-Stroock [12], [13], by means of stochastic techniques and
Malliavin calculus.

In recent years, nonvariational operators of the kind

(3) HA = ∂t −
q∑

i, j=1
ai j (t, x) Xi X j

with Xi left invariant homogeneous Hörmander�’s vector elds on a Carnot
group, and

(4) λ |ξ |2 ≤
q∑

i, j=1
ai j (t, x ) ξiξj ≤ λ−1 |ξ |2 ∀ξ ∈Rq

with coefcients ai j = aji , Hölder continuous with respect to the �“parabolic
distance�” induced by the group structure, have been studied by Bonglioli-
Lanconelli-Uguzzoni, who have proved the existence of a fundamental solution
hA satisfying the following bounds:

c1
t Q/2 e

−‖x−1◦y‖2/c2t ≤ hA (t, x , y)≤ c3
t Q/2 e

−‖x−1◦y‖2/c4t

∀x , y ∈ Rn, t > 0. (When A = I , this is Varoupulos�’ estimate). The result
has been accomplished in several steps, see [1], [2], [3]. An application of
these Gaussian estimates is the proof of an invariant Harnack inequality for
the operator HA , which is carried out by Bonglioli-Uguzzoni in [4]. Note
that operators of kind (3) do not have smooth coefcients; hence they are not
hypoelliptic, and the mere existence of a fundamental solution is not trivial.
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We are therefore led to consider the more general case of operators of
type (3), when

{
X1, X2, ..., Xq

}
is any system of Hörmander�’s vector elds and

the coefcients ai j = aji , are Hölder continuous with respect to the parabolic
distance induced by vector elds, and satisfy the ellipticity condition (4). These
operators have been recently studied by Bramanti, Brandolini, Lanconelli,
Uguzzoni [5]; ourmain result consists in showing the existence of a fundamental
solution hA , satisfying Gaussian bounds of the kind:

c1
e−d(x,y)2/c2t∣∣B

(
x ,
√
t
)∣∣ ≤ hA (t, x , y)≤ c3

e−d(x,y)2/c4t∣∣B
(
x ,
√
t
)∣∣

for any x , y ∈ Rn, t ∈ (0, T ). (When A = I , this is the result of Jerison-
Sanchez-Calle or Kusuoka-Stroock). We assume that HA coincides with the
heat operator outside a large compact set, so in some sense our result is of local
nature.

Following the general strategy adopted by Bonglioli-Lanconelli-Uguzzo-
ni in the case of Carnot groups, to get our results we rst consider the operator
HA with a constant matrix

{
ai j

}
, in a xed ellipticity class. This is an operator

with smooth coefcients which is hypoelliptic, and by known results possesses
a global fundamental solution hA ; our rst, and more difcult, task is to prove
a number of uniform estimates on hA , depending on the constant coefcients
ai j only through the ellipticity constant λ in (4). More precisely, we prove the
following uniform bounds:

1. Upper and lower bounds on hA :

c3∣∣B
(
x ,
√
t
)∣∣e

−d(x,y)2/c4t ≤ hA (t, x , y)≤ c1∣∣B
(
x ,
√
t
)∣∣e

−d(x,y)2/c2t

2. Upper bounds on the derivatives of hA :

∣∣X I
x X

J
y ∂

i
t hA (t, x , y)

∣∣ ≤ c1
t i+

|I |+| j|
2

∣∣B
(
x ,
√
t
)∣∣
e−d(x,y)

2/c2t

3. Estimate on the difference of the fundamental solutions of two operators
(and their derivatives):

∣∣X I
x X

J
y ∂

i
t hA (t, x , y)− X I

x X
J
y ∂

i
t hB (t, x , y)

∣∣ ≤

≤ ‖A − B‖ c1
t i+

|I |+| j|
2

∣∣B
(
x ,
√
t
)∣∣
e−d(x,y)

2/c2t
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for any multiindeces I, J (where X I = Xi1Xi2 ...Xir if I = (i1, i2, ..., ir ) and
|I | = r ).

These estimates, by a suitable adaptation of the classical Levi�’s parametrix
method, enable us to prove the existence of the fundamental solution for the
operator HA with variable (Hölder continuous) coefcients, and to deduce the
desired Gaussian bounds for it.

The line of the proofs of these uniform estimates is complex and cannot be
summarized here. The reader is referred to [5].
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SOME REMARKS ON THE EXTINCTION TIME
FOR THE MEAN CURVATURE FLOW

B. BRANDOLINI - M. CICALESE - C. NITSCH - C. TROMBETTI

1. Introduction.

Let us consider a family of bounded open sets (!t )t≥0 in Rn (n ≥ 2) and
set *t = ∂!t . If *t is a smooth (n − 1)-dimensional hypersurface it is said to
be moving by mean curvature if the following initial value problem is satised

(1.1)
{
V = H on *t
(*t )t=0 = *0 ,

where V (x , t) and H (x , t) denotes respectively the inward normal velocity and
(n − 1) times the mean curvature of *t at a point x ∈*t .

It is well known (see [9] for smooth convex, and [4] for general continuous
hypersurfaces) that *t shrinks to a point in a nite time t∗ dened as

t∗ = t∗(*0) = inf{t : *t /= ∅}

and called extinction time. The simplest upper bound estimate for t∗ relies on
a monotonicity property of the mean curvature equation according to which,
given two sets !0 and D0 in Rn such that !0 ⊂ D0, the inclusion remains true
during the whole evolution of their boundaries: !t ⊂ Dt . Therefore, denoting
by d0 the diameter of !0, since !0 lies in a ball of radius R =

(
n

2(n+1)

)1/2
d0,
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by the monotonicity it follows that t∗ can be estimated with the extinction time
of a ball of radius R, that is

(1.2) 0 ≤ t∗ ≤ n
4(n2 − 1)d

2
0 .

This estimate is not sharp and it has been rened in [6], where the authors have
proved that

(1.3) 0 ≤ t∗ ≤ C
(
Hn−1(*0)

)2/n−1
.

HereHn−1 denotes the (n−1)-dimensional Hausdorff measure and the constant
C = C(n) comes from a Sobolev type inequality on manifolds whose best
constant is still unknown (see [10]). In this paper we will prove a sharp upper
bound for t∗ involving the n−dimensionalmeasure of!0 rather than the (n−1)-
dimensional measure of its surface. More precisely we will show that the
extinction time of *0 can be estimated from above by the extinction time of
the ball having the same volume as !0. The sharpness of our estimate relies on
an isoperimetric inequality involving the total mean curvature of mean convex
sets (see Section 2 for denitions). For this reason our upper bound holds true
in the case of general bounded convex sets and smooth mean convex sets.

2. Notation and Preliminaries.

We begin by recalling some denitions and properties of rearrangements
of functions. Let ! be a bounded open set of Rn and let u : !→] −∞, 0] be
a measurable function. We denote by

µ(θ ) = Ln({x ∈! : u(x ) < θ}), θ ≤ 0,

the distribution function of u, where Ln will denote here and in what follows
the Lebesgue measure in Rn , and by

u∗(s) = sup{θ ≤ 0 : µ(θ ) < s}, s ∈ (0, |!|)

the increasing rearrangement of u. In the following we will denote by !# the
ball centered at the origin having the same measure as ! and by u# the negative
spherically symmetric increasing function whose level sets are balls having the
same measure as the corresponding level sets of u. This means

u#(x ) = u∗(ωn |x |n) , x ∈!#,
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where ωn is the Lebesgue measure of the unit ball in Rn . If ! has a C2
boundary, then the principal curvatures (oriented so that convex sets have non-
negative curvatures) will be denoted by k1, ...., kn−1 and (n−1) times the mean
curvature will be denoted by H [∂!], that is

H [∂!] = k1 + k2 + ... + kn−1 .

According to [13] we will say that a domain ! is mean convex or 1−convex if
and only if H [∂!] ≥ 0.

If u : ! →] −∞, 0] is a function whose level sets {x ∈! : u(x ) = θ}
have nite perimeter and are 1-conex, then we denote by

λ(θ ) = Hn−1({x ∈! : u(x ) = θ}), θ ≤ 0,

and we dene the rearrangement of u with respect to the perimeter of its level
sets as

u∗1(s) = sup{θ ≤ 0 : λ(θ ) < s}, s ∈ (0, Hn−1(∂!)).

We will denote by !! the ball centered at the origin having the same perimeter
as ! and set

u!(x ) = u∗1(nωn|x |n−1), x ∈!!.

We explicitly remark that u! is a negative spherically symmetric increasing
function whose level sets are balls having the same perimeter as the correspond-
ing level sets of u.

It easily follows from the above denitions and the classical isoperimetric
inequality that

(2.1) H [{u! = θ}] ≥ H [{u# = θ}].

Finally we recall the following Alexandrov-Fenchel inequality involving
the total mean curvature of level sets of a function u (see [2], [12]).

Theorem 2.1. Let u be a nonpositive measurable function having mean convex
level sets; then

(2.2)
∫

u=θ

H [{u = θ}] dHn−1 ≥
∫

u!=θ

H [{u! = θ}] dHn−1, θ < 0.
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3. A sharp estimate of the extinction time.

We rst recall a different approach to motion by mean curvature rst
proposed by Osher and Sethian in a numerical framework (see [11]) and then
studied by Evans and Spruck in [4].
Let ! be a bounded open set in Rn and let us choose a continuous function
f : Rn → R such that

*0 = ∂! = {x ∈Rn : f (x ) = 0}.

In the following parabolic problem

(3.1)





wt = |Dw|div

(
Dw

|Dw|

)
in Rn × (0, T )

w(x , 0) = f (x );
the equation states that each level set of w evolves according to its mean
curvature. Consequently, the evolution of *0 is given by *t = {x ∈ Rn :
w(x , t) = 0}, for each time t > 0. In particular, if ! is a mean convex open set,
we can set

w(x , t) = u(x )+ t

and problem (3.1) becomes

(3.2)





|Du|div

(
Du

|Du|

)
= 1 in !

u = 0 on ∂!.

Note that, in general, neither a smooth solution to (3.1) nor a smooth solution
to (3.2) exists, but it has been proved in [4] (see also [3], [5], [6] and [7]), that
problems (3.1) and (3.2) admit a unique viscosity solution which provides a
possible generalization of the classical mean curvature motion (1.1).

Proposition 3.1. Let u be a smooth solution to problem (3.2) and let v be the
solution of the following symmetrized problem

(3.3)





|Dv| div

(
Dv

|Dv|

)
= 1 in !!

v = 0 on ∂!!.

Then

(3.4) 0 ≥ u#(x ) ≥ v(x ), x ∈!!.
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Proof. Let θ ≤ 0; by integrating on the set {u < θ} the equation in (3.2), using
the coarea-formula, and the fact that div

(
Du

|Du|

) ∣∣
{u=σ } = H [{u = σ }] we get

µ(θ ) =
∫ θ

−∞

(∫

u=σ

H [{u = σ }] dHn−1
)
dσ.

Differentiating with respect to θ , using inequalities (2.1) and (2.2) we have

µ′(θ ) =
∫

u=θ

H [{u = θ}]dHn−1 ≥
∫

u!=θ

H [{u! = θ}]dHn−1

≥
∫

u#=θ

H [{u# = θ}]dHn−1 = Cnµ(θ )(n−2)/n,

where Cn = n(n − 1)ω2/nn . Thus µ solves the following problem
{

µ′(θ ) ≥ Cnµ(θ )(n−2)/n, θ ≤ 0
µ(0) = |!|.

Arguing for v in an analogous way, all the inequalities become equalities and
then the distribution function ν of v solves the problem

{
ν′(θ ) = Cnν(θ )(n−2)/n, θ ≤ 0
ν(0) = |!|.

Then µ(θ ) ≤ ν(θ ) and the claim immediately follows. "
From (3.4) straightly follows our main theorem.

Theorem 3.1. Let ! be a smooth mean convex bounded open set in Rn and let
*0 = ∂!. If *t denotes the evolution of *0 by mean curvature and *t = ∂!t ,
where !t is a smooth mean convex bounded open set in Rn, then the following
estimate holds

(3.5) 0 ≤ t∗ ≤ 1
2(n − 1)

( |!|
ωn

) 2
n

.

Actually, we can prove a more precise pointwise comparison result as
stated in the following

Proposition 3.2. Under the assumptions of Proposition 3.1 we get

(3.6) 0 ≥ u!(x ) ≥ v(x ), x ∈!!.
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Proof. Let θ ≤ 0. It is well known (see [9]) that

λ′(θ ) =
∫

u=θ

H 2[{u = θ}] dHn−1.

By Hölder inequality we get

µ′(θ ) =
∫

u=θ

H [{u = θ}]dHn−1 ≤ (λ(θ ))1/2
(∫

u=θ

H 2[{u = θ}] dHn−1
)1/2

= λ(θ )1/2
(
λ′(θ )

)1/2
.

On the other hand

µ′(θ ) ≥
∫

u!
1 =θ

H [{u! = θ}] dHn−1 = c̃(n)λ(θ )(n−2)/(n−1),

where c̃(n) = (n − 1)(nωn)1/n−1 . Hence we can say that λ satises
{
λ′(θ ) ≥ c̃(n)(λ(θ ))(n−2)/(n−1)
λ(0) = Hn−1(∂!).

In a similar way we nd that the function σ , which denotes the perimeter of the
level sets of v, is the solution of the following problem

{
σ ′(θ ) = c̃(n)(σ (θ ))(n−2)/(n−1)
σ (0) = Hn−1(∂!).

Then λ(θ ) ≤ σ (θ ),for all θ < 0 and the claim follows. "
For the non-smooth case and for some numerical example we refer to [1].
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Università degli Studi di Napoli �“Federico II�”,

Complesso Monte S. Angelo, via Cintia - 80126 Napoli (ITALY)
e-mail: brandolini@unina.it

cicalese@unina.it
carlo.nitsch@unina.it

cristina@unina.it





LE MATEMATICHE
Vol. LX (2005) �– Fasc. II, pp. 419�–423

AN ISOPERIMETRIC INEQUALITY RELATED
TO GAUSSIAN MEASURE AND APPLICATIONS

F. BROCK - F. CHIACCHIO - A. MERCALDO

We present a relative isoperimetric inequality with respect to the mea-
sure dµ = (2π )−N/2xkN exp(− |x|2 /2)dx , k > 0. As an application, we
consider a class of linear elliptic problems whose prototype is
{
−div

(
xkN exp(−|x|2 /2)∇u

)
= xkN exp(−|x|2 /2) f (x) in !

u = 0 on ∂! ∩RN
+ ,

where ! ⊂ RN
+ =

{
x = (x1, ..., xN )∈RN : xN > 0

}
is a domain (possibly

unbounded) and f belongs to a suitable weighted Lebesgue space. We
estimate the solution to such a problem in terms of the solution to a symmetric
one-dimensional problem, belonging to the same class. For the proofs of the
results announced here we refer the reader to [1].

Let ! be a Lebesgue measurable subset of RN
+ (possibly unbounded),

where
RN

+ =
{
x = (x1, ..., xN )∈RN : xN > 0

}
.

The measure and perimeter of !, with respect to the measure dµ, are dened
respectively by

µ (!) = 1
(2π)N/2

∫

!

xkN exp(− |x |2 /2) dx , with k > 0 ,
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and

Pµ (!) =






1
(2π)N/2

∫

∂!

xkN exp(− |x |2 /2) dHN−1(x ) ,

if ∂! is (N − 1)-rectiable,
+∞ otherwise.

For any number m ∈
(
0, µ

(
RN

+
))
, the isoperimetric problem with respect to dµ

reads as

(1) Iµ(!) = min
{
Pµ (!) , with µ (!) = m

}
.

Let ϕ(t) be the function dened by

ϕ(t) = 1√
2π

∫ t

−∞
exp(−σ 2/2) dσ , t ∈R ,

and denote by ϕ−1 its inverse. Then the set

(2) !! =
{

x ∈RN
+ : x1 < ϕ−1

(
µ (!)

µ
(
RN

+
)
)}

,

veries
µ (!) = µ

(
!!)

.

The following result claims that !! realizes the minimum in (1).

Theorem1. Let ! be a Lebesgue measurable subset of RN
+ , then

Pµ (!) ≥ Pµ

(
!!)

,

or equivalently

Pµ (!) ≥ I (µ (!)) ≡ µ
(
RN

+
)

√
2π

exp




−
1
2

[
ϕ−1

(
µ (!)

µ
(
RN

+
)
)]2

 .
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Now, in view of the applications of the previous theorem to degenerate
elliptic equations, we introduce the notion of rearrangement with respect to dµ.

Let u be a Lebesgue measurable function dened in !. Then its distribu-
tion function is the function dened by

mu (t) = µ ({x ∈! : |u(x )| > t}) , ∀ t ∈ [0,∞[ .

The decreasing rearrangement of u is the function given by

u∗(s) = inf {t ∈R : mu (t) ≤ s} , ∀s ∈ ]0, µ (!)] .

We will say that two functions u and v are equimeasurable or, equivalently,
that v is a rearrangement of u, if they have the same distribution function.
Finally the rearrangement u! of u, with respect to the measure dµ, is given
by

u!(x ) = u∗
[
µ

(
RN

+
)
ϕ(x1)

]
, ∀x ∈!!.

Observe that by denition u! depends on one variable only, it is an
increasing function and moreover u and u! are equimeasurable. Therefore by
Cavalieri�’s principle, one has

(3) ‖u‖L p(!,dµ) =
∥∥u!∥∥

L p(!!,dµ) , ∀ p ∈ [1,∞] .

Nowwe introduce the weighted Sobolev space Wk(!, dµ) of the functions
u satisfying the following two conditions

i)
∫

!

(|Du|2 + u2
)
dµ <∞,

ii) there exists a sequence of functions un in C1(!) with un(x ) = 0 on
∂!\ {xN = 0}, such that

lim
n→∞

∫

!

(|D(un − u)|2 + (un − u)2
)
dµ = 0 .

In this setting a Pólya-Szegö-type inequality holds (see [3]).

Theorem 2. Let u be a nonnegative function in Wk(!, dµ), then the following
inequality holds true

(4)
∫

!

|Du|2 dµ ≥
∫

!!

∣∣Du!∣∣2 dµ.
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Combining the previous inequality together with (3) one gets that Wk (!, dµ)
in continuously embedded in L2(!, dµ).

Corollary 3. Let ! be a Lebesgue measurable subset of RN
+ such that µ(!) <

µ(RN
+). The there exists a constant C = C(µ(!)) such that for each function u

in Wk (!, dµ) it holds
∫

!

|u|2 dµ ≤ C
∫

!

|Du|2 dµ .

By the Corollary 3 we can equip Wk (!, dµ) with the norm

‖u‖Wk(!,dµ) ≡
(∫

!

|Du|2 dµ

)1/2
.

Now we are in position to state our comparison result

Theorem 4. Let u be the solution to the problem

(5)
{
−div (A(x )∇u) = xkN exp(− |x |2 /2) f (x ) in!

u ∈Wk(!, dµ),

where ! is a connected open subset of RN
+ such that µ(!) < µ(RN

+), A(x ) =(
ai j (x )

)
i j is an N × N symmetric matrix with measurable coefcients satisfying

xkN exp(− |x |2 /2) |ζ |2 ≤ ai j (x )ζiζj ≤ CxkN exp(− |x |2 /2) |ζ |2 , C ≥ 1

for a.e. x ∈! and for all ζ ∈Rn. Moreover we assume that

f ∈ L2(!, dµ).

Let v ∈Wk(!!, dµ) be the solution of the following �“symmetrized�” problem

(6)
{
−div

(
xkN exp(− |x |2 /2)∇v

)
= xkN exp(− |x |2 /2) f!(x ) in !!

v ∈Wk(!!, dµ).

Then
u! ≤ v = v! a.e. in!!,

and ∫

!

|Du|q dµ ≤
∫

!!
|Dv|q dµ , for all 0 < q ≤ 2 .



AN ISOPERIMETRIC INEQUALITY RELATED. . . 423

Observe that Lax-Milgram Theorem ensures the existence and the unique-
ness of the solutions to problems (5) and (6). Moreover an easy computation
gives

v(x ) =
∫ µ(!)

µ(RN+)

x1

(∫ ρ

−∞
f!(σ ) exp(−σ 2/2) dσ

)
exp(ρ2/2) dρ .

We nally remark that results of the same type are contained in [2] where it is
studied the isoperimetric problem with respect to the measure yk dxdy dened
in R2

+. In that case the �“optimal�” set turns out to be an half-circle.
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THREE-DIMENSIONAL BONNESEN TYPE INEQUALITIES

STEFANO CAMPI

A well-known result in convex geometry proved by Favard states that
among all convex plane sets of given perimeter and area, the symmetric lens
is the unique element of maximum circumradius. In this note a new proof of
Favard�’s theorem is exhibited and possible extensions in higher dimensions
are discussed.

1. Bonnesen type inequalities.

Let K denote a convex body in R2, i.e. a compact convex subset of the
plane with non-empty interior. A Bonnesen type inequality is a geometric
inequality that involves the perimeter L , the area A, the inradius r and/or the
circumradius R of the body K . We recall that the inradius and the circumradius
of K are the radius of the largest disc contained in K and the radius of the
smallest disc containing K , respectively. The original Bonnesen inequalities,
contained in [2], are the following:

L2

4π
− A ≥ π

(
L
2π
− r

)2
(1)

L2

4π
− A ≥ π

(
R − L

2π

)2
.(2)

In (1) equality holds if and only if K is a �“stadium�” (or a baby biscuit, if
one prefers), namely a set obtained from a rectangle by gluing two semidiscs of
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radius t to opposite sides of length 2t . In (2) equality holds if and only if K is a
disc. The quantity on the left-hand side of both inequalities is the isoperimetric
decit of K . In fact, a common feature of Bonnesen style inequalities is
estimating from below the isoperimetric decit of K in terms of quantities
involving the inradius and/or the circumradius. Thus all these inequalities are
sharper versions of the classical isoperimetric inequality. Inequalities (1) and
(2) imply

(3)
L2

4π
− A ≥ π

4
(R − r)2 ,

the well-known estimate of the isoperimetric decit in terms of R and r . In
the literature many variants of the original Bonnesen inequalities are known.
The main sources are the books by Bonnesen [2], Bonnesen and Fenchel [3],
Schneider [9] and the survey by Osserman [6], which is an excellent guide in the
world of these inequalities. However, in this note, we shall focus our attention
on the original Bonnesen inequalities only. Inequality (1) is sharp, since for
every value of the isoperimetric decit there exists a set for which equality
holds. This fact can be rephrased as follows: Among all convex bodies of given
L and A, the stadium is the one with minimum inradius. On the other hand,
inequality (2) is not sharp in the following sense. If the isoperimetric decit
is strictly positive, then (2) is strict also and it does not provide the maximum
possible circumradius, for xed L and A. Favard showed in 1929 that under
these constraints the symmetric lens is the only maximizing set. We recall that
a symmetric lens is the intersection of two discs with the same radius. It is
natural to ask which are in higher dimensions the convex sets corresponding
to lenses in the plane case, that is the sets with maximum circumradius under
suitable restrictions on the volume, the surface area and so on. Surprisingly, the
problems which naturally correspond in higher dimensions to the one solved
by Favard in the plane are unsolved. In the rst part of this note (Sections 2-
4) we deal with Favard�’s result and we give a new proof of it. In the second
(Section 5) we discuss 3-dimensional extensions of Favard�’s theorem and we
present a couple of results, by Zalgaller and by Campi and Gronchi respectively,
concerning convex sets of maximum diameter under suitable restrictions.

2. Favard�’s problem.
Let L0 and A0 be two positive numbers such that

L20 − 4π A0 ≥ 0
and denote by 9(L0, A0) the class of all plane convex bodies of perimeter L
and A such that L ≤ L0 and A ≥ A0 .
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Problem 2.1. Which is the element from 9(L0, A0) with maximum circumra-
dius?

In the literature this problem is called Favard�’s problem. Here is the
solution.

Theorem 2.2. (Favard [5], 1929) The symmetric lens of perimeter L0 and area
A0 is the unique solution of Problem 2.1.

Notice that, if D denotes the diameter of the convex body K , then

1
2
D ≤ R .

Since for the symmetric lens D/2 = R, Favard�’s theorem 2.2 implies also the
following result:

The symmetric lens of perimeter L0 and area A0 is the unique element
from 9(L0, A0) of maximum diameter.

Such a result can be also obtained directly. Indeed, it is easy to check that
the area between a chord and an arc of given length is maximal for the arc of
circle.

Favard�’s original proof consists in nding an upper bound for the circumra-
dius and in showing that the circumradius of the lens attains just that value. Besi-
covitch [1] and, more recently, Zalgaller [10] provided two new and independent
proofs of Theorem 2.2. Besicovitch�’s proof makes use of local variations of the
set assumed to be the maximizer. In such a way it turns out that the candidates
are reduced to the lens and the Reuleaux triangle. A direct computation leads
to the conclusion. Zalgaller�’s proof is based on Pólya symmetrization, a circu-
lar version of Steiner symmetrization. A similar symmetrization to Pólya�’s was
introduced earlier by Bonnesen. We shall describe both symmetrizations in the
next section.

3. Pólya symmetrization and Bonnesen symmetrization.

Let K be a planar convex body and *(ρ, τ ) a circular annulus of radii
ρ < τ containing the boundary of K . We can assume that the annulus is
centered at the origin o. Denote by (r, θ ) the polar coordinates in the plane and
let s be the half-line from the origin corresponding to θ = 0. For ρ < r < τ ,
let 4θ ∗ be the linear measure of K ∩ ∂Cr , where Cr is the disk with center at o
and radius r . Moreover, let n(r) be the number of components of K ∩ ∂Cr with
positive linear measure.
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3.1. Pólya symmetrization. (see [2], p.194; see also [8] and [3], p.77)
The Pólya symmetral KP of K is dened as the set such that the points

(r, 2θ ∗), (r, 2π − 2θ ∗) belong to its boundary, for every r .
3.1. Bonnesen symmetrization. (see [2], p.67)

The Bonnesen symmetral KB of K is dened as the set such that the points
(r, θ ∗), (r, 2π − θ ∗), (r, π − θ ∗), (r, π + θ ∗) belong to its boundary, for every r .

For Pólya and Bonnesen symmetrals the following properties hold:

(i) A(K ) = A(KP ) = A(KB );
(ii) L(K ) ≥ L(KP );
(iii) if n ≥ 2, when θ ∗(r) < π/2, then L(K ) ≥ L(KB ).

The functions A(K∩Cr ), A(KP∩Cr ), A(KB∩Cr ) have the same derivative
with respect to r ; hence property (i) follows. Properties (ii) and (iii) can be
deduced from Jensen�’s inequality, applied to the function

√
1+ x 2.

In (i) equality holds if and only if n(r) ≡ 1 and K has an axis of symmetry
(through o).

In (ii) equality holds if and only if n(r) ≡ 2 and each of the two
components of K \ Cρ has an axis of symmetry (through o).

It is worth noticing that KP and KB need not be convex.

4. A new proof of Favard�’s theorem.

This proof consists of showing that a solution of Problem 2.1 has two
antipodal points on the smallest circle containing it. Thus such a solution has
the largest possible diameter; therefore it has to be the lens.

Assume that K is a solution of Favard�’s problem and let *(ρ, τ ) be the
minimal annulus of K , i.e. the unique annulus containing ∂K such that τ −ρ is
minimum (see [2], p.45 and p.67). Such an annulus has the property that every
circle with center at o and radius between ρ and τ intersects K at least in two
arcs.

If K has two antipodal points on the largest circle of *(ρ, τ ), then τ is
just the circumradius of K . Assume that it is not so. Let KB be the Bonnesen
symmetral of K with respect to *(ρ, τ ) and K ∗ the convex hull of KB . Since
K is assumed to be a solution, we have to exclude that L(K ∗) < L(K ). The
equality L(K ∗) = L(K ) implies that in the process of symmetrization every
circle with radius between ρ and τ has just two arcs in common with K .
Therefore, on the circle of radius τ the set K has only two components, not
containing two antipodal points and so contained in an arc strictly smaller than
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half circle. Thus the circumradius of K would be less than τ , while the one of
K ∗ is just τ . The conclusion is that a solution of Favard�’s problem must have
two antipodal points on its circumcircle.

5. Favard type problems in three dimensions.
It is natural to ask whether in higher dimensions it is possible to nd

estimates of the circumradius of a convex set in terms of quantities like volume,
surface area and so on. Let us focus our attention on possible extensions of
Favard�’s theorem in three dimensions. Let K be a convex body of R3. How to
state a three-dimensional version of Problem 2.1? How to replace the constraints
on perimeter and area?

While the volume V is a natural substitute of the area, there are at least two
possibilities for the other quantity. According to Kubota�’s integral formula (see
[9], p. 295), the perimeter of a planar convex body is an average of the lengths of
its orthogonal projections. Thus the same formula suggests that the role played
by the perimeter L in the plane can be interpreted in the 3-space by the surface
area S , that is the average of the areas of its two-dimensional projections, or by
themean width B , the average of the lengths of its one-dimensional projections.
For a smooth K , the total mean curvature is dened by

M = 1
2

∫

∂K

(
1
R1

+ 1
R2

)
dσ ,

where R1, R2 are the principal radii of curvature of ∂K and σ is the (n − 1)-
dimensional Hausdorff measure. We have that

M = 2πB .

On the other hand, the surface area S of K is given by

S =
∫

∂K

(
1
R1

1
R2

)
dσ .

The quantities V , S , B satisfy the following inequalities of isoperimetric type
(see [4], p. 145):

S3 ≥ 36πV 2 ,

πB3 ≥ 6V .

Let !(S0, V0) be the class of all convex bodies in R3 such that S ≤ S0, V ≥ V0.
Unfortunately a three-dimensional result analogous to Favard�’s theorem is not
available. The followingweaker result concerning the maximum of the diameter
holds.
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Theorem 5.1. (Zalgaller [10], 1994) The unique body in !(S0, V0) having
maximum diameter is a mean curvature spindle-shaped body of surface area
S0 and volume V0.

According to Denition 16 in [10], a mean curvature spindle-shaped body
is a centrally symmetric convex body of revolution whose surface has constant
mean curvature in the central part and consists of two cones in the parts adjacent
to the axis of revolution.

Let :(B0, V0) be the class of all convex bodies in R3 such that B ≤ B0,
V ≥ V0. Recently Campi and Gronchi obtained a result analogous to Zalgaller�’s
theorem. Precisely they showed that in :(B0, V0) the unique body of maximum
diameter is a Gaussian curvature spindle-shaped body of mean width B0 and
volume V0.

The above result is the object of a forthcoming paper. The strategy of the
proof is analogous to that used by Zalgaller for Theorem 5.1 and it is based
mainly on local variations of the maximizer.

In conclusion, the problems of nding in !(S0, V0) or in :(B0, V0) the
element of maximum circumradius remain open. It is reasonable to conjecture
that the solutions are the same of the corresponding problems for the diameter.
For solving such a conjecture it would be sufcient to show that the bodies with
largest circumradius have two antipodal points on the circumscribed sphere.
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isopérimètres et des isépiphanes, Gauthier-Villars, Paris, 1929, pp. 167�–169.

[6] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly,
86 (1979), pp. 1�–29.
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ESISTENZA DI SOLUZIONI PER
UN PROBLEMA DI NEUMANN

PASQUALE CANDITO

In this note we present some multiplicity results for a nonlinear Neu-
mann problem with discontinuous nonlinearities. Our approach is based on
critical point theory for non differentiable functionals (see [2]).

In questa nota illustriamo alcuni recenti risultati di esistenza di soluzioni
deboli per un problema di Neumann con termine non lineare discontinuo. La
metodologia adottata si basa prevalentemente su dei teoremi di punto critico
contenuti nei lavori [1] e [6]. Tali risultati estendono, sotto diversi aspetti, un
teorema di tre punti critici contenuto in [8]. Inoltre sfruttiamo le idee prove-
nienti dallo studio di alcuni problemi differenziali nell�’ambito delle inclusioni
differenziali (vedi [3], [6]). Per ulteriori approfondimenti, rimandiamo al lavoro
[2].

Consideriamo il seguente problema di Neumann

(N )





-pu − a(x )|u|p−2u = λ f (x , u) in !
∂u
∂ν

= 0 su ∂!,

dove, ! ⊂ Rn è un aperto limitato e non vuoto con frontiera regolare, λ ∈
(0, +∞), p ∈ (n, +∞), -p := div(|∇u|p−2∇u) è il p-laplaciano, a ∈ L∞ (!),
con ess inf! a > 0, e f : !× R→ R tale che

2000 Mathematics Subject Classication: 35A15, 35J65, 35R05
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(m1) x → f (x , u) è misurabile per ogni u ∈R;
(m2) esiste un insieme ! f ⊆ ! con m(! f ) = 0 tale che

Df := ∪x∈!\! f {u ∈R : f (x , ·) è discontinua in u}

ha misura nulla secondo Lebesgue;
(h1) per ogni ρ > 0 esiste µρ ∈ L1(!) tale che per q.o. x ∈!, si ha

sup
|u|≤ρ

| f (x , u)| ≤ µρ (x ).

Inoltre, posto

F(x , u) =
∫ u

0
f (x , t) dt ∀ (x , u)∈!×R ,

associamo al problema (N ) la seguente disequazione variazionale-emivariazio-
nale

(H )






−
∫

!

|∇u (x)|p−2∇u (x)∇v (x) dx −

−
∫

!

a (x) |u (x)|p−2 u (x) v (x) dx

≤ λ
∫
! F

0
u (u(x ); v(x )− u(x ))dx for all v ∈ K ,

dove K ⊆ W 1,p(!) è un chiuso e convesso contenente le funzioni costanti e
F0u (x , ·) indica la derivata direzionale generalizzata di F rispetto a u. Chiara-
mente, se f è continua e K coincide con l�’intero spazio, le soluzioni di (H )
sono soluzioni deboli per (N ). Invece, se f è discontinua rispetto alla seconda
variabile, le soluzioni di (H ) sono soluzioni di un�’opportuna inclusione diffe-
renziale associata a (N ). Quindi, il primo passo per ottenere i nostri risultati
è stato quello di stabilire l�’esistenza di soluzioni per (H ) e, successivamente,
imporre delle condizioni aggiuntive per garantire che tali soluzioni siano anche
soluzioni per (N ). In questo ordine di idee presentiamo il seguente risultato.

Teorema 1. In aggiunta a (m1)−−(m3) e (h1) supponiamo che
(h2) esistono due costanti γ e δ , con 0 < γ < δ , tali che

∫

!

inf
|u|≤γ

F(x , u)dx >
1

cp‖a‖1
(γ

δ

)p
∫

!

F(x , δ) dx ,

dove c := sup
{‖u‖C0 / ‖u‖ : u ∈W 1,p (!) , u /= 0

}
;
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(h3) esistono due funzioni η, µ∈ L1(!), con ‖η‖1 < 1
pcpλh

, dove

λh =
h
p
( γ
c
)p

∫
!
inf|u|≤γ F(x , u) dx − 1

c p‖a‖1
( γ
δ

)p ∫
!
F(x , δ) dx

,

con h > 1, tali che

F(x , u) ≥ −µ(x ) − η(x )|u|p,

per quasi ogni x ∈! e per ogni u ∈R.
Allora esistono un intervallo aperto 91 ⊆ [0, λh] e σ ∈ ]0, +∞[ tali che,

per ogni λ ∈91 , (H ) ha almeno tre soluzioni deboli le cui norme in W 1,p(!)
sono minori di σ .

Osserviamo che una condizione meno generale che implica la (h3) è la
seguente:

(h′3) Esistono una funzione non negativa τ ∈ L1(!) e una costante positiva s
con s < p, tali che

F(x , u) ≥ −τ (x )(1+ |u|s )

per quasi ogni x ∈! e per ogni u ∈R.
Enunciamo ora il risultato principale

Teorema 2. Nelle ipotesi del Teorema 1, per quasi ogni x ∈!, poniamo

f − (x , z) := lim
δ→0+

ess inf
|z−t |<δ

f (x , t) ,

f + (x , z) := lim
δ→0+

esssup
|z−t |<δ

f (x , t)

e supponiamo che

(m4) f −(x , z) e f +(x , z) siano sup-misurabili;
(m5) per quasi ogni x ∈!, per ogni z ∈ Df e per ogni λ∈ [0, λh], la condizione

a(x )|z|p−2z + λ f −(x , z) ≤ 0 ≤ a(x )|z|p−2z + λ f +(x , z)

implica a(x )|z|p−2z + λ f (x , z) = 0.

Allora esistono un intervallo aperto 91 ⊆ [0, λh] e σ ∈ ]0, +∞[ tali
che, per ogni λ ∈ 91 , (N ) ammette almeno tre soluzioni deboli le cui norme
in W 1,p(!) sono minori di σ .
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Chiaramente l�’ipotesi (m4) è di natura tecnica, mentre la condizione (m5)
è stata introdotta nell�’ambito dell�’equazioni differenziali a derivate parziali da
S.A. Marano e sviluppata successivamente anche in collaborazione con G. Bo-
nanno in una serie di lavori dellametà degli anni novanta nell�’ambito dell�’Anali-
si Multivoca. Combinando tale condizione con un noto lemma contenuto in [5],
si garantisce che le soluzioni della disequazione (H ) siano effettive soluzioni
del problema (N ). A tal proposito si veda [2] e le referenze lì riportate.

Il prossimo esempio mostra un�’applicazione del Teorema 2 nel caso in cui

f (x , u) = α(x )h(u)+ β(x )g(u), ∀ (x , u)∈!×R

dove, α, β ∈ L1(!) con min(α(x ), β(x )) ≥ 0 q.o in ! e h, g : R → R
essenzialmente localmente limitate.
Esempio 1. Sia ! = {(x , y)∈R2 : x 2 + y2 < 1}. Posto p = 4, a(x , y) = 1,
α(x , y) = x 2 + y2, β(x , y) = 1,

h(ξ ) =
{
−eeξ eξ se ξ ≤ 3
−ξ2 se ξ > 3

e g(ξ ) =
(
ee3e3/3

)
ξ5 ∀ξ ∈R ,

scegliendo γ = 1, δ = 3, s = 3 e τ (x ) = ee3 ∀x ∈!, grazie al Teorema 2, con
(h′3) al posto di (h3), esiste un intervallo aperto 9 ⊆ [0, 10−7] tale che per ogni
λ ∈ 9, (N ) ha almeno tre soluzioni deboli limitate in norma uniformemente
rispetto a λ.

In [9], richiedendo h e g continue, è stata stabilita l�’esistenza di innite
soluzioni per il problema (N ). Successivamente, in [7], la stessa conclusione
è stata ottenuta per (H ) con h e g ∈ L1loc (R) e in [3], per (N ), con h e g
suscettibili di soddisfare condizioni analoghe a quelle richieste dal Teorema 2.
L�’ ipotesi centrale su cui si basano tali risultati è la seguente:

Esistono {ξn}n∈N e {rn}n∈N con rn > 0 ∀n ∈N, tali che

(M1) lim
n→+∞

rn = +∞,

∫ ξn

0
h(t) dt = inf

|ξ |≤c(prn )1/p

∫ ξ

0
h(t) dt ;

(M2)
1
p
‖a‖1|ξn |p +

∫ ξn

0
g(t) dt‖β‖1 < rn ∀n ∈N .

Chiaramente nel nostro contesto tale ipotesi non è soddisfatta in quanto si
ha ξn = c(prn )1/p e 1

p‖a‖1|ξn |p = ‖a‖1cprn ≥ rn .
Enunciamo ora un caso particolare del Teorema 2. Sia h : R → R mi-

surabile e limitata tale che h(0) = 0 e m(Dh ) = 0, dove Dh = {z ∈ R :
h(·) è discontinua in z}.
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Teorema 3. Supponiamo che esistano γ , δ , con 0 < γ < δ:

(1) h(z)z ≥ 0 per ogni z ∈R\]γ, δ[ e
∫ δ

0 h(z)dz < 0;
(2) Dh∩]γ, δ[= ∅ e lim

z→γ+
h(z) = lim

z→δ−
h(z) = 0.

Allora, per ogni α ∈ L1(!) non negativa e non nulla esiste un intervallo
aperto

91 ⊆
[
0,

‖a‖1δ p
−‖α‖1

∫ δ

0 h(z) dz

]

e un numero positivo σ tali che, per ogni λ∈91, il problema

(Nh )





-pu − a(x )|u|p−2u = λα(x )h(u) in !
∂u
∂ν

= 0 su ∂!,

ammette almeno due soluzioni deboli non banali le cui norme in W 1,p(!) sono
minori di σ .

Inne presentiamo un�’ applicazione dei precedenti risultati nel caso in cui
Dh ha la potenza del continuo. Sia h : R→ R denita ponendo

h(z) =
{ 1 se z ∈C
z2 − 4z + 3 se z ∈ ]1, 3[
0 altrimenti,

dove C indica l�’insieme di Cantor. Scegliendo γ = 1 e δ = 3, dalla dimostra-
zione del Teorema 3, si ricava che per ogni funzione non negativa e non nulla
α ∈ L1(!) esiste un intervallo aperto 91 ⊆

[
0, 3p+14

‖a‖1
‖α‖1

]
tale che, per ogni

λ∈91, il problema (Nh ) ammette almeno tre soluzioni non banali e limitate in
norma uniformemente rispetto a λ.
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QUALITATIVE PROPERTIES OF FREE BOUNDARIES
WITH BERNOULLI TYPE CONDITIONS

SIMONE CECCHINI

We consider the external Bernoulli�’s free boundary problem and show
how the curvature of the inner curve (which is the known part of the boundary)
determines the free boundary one. In particular, we dene an injective
correspondence between arcs where the curvature has a denite sign placed
on the free boundary and on the inner curve.

We extend some previous results from A. Acker by showing that any
arc of the free boundary where the curvature is positive bends less than the
corresponding one on the inner curve.

Main Results.

We begin with recalling the classical exterior Bernoulli�’s problem in the
plane (see also [4]): given a simple closed curve γ , nd an external curve *
such that * and γ bound an annular domain !, whose capacity potential u,
determined by the conditions

-u = 0 in ! ,(1)
u = 1 on γ ,(2)
u = 0 on * ,(3)

also satises
|∇u| = 1 on * ,(4)
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where ∇u denotes the gradient of u.
By adapting A. Acker�’s method (see [1], [2]) to the modied curvature

functions

(5) h∗ = h
|∇u| and k∗ = k

|∇u|

introduced and studied by G. Talenti [6] (who proved them to be harmonic con-
jugate), we show how the curvature of γ determines that of the free boundary.
Here h and k are the curvature of level and steepest descent curves of u respec-
tively (see [6] for denitions and related properties).

Given a solution to the above-mentioned Bernoulli�’s problem, the main
results (whose proofs are presented in [5]) can be stated as follows.

Theorem 1. Let {z1, z2, . . . , zn} an enumeration of distict points of *, whose
subscripts are given according to their order of occurrence on *, counterclock-
wise.

Suppose that each zi satises one of the following properties:

(i) the value of h∗ at zi is a local minimum on *;
(ii) the value of h∗ at zi is a local maximum on *;
(iii) on *, the sign of h∗ changes at zi , turning from positive to negative;
(iv) on *, the sign of h∗ changes at zi , turning from negative to positive.

Then there exists a collection {ζ1, ζ2, . . . , ζn} of subarcs of γ , possibly
degenerating to points, such that h∗ is constant on ζi and satises (i)�–(iv) on γ ,
respectively, with zi replaced by ζi .

Moreover, if zi satises (i) or (ii), then h∗ > h∗(zi ) or h∗ < h∗(zi ) on ζi ,
respectively.

Remark. Roughly speaking, (iii) and (iv) inform us that the curvature of the
free boundary * changes its sign a number of times that does not exceed that of
the given curve γ .

Assertions (i) and (ii) can be hardly exploited to guess anything of the
relationship between the shape of * and that of γ , because of h∗ being different
from h on the inner curve. Theorems 2 and 3 below take this remark into
account.

Given a curve β , we dene a partition of β as a collection of subarcs
{β1, β2, . . . , βm} of β , with pairwise disjoint interiors, such that⋃m

i=1 βi = β
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Theorem 2. Let {*1, *2, . . . , *m} a partition of * made of arcs which are
maximal with respect to the property that for each i ∈ {1, 2, . . . ,m}, one and
only one of the following holds

(i) h(z) > 0 for all z ∈*i ;
(ii) h(z) < 0 for all z ∈*i ;
(iii) h(z) = 0 for all z ∈*i .

Then for each i ∈ {1, 2, . . . ,m} we can determine a subarc γi ⊂ γ which
has the same property of *i . Moreover the arcs γj are mutually disjoint.

Theorem 2 lets us infer that the geometry of * is never more convoluted
than that of γ : there are more protuberances/throughs on γ than on *.

As a by-product of Theorem 2, we can infer a classical result of D.E.
Tepper [7]: if γ is convex, then * is strictly convex.

The next theorem takes the analysis of curvature a little deeper: we show
that for each positive maximum of h on * we can determine a point on γ (not
necessarily an extremum point) on which the curvature is larger.

Theorem 3. Let {z1, z2, . . . , zn} be given as in Theorem 1. Suppose that each
zi , 1 ≤ i ≤ n, satises one of the following properties:

(i) the value of h at zi is a non-negative relative maximum on *;
(ii) on * the sign of h changes at zi , turning from positive to negative;
(iii) on * the sign of h changes at zi , turning from negative to positive.

Then there exists a collection {ζ1, ζ2, . . . , ζn} of subarcs of γ , possibly
degenerating to points, such that each ζi satises:

(a) if (i) holds, then ζi is a point and h(ζi ) > h(zi )·eh(zi ); moreover zi is joined
to ζi by a level curve {k = 0};

(b) if (ii) or (iii) holds, then (ii) or (iii) holds for h on γ , with zi replaced by
ζi .

If we consider the decomposition of * given by Theorem 2 along with
Theorem 3, we can conclude that the positive maximum of h on γi is greater
than the maximum of h on *i , i.e. *i bends less then γi . Thus we can infer not
only that the geometry of * is simpler than that of γ (as we can do from Acker�’s
papers), but also that the protuberances of γ directed away from the inside are
alleviated in passing from γ to *.

Remark. We stress that the result of Theorem 3 does not hold in the case of
negative minimmum of h. Here we report two numerical examples showing
that, corresponding to a negative minimum point P of h on * we can nd a
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point Q of γ at which h is either larger or smaller than at P (we assume the
curves oriented counterclockwise).
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Figure 1: *(θ) = ecos θ+iπ(1+α sin θ) Figure 2: *(θ) = (a − b sin θ)eiαπ cos θ
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WAVE PROPAGATION IN OPTICAL WAVEGUIDES

GIULIO CIRAOLO

We present a mathematical framework for studying the problem of
electromagnetic wave propagation in a 2-D or 3-D optical waveguide (optical
ber). We will consider both the case of a rectilinear waveguide and the one
of a waveguide presenting imperfections, with applications to phenomenons
of physical interest. Numerical examples will be given.

1. Introduction.

A typical optical ber is made of silica glass or plastic. Its central region is
called core, and it is surrounded by a cladding, which has a slightly lower index
of refraction. The cladding is surrounded by a protective jacket.

In optical waveguides, most of the electromagnetic radiation propagates
without loss as a set of guided modes along the ber axis. The electromag-
netic eld intensity of the guided modes in the cladding decays exponentially
transversally to the waveguide�’s axis. That is why the radius of the cladding,
which is typically several times larger than the radius of the core, can be con-
sidered innite.

In the model we used, we study the following Helmholtz equation

(1) L0u := -u + k2n(x )2u = f, x ∈RN ,

N = 2, 3, where k is the wavenumber and n is a positive function representing
the index of refraction.
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In Sections 2 and 3 we describe how to construct a Green�’s function for the
case, respectively, of a 2-D and a 3-D rectilinear waveguide.

A mathematical framework for studying2-D optical waveguides with small
imperfections and related numerical experiments are shown in Sections 4 and 5,
respectively.

2. 2-D rectilinear waveguides.
A rectilinear waveguide can be described by assuming that

n(x ) = n0(x1) =
{
nco(x1), if |x1| ≤ h,
ncl, if |x1| > h,

where nco is a bounded even function. Thanks to the symmetry of the problem,
we can separate the variables and look for solutions of the homogeneous
Helmholtz equation of the form u(x1, x2) = v(x1, λ)eikβx2 , with λ = k2(n2∗−β2)
and n∗ = max n. This leads to consider the following eigenvalue equation

(2) v′′(x1, λ)+ [λ − q(x1)]v = 0, x1 ∈R,

where q(x1) = k2[n2∗ − n(x1)2].
Bounded solutions of (2) are of the form

vj (x1, λ) =






φj (h, λ) cosQ(x1 − h)+ φ′j (h,λ)
Q sin Q(x1 − h), x1 > h,

φj (x1, λ), |x1| ≤ h,
φj (−h, λ) cos Q(x1 + h) + φ′j (−h,λ)

Q sinQ(x1 + h), x1 < −h,

j = s, a, with Q =
√
λ− d2 and d2 = k2(n2∗ − n2cl). Here, vj is symmetric or

anti-symmetric in x1 if j = s or j = a, respectively. Solutions can be classied
as follows:

• Guided modes. For 0 < λ < d2, only a nite number of eigenvalues λ j
m are

supported by (2). The solutions decay exponentially outside the core and
they correspond to solutions of the Helmholtz equation which propagate
most of their energy inside the core.

• Radiation modes. For d2 < λ < k2n2∗ , vj (x1, λ) are bounded and
oscillatory. Thus, the corresponding solutions of the Helmholtz equation
are bounded and oscillatory both in the x and the z directions.

• Evanescent modes. For λ > k2n2∗ , vj are bounded and oscillatory, but the
corresponding solutions of the Helmholtz equation decay exponentially in
one direction along the x2 axis and increase along the other one.
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By using the theory of Titchmarsh for the eigenvalues problems of singular
differential operators, it is possible to construct a resolution formula for (1):

(3) u(x ) =
∫

R2
G(x , y) f (y) dy ,

with

G(x , y) =
∑

j∈{s,a}

∫ ∞

0

ei|x2−y2|
√

k2n2∗−λ

2i
√
k2n2∗ − λ

vj (x1, λ)vj (y1, λ) dρj(λ) ,

where, for every η∈C∞0 ([0, +∞)), it holds that

〈dρj , η〉 =
Mj∑

m=1
rmj η(λmj ) +

1
2π

∫ ∞

d2

√
λ− d2

(λ− d2)φj (h, λ)2 + φ′j (h, λ)2
η(λ) dλ .

3. 3-D rectilinear waveguides.
We study cylindrically symmetric optical bers, i.e. when

n = n(r) =
{
nco(r), if 0 < r ≤ R,
ncl, if r > R,

where r is the distance from the ber�’s axis. In this case, we separate the
variables by using cylindrical coordinates (r, ϑ, x3) and looking for solutions
of the homogeneous Helmholtz equation of the form u = eiβkx3 eimϑw(r)r− 1

2 ,
m ∈Z. Hence, the associated eigenvalue problem is

w′′ +
[
λ− q(r) − m2 − 1/4

r2

]
w = 0 , r > 0.

The classication of the solutions is analogous to the one obtained in the 2-D
case.

In this case, we can still apply the theory of Titchmarsh in all its power
(see [1]). Notice that in this case, due to the term m2−1/4

r2 , the equation has a
singularity at r = 0 besides the one at r = +∞; this adds further technical
difculties.

Numerical results in the 3-D case are shown in Fig. 1, where we supposed
n to be

(4) n(r) =
{ ncl, 0 < r < a ,
nco, a ≤ r < R ,
ncl, r ≥ R,

with nco and ncl constants and such that nco > ncl .
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Figure 1: The gures represent the real part of the Green�’s function in the case
of a coaxial cable, i.e. n given by (4). In the rst one, the source is on the
waveguide�’s axis, and only the symmetric modes are excited. In the second one,
the source is inside the waveguide but not on the axis and all the guided modes
are excited.

4. 2-D waveguides with imperfections.

Real-life waveguides are never perfect, since they might contain imperfec-
tions due to inhomogeneities or changes in the core�’s width and shape. When
a pure guided mode is excited inside a guide with imperfections, a sort of res-
onation takes place and the other modes supported by the ber are excited. This
effect causes a signal distortion, since every guided mode propagates at its own
characteristic velocity, and a loss in the signal power, due to the transfer of
power to radiation, evanescent and the other guided modes.

These effects are not always to be avoided. It is possible to make optical
devices which can �“propagate the energy as desired�”. We will show two
examples in the last part of this paper.

From the mathematical point of view, we consider the Helmholtz equation

(5) Lεu := -u + k2nε(x1, x2)2u = f, in R2 ,

where the index of refraction nε is supposed to be a small perturbation of n0.
We formally represent Lε and u := uε in terms of their Neumann series and
nd

L0u0 = f, L0u1 = −L1u0, . . . , L0uj = −
j−1∑

r=0
Lj−r ur , . . .

Each step of the above iterative method can be solved by using the resolution
formula (3). It is possible to prove the existence of a solution by writing the
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equation Lεu = f as L0u = f + (L0 − Lε)u and then as

u = L−10 f + εL−10

(
L0 − Lε

ε

)
u.

Consider a weight function µ(x ) = 16
(4+|x|2)2 . By using estimates on the solution

(3), we are able to prove that the linear operators

L−10 : L2(R2, µ−1)→ H 2(R2, µ) and
L0 − Lε

ε
: H 2(R2, µ)→ L2(R2, µ−1)

are continuous. Hence, by choosing ε small enough and using the contraction
mapping theorem, we prove the existence of a solution of Lεu = f .

5. Numerical results.

In the following simulations, we will always suppose that the zeroth order
term of the Neumann series of u is a pure guided mode and we will show the
effect due to the imperfections by computing the rst term u1.

Near-eld.
We suppose that the prole of the per-
turbation is as the one in the small g-
ure on the right. In the second gure
on the right, the real part of u0 + εu1
in proximity of the waveguide is rep-
resented. We notice that most of the
radiating energy is directed along a cer-
tain direction. Such energy is due to the
coupling between the guided mode u0
and the radiation and evanescent modes
supported by the waveguide.

Coupling between guided modes

Grating-assisted direction couplers are optical devices where two or more
waveguides are close to each other and the coupling between guided modes
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is made by using a perturbation of the index of refraction of the core or of the
cladding. An example is shown in the gures below, where we show the real
part of u0, u0 + εu1 and u1, respectively.
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DISEGUAGLIANZA DI TIPO HARNACK PER
LE SOLUZIONI DI EQUAZIONI ELLITTICHE
NON LINEARI DI ORDINE SUPERIORE

SALVATORE D�’ASERO

In questa nota abbiamo preso in esame la seguente equazione di ordine
superiore al secondo:

(1)
∑

|α|≤m
(−1)|α|DαAα (x , u,D1u, · · · ,Dmu) = 0 x ∈! ⊂ Rn

che soddisfa una condizione di ellitticità degenere del tipo:

(2)
∑

1≤|α|≤m
Aα (x , ξ )ξα ≥ ν1

{ ∑

|α|=m
wp(x )|ξα|p +

∑

|α|=1
wq (x )|ξα|q

}
−

ν2
∑

1<|α|<m
wα(x )|ξα|pα − g0(x )wq(x )|ξ0|q − f0(x )wq (x ).

con q > mp e dove ξ = {
ξα ∈ R : |α| ≤ m

} ∈ RN(m) , ν1, ν2 sono costanti
positive, pα è un numero positivo soddisfacente alcune condizioni, wα(x ) sono
funzioni misurabili non negative e wq (x ) appartiene alla classe di Muckenhoupt
Aq e g0(x ), f0(x ) sono funzioni in opportuni spazi pesati di Lebesgue.
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Osserviamo che la condizione di ellitticità considerata, anche nel caso non
degenere, è più forte di quella che usualmente si considera:

(3)
∑

|α|=m
Aα (x , ξ )ξα ≥ ν1

∑

|α|=m
|ξα|p − ν2

∑

|α|<m
|ξα|rα − f (x ),

ma tale condizione, come ben si sa, in generale non ci permette di stabilire
nemmeno la limitatezza delle soluzioni se la dimensione di! è sufcientemente
grande (vedi [9]).

La classe delle equazioni soddisfacenti la (2), fu introdotta nel 1978 da
Skrypnik in [10], [9] dove ogni soluzione è limitata e Hölder continua e ciò
indipendentemente da qualunque relazione tra n, m, q , p.

In questa nota viene presentato un risultato concernente una diseguaglianza
di Harnack per le soluzioni non negative dell�’equazione (1), i cui coefcienti
soddisfano la condizione degenere (2) e la seguente condizione di crescita:

(4) |Aα (x , ξ )|
pα

pα−1 [wα(x )]−
1

pα−1 ≤

C2
∑

1≤|β|≤m
wβ(x )|ξβ |pβ + [gα(x )|ξ0|q + fα (x )]wq (x ),

con gα(x ) e fα (x ) appartenenti ad opportuni spazi pesati di Lebesgue. In
particolare, utilizzando la tecnica adottata da Nicolosi e Skrypnik in [7] nel
provare l�’analogo risultato per equazioni non degeneri e adattandola al caso
pesato, si otterrà il seguente risultato:

Teorema 1. Supponiamo che valgano le condizioni di ellitticità (2) e di cre-
scita (4) e sia u(x ) una soluzione non negativa dell�’equazione (1) nella sfera
B(x0, 3R), x0 ∈!4R, 0 < R ≤ 1. Allora vale la seguente disuguaglianza:

(5) supess
B(x0 ,R)

u(x ) ≤ L
{
infess
B(x0 ,R)

u(x )+ F(x0, R)
}

dove L è una costante positiva dipendente solo da parametri noti.

Osserviamo che, anche nel caso non pesato, è impossibile ottenere la dise-
guaglianza di Harnack per le soluzioni non negative dell�’equazione (1) associata
alla condizione di ellitticità standard (3) (proprio perché esistono esempi di so-
luzioni non limitate), ma è impossibile ottenerla anche per l�’equazione (1) con
la condizione (2) quando q = mp.

Inne applicando la diseguaglianza di Harnack (5) si deriva un risultato di
regolarità hölderiana per le soluzioni dell�’equazione (1), del tipo:
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Teorema 2. Supponiamo che le condizioni (2) e (4) siano vericate. Se u(x ) è
una soluzione dell�’equazione (1) nel dominio!. Allora per ρ > 0 vale:

(6) |u(x )− u(y)| ≤ H [F(!ρ )+ Mρ]|x − y|γ ,

x , y ∈!2ρ = {
x ∈! : dist(x , ∂!) > 2ρ

}
,

dove

F(!ρ ) = 1+
{ ∑

0≤|α|≤m
|| fα ||t1,!ρ

} 1
q
, Mρ = ess sup

{
|u(x )| : x ∈!ρ

}
,

H dipende dagli stessi parametri cui dipende L nel Teorema 1, γ dipende solo
da parametri noti e dalle rispettive norme di gα(x ) nel dominio !ρ .

Lo stesso risultato, ottenuto da Nicolosi e Skrypnik in [6], è qui, pertanto,
ottenuto con una tecnica differente.
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operators, Birkhäuser Verlag, Basel, 1997.

[2] S. Chanillo - R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and
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LINEAR ELLIPTIC EQUATIONS RELATED
TO GAUSS MEASURE

G. DI BLASIO - F. FEO - M. R. POSTERARO

We study a Dirichlet problem relative to a linear second order elliptic
equation with lower order terms, where ellipticity condition is given in terms
of the function ϕ(x) = (2π )−

n
2 exp(−|x|2/2), the density in the Gaussian

measure. We use the notion of rearrangement with respect to the Gauss
measure to obtain apriory estimate and we study the summability of the
solution when data vary in suitable Lorent-Zygmund spaces.

Let us consider the problem:

(1)






−
(
ai j (x )uxi

)
xj
− (di(x )u)xi + bi(x )uxi + c(x )u =

gϕ − ( fiϕ)xi in !

u = 0 on ∂!,

where ! is an open set of Rn (n ≥ 2), ϕ(x ) = (2π )− n
2 exp

(− |x |2 /2
)
is the

density of the Gauss measure and ai j (x ), di (x ), bi(x ), i, j = 1, .., n, and c(x )
are measurable functions on ! such that

(i) ai j (x )ξi ξj ≥ ϕ(x ) |ξ |2 for a.e. x ∈!, ∀ξ ∈Rn ,

(ii)
ai j (x )
ϕ(x )

∈ L∞ (!),

(iii)
(∑

b2i (x )
) 1
2 ≤ b(x )ϕ(x ), b(x )∈ L∞ (log L)−

1
2 (ϕ,!),
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(iv)
(∑

d2i (x )
) 1
2 ≤ d(x )ϕ(x ), d(x )∈ L∞ (log L)−

1
2 (ϕ,!),

(v)
c(x )
ϕ(x )

∈ L∞ (!) and c(x ) ≥ 0,

(vi) g (x) ∈ L2 (log L)−
1
2 (ϕ,!),

(vii) fi (x )∈ L2 (ϕ,!) i = 1, ..n,
∑

f 2i (x ) = f 2(x ).

problem (1) is related to the generator of Ornstein-Uhlenbeck semigroup
(see e.g. [3]).
First of all we observe that the natural space for searching weak solution of
the problem (1) is the weighted Sobolev space H 1

0 (ϕ,!), that is the closure of
C∞0 (!) under the norm

‖u‖H 1
0 (ϕ,!) =

(∫

!

|∇u (x)|2 ϕ(x ) dx
) 1

2

.

We recall that u ∈ H 1
0 (ϕ,!) is a weak solution of problem (1), if

∫

!

(ai j (x )uxiψxj + di (x )uψxi + bi (x )uxiψ + c(x )uψ) dx =
∫

!

(
g + fiψxi

)
ϕ(x ) dx ∀ψ ∈ H 1

0 (ϕ,!),

Our aim is to prove apriori estimates and regularity results for problem (1).
It is well known that if ! is bounded and problem (1) is uniformly elliptic

it is possible to compare the solution of original problem with the solution of a
simpler one which is dened in a ball and has spherical symmetric data (see for
example [10], [1]). The main tools for proving this kind of results are Schwarz
symmetrization and isoperimetric inequality.

In this case, using Gauss symmetrization and the isoperimetric inequality
with the respect to Gauss measure we are able to compare the solution of the
problem (1) with the solution of a problem which is dened in an halfspace and
has data depending on one variable.

To explain our results we give some denitions.
If γn (dx) = ϕ (x) dx = (2π)−

n
2 exp

(
−|x|2

2

)
dx , x ∈ Rn is the n-

dimensional Gauss measure on Rn normalized by γn (Rn) = 1, we dene the
perimeter with respect to Gauss measure as

P (E) = (2π)−
n
2

∫

∂E
exp

(
−|x |2
2

)
Hn−1 (dx) ,
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where E is a (n−1)−recticable set andHn−1 denotes the (n−1)−dimensional
Hausdorff measure. It is well known (see e.g. [9]) that for all subsets E ⊂ Rn

having the same Gauss measure of the half-space takes the smallest perimeter,
i.e.

P (E) ≥ P (H (ξ, λ)) .

where H (ξ, λ) = {x ∈Rn : (x , ξ) > λ} .

Moreover we give the notion of rearrangement. If u is a measurable
function in !, we denote by

• u" the decreasing rearrangement of u with respect to Gauss measure, i.e.
u" (s) = inf {t ≥ 0 : µ (t) ≤ s} s ∈ ]0, 1] ,

where µ(t) = γn ({x ∈! : |u| > t}) is the distribution function of u;
• u> the rearrangement with respect to Gauss measure of u, i.e.

u> (x) = u" (? (x1)) x ∈!>,

where !> = {x = (x1, . . . , xn) ∈Rn : x1 > λ} is the half-space such that
γn

(
!>) = γn (!).

In what follows we will use also the notion of pseudo-rearrangement
introduced in [2]. Let u be a measurable function in !, f ∈ L p (ϕ,!) with
1 ≤ p ≤ +∞, f ≥ 0 and !" = (0, γn (!)). We will say that a function
f̃u : !" → R is a Gauss pseudo-rearrangement of f with respect to u if there
exists a family E(u) = {E(s)}s∈!" of measurable subsets of ! such that

γn (E(s)) = s ,
s1 ≤ s2 ⇒ E(s1) ⊆ E(s2)
E(s) = {x ∈! : |u(x )| > u" (s)} if ∃ t ∈R, s = µ(t) and

f̃u (s) =
d
ds

∫

E (s)
f (x )ϕ (x) dx for a.e. s ∈!".

In general f̃u is not a rearrangement of f , but it is a weak limit of a
sequence of functions that have the same distribution function of f .

Finally let us recall that a measurable function u belongs to the Lorentz-
Zygmund space L p,q (log L)α (ϕ,!) for 0 < q, p ≤ ∞ and −∞ < α < +∞,

if

||u||L p,q(log L)α(ϕ,!) =






(∫ γn(!)

0

[
t
1
p (1− log t)αu"(t)

]q dt
t

) 1
q

if 0 < q <∞,

sup
t∈(0,γn(!))

[
t
1
p (1− log t)αu"(t)

]

if q = ∞,
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is nite 1.
The following theorem is proved in [7]:

Theorem 1. Let ! be an open set of Rn with γn (!) < 1 and let u ∈ H 1
0 (ϕ,!)

be solution of (1) under the assumptions (i)�–(vii); moreover, let us suppose
that either ‖b‖

L∞(log L)−
1
2 (ϕ,!)

is small enough or b ∈ L∞,a(log L)− 1
2 (ϕ,!) with

2 < a <∞. Let w(x ) = w>(x ) be the solution of problem

(2)






(
wx1ϕ (x)

)
x1

+ (D(?(x1))wϕ (x))x1 − B(?(x1))wx1ϕ (x) =
g>(x1)ϕ (x)− (F (?(x1)) ϕ (x))x1 in !>

w = 0 on ∂!>,

where !> is the half-space {x = (x1, . . . , xn)∈Rn : x1 > λ}, with λ ∈R such
that γn(!) = γn(!>), ?(τ) = γn ({x ∈Rn : x1 > τ }) and F, B and D are
functions such that F2 = (̃

f 2
)
u , B

2 = (̃
b2

)
u and D

2 = (̃
d2

)
u .

Then

(3) u>(x1) ≤ w>(x1) = w(x ) for a.e. x ∈!>.

Comparison (3) provides estimates of u in terms of the solution of a
problem of the same type of (1), but simpler, because it is dened in an half-
space and its coefcients depend only on one variable. We observe that if
bi (x ) = 0 or di(x ) = 0 then the solution of the problem (1) can be explicitely
written and then comparison (3) gives an explicite estimate; an estimate of the
norm |∇u| can be also proven (see [7] for details).

Starting by comparison result we study regularity results in the Lorentz-
Zygmund spaces.

Let us observe that by Gross inequality we have that if u ∈ H 1
0 (ϕ,!)

is a solution of problem (1) then u belongs to Lorentz-Zygmund space
L2 (log L)

1
2 (ϕ,!). We study how the summability of u improves by im-

proving the summability of the data f and g in Lorentz-Zygmund spaces
L p,q (log L)α (ϕ,!) .

The following theorem states the regularity result in the case fi (x ) ≡
di (x ) ≡ 0, i = 1, . . . , n, all the other cases are studied in [7].

Theorem 2. Under the assumptions of Theorem 1, when di(x ) ≡ fi (x ) ≡ 0,
i = 1, . . . , n and g ∈ L p,q(log L)α(ϕ,!), the following results hold:

1 We use the following �‘arithmetic�’ convention: s
∞ = 0 for s > 0.
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(a) if

p = 2 and either 1 ≤ q ≤ 2 and α ≥ −1
2
or 2 < q ≤ ∞ and α > −1

q

or
2 < p <∞, 1 ≤ q ≤ ∞ and −∞ < α < +∞,

then u ∈ L p,q(log L)α+1(ϕ,!) and

‖u‖L p,q(log L)α+1(ϕ,!) ≤ C1 ‖g‖L p,q(log L)α(ϕ,!) ;

(b) if

p = ∞, 1 ≤ q ≤ ∞,−∞ < α < +∞ and α + 1
q

< 0,

then u ∈ L∞,q(log L)α (ϕ,!) and

‖u‖L∞,q (log L)α (ϕ,!) ≤ C2 ‖g‖L∞,q (log L)α(ϕ,!) .

The constants C1,C2 depend on p, q, α, γn (!) and ‖b‖
L∞,a (log L)

− 12 (ϕ,!)
.

Comparison results using rearrangement with respect to Gauss measure are
proved in [4] when di(x ) ≡ bi(x ) ≡ c(x ) ≡ fi (x ) ≡ 0 i = 1, . . . , n and in [6]
when di (x ) ≡ fi (x ) ≡ 0 and c(x ) ≥ c0(x )ϕ(x ). Parabolic and nonlinear case
has been studied respectively in [5] and [8].
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ANALYSIS ONMETRIC SPACES AND
APPLICATIONS TO PDE�’S

G. DI FAZIO - C. E. GUTIÉRREZ - E. LANCONELLI

1. Introduction.
Harnack inequality for solutions to degenerate elliptic equations has re-

ceived much attention in recent years. In several cases the underlying geometry
for their study relies on quite general metric structures of homogeneous type.
Moser iteration technique has been extended to non Euclidean settings, yielding
Harnack inequalities for solutions to second order degenerate elliptic equations
in divergence form with underlying Carnot-Caratheodory metric structures, see
[5], [8] and references therein.

Caffarelli�’s technique [2], [3], to prove Harnack�’s inequality for uniformly
elliptic fully nonlinear equations has been extended in [4] to the linearized
Monge-Ampere equation, see also [7], Chapter 2. The role of the Euclidean
balls in Caffarelli�’s original method is played, in [4], by the sections of a convex
function. This makes clear the quasi metric character of some crucial parts of
the procedure and it is the purpose of this paper to put these techniques in the
frame of quasi metric spaces and apply the results to X -elliptic operators. This
technique permits to handle both non divergence and divergence structure linear
equations simultaneously.

We would like to point out that the present method avoids the use of the
BMO John-Nirenberg type inequality, which plays a crucial role in Moser
iteration technique. It is well known that this inequality is hard to prove in
the settings of quasi metric doubling spaces, see [1].
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2. Critical Density, Double Ball Property and power decay.

In this section (Y, d, µ) is a doubling quasi metric Hölder space. We begin
with the following two denitions. Let ! ⊆ Y be open. We shall denote by K!

a family of µ-measurable functions with domain contained in !. If u ∈K! and
its domain contains a set A ⊂ !, we write u ∈K!(A).

Denition 2.1. (Critical density) Let 0 < ε < 1. We say that K! satises the
ε critical density property if there exists a constant c = c(ε) > 0 such that for
every ball B2R(x0) ⊂ ! and for every u ∈K!(B2R(x0)) with µ({x ∈ BR(x0) :
u(x ) ≥ 1}) ≥ ε µ(BR(x0)), we have inf

BR/2(x0)
u ≥ c.

Denition 2.2. (Double ball property) We say that K! satises the double ball
property if there exists a positive constant γ such that for every B2R(x0) ⊂ !

and every u ∈K!(B2R(x0)) with infBR/2(x0) u ≥ 1 we have infBR (x0) u ≥ γ .

We point out that we do not identify two functions that differ on a set of µ

measure zero. We also notice that if K! satises the ε0 critical density property,
then K! satises the ε critical density for any ε > ε0.

The ε critical density and the double ball properties are in general indepen-
dent but if the critical density holds for ε sufciently small, then the double ball
property also holds.

Proposition2.3. If cD is the doubling constant of µ and K! satises the ε
critical density for some 0 < ε < 1/c2D, then K! satises the double ball
property.

As a consequence of the critical density and the double ball properties we
get the following proposition.

Proposition 2.4. (Improved Critical Density)Assume thatK! satises the dou-
ble ball property and the critical density property for some 0 < ε < 1. As-
sume K! closed under multiplications by positive constants. Then there exists
a structural constant M0 > 1 depending on ε such that for any α > 0 and any
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u ∈ K!(B2R(x0)) with µ({x ∈ BR(x0) : u(x ) ≥ α}) ≥ ε µ(BR(x0)), we have
inf
BR (x0)

u ≥ α/M0 .

Denition 2.5. The family K! satises the power decay property if there exist
constants M, η > 1 and 0 ≤ γ < 1 such that for each u ∈K!(BηR(x0)) with
inf
Br (x0)

u ≤ 1 we have

µ({x ∈ Br/2(x0) : u(x ) > Mk}) ≤ γ k µ(Br/2(x0)), k = 1, 2, · · · .

Families of functions satisfying the critical density and double ball proper-
ties satisfy the power decay property too.

Theorem 2.6. (Power decay) Let (Y, d, µ) be a doubling quasi-metric Hölder
space and let ! ⊂ Y be open and such that µ(Br (x )) ≤ δµ(B2r (x )) for a
suitable 0 ≤ δ < 1 and for every ball B2r (x ) ⊂ !. Suppose the set K!

is closed under multiplication by positive constants and satises the following
conditions:

1. K! satises the ε-critical density property for some 0 < ε < 1/c2D.
2. The function r 9→ µ(Br (x )) is continuous for each x ∈ Y .

Then, the family K! satises the power decay property.

3. Power decay and abstract Harnack inequality.
Theorem 3.1. Suppose that the family of functionsK! satises the power decay
property in Denition 2.5 and assume in addition that K! is closed under
multiplications by positive constants and if u ∈K!(Br (x0)) satises u ≤ λ in
Br (x0), then λ−u ∈K!(Br (x0)). There exists a positive constant c independent
of u, R and x0 such that if u ∈ K!(B2η0R(x0)) is nonnegative and locally
bounded, then supBR(x0 ) u ≤ c infBR(x0 ) u , where η0 = K (2Kη + 1) and η
is the constant in Denition 2.5.

We point out that we may assume that d is a Hölder quasi distance. Indeed,
by Mac́as and Segovia [9], Theorem 2, every quasi metric has an equivalent
Hölder quasi metric. On the other hand, it is easy to see that if a family of
functions satises the power decay property, or the Harnack inequality, with
respect to a quasi distance d , then it satises the same properties with respect to
any quasi distance d ′ equivalent to d .

From Harnack inequality in the previous theorem a Hölder regularity result
readily follows.
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Theorem 3.2. Suppose K satises, together with the hypotheses of Theorem
3.1 the following one: for any ball BR(x0),if u ∈ K(BR (x0)) satises u ≥ λ

in BR(x0), then u − λ ∈ K(BR (x0)). There exist positive constants C and α
independent of u, R and x0 such that if u ∈K(B 2R

η
(x0)), then

|u(x )− u(y)| ≤ C
(
d(x , y)
R

)α

sup
BR (x0)

|u| , ∀x , y ∈ BR(x0).

4. X -elliptic operators.

Let X = (X1, . . . , Xm) be a family of vector elds, with locally Lipschitz
continuous coefcients, dened in an open set Y ⊂ RN .

We will consider �“degenerate�” operators which are elliptic with respect to
the given system X of vector elds.

Denition 4.1. Let (ai, j )i, j=1,...,N be a symmetric matrix with measurable en-
tries. We say that the operator

(4, 1) L ≡
N∑

i, j=1

∂

∂xi

(
ai j (x )

∂

∂xj

)

is uniformly X -elliptic in an open set! ⊂ Y if there exist two positive constants
λ, 9 such that

(4.2) λ

m∑

i=1
|〈Xi(x ), ξ〉|2 ≤

N∑

i, j=1
ai j (x )ξiξj ≤ 9

m∑

i=1
|〈Xi(x ), ξ〉|2 ,

∀ξ ∈RN , a.e. x ∈! .

Regarding the given system of vector elds, we shall assume that the
Carnot-Caratheodory distance d related to X is well dened and continuous
with respect to the Euclidean topology. Moreover, we assume (Y, d, µ) is a
doubling metric space, where dµ = dx denotes the Lebesgue measure. We
also assume the following

(P) (Poincaré inequality): There exists a positive constant C such that
(∫
�—
BR
(u − uR)2dx

)1/2
≤ C R

(∫
�—
BR

|Xu|2 dx
)1/2

∀u ∈C1(BR),
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and for every d -ball with BR = BR(x0), x0 ∈ Y , R > 0.

Given a set E we denote uE ≡
∫
�–Eu. If E is a metric ball Br we put ur =

uBr . Moreover, Xu denotes the X - gradient of u, i.e. Xu = (X1u, . . . , Xmu)
where, if X = (c1j , . . . , cNj ),

Xju =
N∑

k=1
ckj ∂xk u , j = 1, . . . ,m .

We dene the (generalized) Sobolev space W 1(!, X ) related to the family X
and the open set !, as follows

W 1(!, X ) = {u ∈ L2(!) : |Xu| ∈ L2(!)} .

We recall that W 1(!, X ) is the closure of {u ∈ C1(!) : u ∈ L2(!) : |Xu| ∈
L2(!)}, with respect to the norm u → ‖u‖L2(!) + ‖Xu‖L2(!) , see [6]. We say
that u ∈W 1

loc(!, X ) if uϕ ∈W 1(!, X ) for any ϕ ∈C10 (!).
Let us now consider the bilinear form

L(u, ϕ) =
N∑

i, j=1

∫

!

ai j (x ) uxiϕxj dx

dened in C10 (!)× C10 (!). Since

|L(u, ϕ)| ≤ 9‖Xu‖ ‖Xϕ‖, ∀u, ϕ ∈C10 (!) ,

L can be extended to W 1
loc(!, X )× C10 (!).

Denition 4.2. (weak solutions) We say that a function u ∈ L2(!) is a weak
subsolution (supersolution) to Lu = 0 in !, if Xu ∈ L2(!) and

(4.3) L(u, ϕ) ≤ (≥)0 ,

for all ϕ ∈ C10 (!), ϕ ≥ 0. We say u is a solution if it is both a sub and a
super�–solution.

The set of nonnegative solutions to X -elliptic equations satises the critical
density property in Denition 2.1 for all 0 < ε < 1. First of all we point out
that weak subsolutions to X -elliptic equations are (essentially) locally bounded.
This has been shown in [8], inequality (4.12).
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Theorem 4.3. (Local boundedness) Let u ≥ 0 be a weak subsolutionof Lu = 0
in ! and let BR(x0) be a d-ball such that B2R(x0) ⊂ !. Then there exists a
constant c such that

(4, 4) esssup
BR (x0)

u ≤ c
(∫
�—
B2R (x0)

u2 dx
)1/2

.

It is a standard fact that if u is a weak solution to Lu = 0 in ! then
u+ = max{u, 0} and u− = max{−u, 0} are (non negative) sub solutions (see
[8]). Then, u = u+ − u− is essentially locally bounded. As a consequence,
there exists a locally bounded function û ∈ W 1

loc(!, X ) such that Lû = 0 and
û = u a.e. in !. From now on we identify u with û. The critical density is a
consequence of the previous results.

Theorem 4.4. (Critical density for all 0 < ε < 1) Let B2R(x0) ⊂ ! be a met-
ric ball. Given 0 < ε < 1, there exists c = c(ε) > 0 such that for
any nonnegative supersolution to Lu = 0 in the ball B2R(x0) satisfying
|{x ∈ BR(x0) : u(x ) ≥ 1}| ≥ ε |BR(x0)|, we have inf

BR/2(x0 )
u ≥ c.

Let us assume now that the open set ! is such that

(4.5) µ(Br (x )) < δµ(B2r (x )) ,

for every d -ball B2r (x ) ⊂ !. Since we are interested in local properties of
the solutions we may assume that (4.5) holds. Actually, it holds true if the d -
diameter of ! is sufciently small. Let us now dene

K! :=
{
u ∈W 1

loc(A) : A ⊂ ! , A open : Lu = 0 in A, u ∈ L∞loc , u ≥ 0
}

.

Obviously if u ∈K!(A) and λ1 ≤ u ≤ λ2 then λ2 − u and u − λ1 belong to
K!(A).

Thus, keeping inmind all our previous results applied to the familyK!(A),
we get the following result.

Theorem 4.5. (Harnack inequality for X -elliptic operators) Let u ∈W 1
loc(!, X )

be a non negative solution to Lu = 0 in !. There exist structural constants
c, θ > 1 such that sup

BR (x0)
u ≤ c inf

BR (x0)
u, for every d-ball such that Bθ R(x0) ⊂ !.

Remark 4.6. Since the metric balls are relatively compact and connected, a
standard argument can be used to prove that in the previous theorem one can
replace the constant θ by any constant bigger than one.
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Theorem 4.7. (Hölder continuity for X -harmonic functions) Let u ∈
W 1
loc(!, X ) be a solution to Lu = 0 in !. There exists structural

positive constants c and 0 < α ≤ 1, such that

|u(x )− u(y)| ≤ c
(
d(x , y)
R

)α

sup
BR(x0)

|u| ,

for every d-ball BR(x0) ⊆ !.
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C1,αloc REGULARITY FOR SUBELLIPTIC P -HARMONIC
FUNCTIONS IN GRU SIN PLANE

G. DI FAZIO - A. DOMOKOS - M.S. FANCIULLO - J. J. MANFREDI

The main result of our work ([3]) is the C1,αloc regularity for subelliptic
p-harmonic functions in the case of the Grusin vector elds. To this goal we
prove a Calderón-Zygmund inequality and an estimate for strong solutions of
a linear subelliptic equation in nondivergence form with L∞ coefcients.

Let ! be a bounded domain in Rn , q ≤ n and X = (X1, X2, · · · , Xq) be a
system of C∞ vector elds dened in!. We suppose that the system X satises
the following Hörmander or bracket generating condition of step m in ! (see
[6]):
the vector elds Xi together with their commutators of length at most m span
Rn at every point of !.

In particular we will discuss about the following Grusin vector elds

X1 = ∂

∂x
, X2 = x

∂

∂ t
.

They satisfy the Hörmander condition of step 2 at every point of R2.
In ! we consider the Carnot�–Carathéodory distance dened with respect

to the system X of vector elds. For more details see [7].
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For k ∈N and p > 1 we dene the Sobolev spaces associated to the vector
elds Xi as

Wk,p(!) =
{
u ∈ L p(!) : Xi1 ...Xij u ∈ L p(!) , 1 ≤ j ≤ k

}
,

and we denote by Wk,p
0 (!) the closure of C∞0 (!) with respect to the following

norm in Wk,p(!):

‖u‖Wk, p(!) ≡ ‖u‖L p(!) +
k∑

j=1

q∑

ij=1
‖Xi1 . . . Xij u‖L p(!) .

We denote by -X the sub-elliptic Laplace operator
∑q

j=1 X 2j . Our rst
result is the following Calderón-Zygmund inequality.

Theorem 1. Let p ∈ (1,∞). Then there exists a constant Cp such that for all
u ∈W 2,p

0 (!) we have

‖X 2u‖L p(!) ≤ Cp‖-Xu‖L p(!) .

Remark 1. In the case of Grusin plane we have C2 =
√
3 as in the Heisenberg

group H1 (see [4]) and this constant is sharp.

Now, let us consider the non variational linear operator

Au =
q∑

i, j

ai j (x )Xi X ju ,

where ai j ∈ L∞(!).
We assume that the operator A satises the following Cordes condition

Kε,σ (see [2]):
there exist ε ∈ (0, 1] and σ > 0 such that for a.e. x ∈!

0 <
1
σ
≤

q∑

i, j=1
a2i j (x ) ≤

1
q − 1+ ε

( q∑

i=1
aii (x )

)2
.

We denote by I the q × q identity matrix and by A(x ) = {ai j (x )}i, j=1,...,q
the matrix of the coefcients. The next result follows from Cordes condition
and Theorem 1.
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Theorem 2. Let 0 < ε ≤ 1, σ > 0 such that γ = √
1− ε C < 1 (C = C2

is the constant in Theorem 1) and the operator A satises the condition Kε,σ .
Then for all u ∈W 2,2

0 (!) we have

‖X 2u‖L2(!) ≤
C

1− γ
‖α‖L∞(!)‖Au‖L2(!),

where α(x ) = 〈A(x),I 〉
‖A(x)‖2 .

In the case of the Grusin vector elds, if p > 1, consider the p-Laplace
equation

(1) −-
p
X u = −X1

(
|Xu|p−2 X1u

)
− X2

(
|Xu|p−2 X2u

)
= 0 , in !

and the �“regularized�” nondegenerate p-Laplace equation

(2) −
2∑

i=1
Xi

((
λ + |Xu|2)

p−2
2 Xiu

)
= 0 , λ > 0.

A subelliptic p-harmonic function is a weak solutions of (1), that is a
function u ∈W 1,p

loc (!) satisfying

2∑

i=1

∫

!

|Xu|p−2 Xiu Xiϕ dxdt = 0 , ∀ϕ ∈W 1,p
0 (!).

A weak solution of equation (2) is a function uλ ∈W 1,p
loc (!) satisfying

2∑

i=1

∫

!

(
λ + |Xuλ|2

) p−2
2 Xiuλ Xiϕ dxdt = 0 , ∀ϕ ∈W 1,p

0 (!).

The next theorem is a simply restatement of a result proved in the case of
Heisenberg group H1 (see e.g. [4]).

Theorem 3. For
√
17−1
2 ≤ p < 4 any weak solution uλ of the nondegenerate

subelliptic p-Laplace equation (2) belongs to W 2,2
loc (!).



472 G. DI FAZIO - A. DOMOKOS - M.S. FANCIULLO - J. J. MANFREDI

Theorem 3 allows to differentiate the equation (2) and obtain the linear
operator

Lλ =
2∑

i=1
aλ
i j X i X j ,

where
aλ
i j = δi j + (p − 2) Xiuλ Xjuλ

λ + |Xuλ|2
.

If p belongs to a neighborhood of 2, the operator Lλ satises the Cordes
condition uniformly with respect to λ. Then, using Theorem 2, we get

Theorem 4. For
√
17−1
2 ≤ p < 5+

√
5

2 any weak solution of the subelliptic p-
Laplace equation (1) belongs to W 2,2

loc (!).

To obtain our main theoremwe use theW 2,2
loc regularity and some properties

of the linear operator Lλ that, under suitable hypothesis on p, is �“near�” to
the subelliptic Laplace operator (for the denition of near operators see [1]).
Finally, we have

Theorem 5. There exist p0 < 2 < p1 such that if u ∈W 1,p(!) is a subelliptic
p-harmonic function, then u ∈C1,αloc (!) with 0 < α < 1.
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INFINITE DIMENSIONAL LAGRANGEAN THEORY AND
APPLICATIONS TO GENERALIZED
COMPLEMENTARITY PROBLEMS

SOFIA GIUFFRÈ - GIOVANNA IDONE

The authors express Generalized Complementarity Problems in terms
of suitable optimization problems and provide some necessary optimality
conditions by means of the innite dimensional Lagrangean and Duality
Theories.

1. Introduction.

In this paper we are interested in the so-called Generalized Complementar-
ity Problem

(1)
{

B(u)L(u) = 0
u ∈K,

where S is a nonempty subset of a real linear space X , Y is a partially ordered
real normed space with the ordering cone C , Z is the set of nonnegative
measurable functions. Moreover L : S → Z , B : S → Z are two operators
such thatL(v) ≥ 0, B(v) ≥ 0 ∀v ∈ S , g : S→ Y is a given constraint mapping
and K = {v ∈ S : g(v)∈ − C}.

Let us observe that the Generalized Complementarity Problem (1) ex-
presses many economic and physical equilibrium problems. In fact, starting
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from the classical Signorini problem, it has been observed that the Obstacle
problem, the Elastic�–Plastic Torsion problem, the Trafc Equilibrium problem
both in the discrete and continuous cases, the Spatial Price Equilibrium prob-
lem, the Financial Equilibrium problem and many others (see [5], [7], [8], [12])
satisfy the Generalized Complementarity Problem (1).

Our aim is to express Problem (1) in terms of a suitable optimization
problem and to associate some necessary optimality conditions by means of
innite dimensional Lagrangean and Duality Theories.

The paper improve the results in [9], where a restrictive condition on the set
qri (g(S)+ C) has been assumed, while here that condition has been removed.
Different approaches for establishing solvability of nonlinear complementarity
problems has been presented in [13].

In the sequel, for the sake of simplicity, we conne ourselves to a less
general case. Let us suppose that X and Y are real Hilbert spaces with the usual
inclusion X ⊆ Y ⊆ X ∗; let it be C the ordering convex cone of Y and let L,
B, g be three functions dened on X with values in Y . Let us suppose that the
set K = {v ∈ X : g(v)∈ − C} is nonempty.

Let us observe that (1) can be written as the Optimization Problem:

(2)
{minB(v) L(v) = 0

v ∈K

Assuming that Problem (2) holds in the sense of the scalar product on Y and
that 〈Lv, Bv〉 ≥ 0 ∀v ∈ X , it becomes

(3) min
v∈K
〈Lv, Bv〉 = 0 .

The main result of this paper is the following:

Theorem 1. Let the function (〈L(v), B(v)〉, g(v)) be convex-like. Let us as-
sume that qri [g(X )+ C] /= ∅, qriC /= ∅. In addition suppose that C is closed,
C − C = Y and there exists v̄ ∈ X such that g(v̄) ∈ − qriC. Then if the
functions L, B, g are Fréchet differentiable and Problem (3) admits a solution
u ∈K, then there exists an element l̄ ∈C∗ such that

(4) 〈Lu(u)v, B(u)〉 + 〈L(u), Bu(u)v〉 + 〈l̄, gu(u)v〉 = 0 ∀v ∈ X,

(5) 〈l, g(u)〉 ≤ 0, ∀l ∈C∗ , 〈l̄, g(u)〉 = 0 .
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We can generalize the result obtained in Theorem 1 assuming that the set
of the constraints is given by K = {v ∈ S : g(v)∈ − C}, where S is a nonempty
convex subset of X and that L(v), B(v) and g(v) are dened on S . In this case
the following result holds:

Theorem 2. Under the same assumptions of Theorem 1, if there exists v̄ ∈ S
such that g(v̄) ∈ − qriC and Problem (3) admits a solution u ∈K, then there
exists an element l̄ ∈C∗ such that

〈L(u), Bu(u)(v−u)〉+ 〈Lu(u)(v−u), B(u)〉+ 〈l̄, gu(u)(v−u)〉 ≥ 0 ∀v ∈ S ,

〈l, g(u)〉 ≤ 0, ∀l ∈C∗, 〈l̄, g(u)〉 = 0 .

2. The Lagrangean and Duality Theory.

Let us introduce the dual cone C∗ , that, in virtue of the usual identication
Y = Y ∗ , can be written C∗ = {l ∈ Y : 〈l, v〉 ≥ 0, ∀v ∈C}. Then, using the
same technique used by J. Jhan in [11], we may show the following result:

Theorem 3. Let the ordering cone C be closed. Then u is a minimal solution
of (3) if and only if u is a solution of the problem

(6) min
v∈X

sup
l∈C∗

{〈Lv, Bv〉 + 〈l, g(v)〉}

and the extremal values of the two problems are equal.

Now let us introduce the Dual Problem

(7) max
l∈C∗

inf
v∈X

{〈Lv, Bv〉 + 〈l, g(v)〉} .

It is known (see Theorem 6.7 of [11]) that if int C is nonempty, if Problem
(3) (or (6)) is solvable and the generalized Slater condition is satised, namely
there exists v̄ ∈ X with g(v̄) ∈ − int C , then problem (7) is also solvable and
the extremal values of the two problems are equal. However in many concrete
situations the request that int C is non-empty is not veried: for example if X ,
Y are Lebesgue spaces. For this reason in [1] the authors develop the notation of
quasi-relative interior of a convex set that is an extension of the relative interior
in nite dimension and that may constitute a rst contribute to the search of
effective regularity assumptions. Let us recall the denition of quasi-relative
interior (see [6] for the properties of qriC).
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Denition 1. Let C be a convex subset of a real Hilbert space Y . The quasi-
relative interior of C , denoted by qriC , is the set of those x ∈ C for which
Cone (C − x ) = {λy : λ ≥ 0, y ∈C − x} is a subspace.

Using this concept of quasi-relative interior, more general separation theo-
rems can be proved (see [6]) and by means of the new separation theorems, it is
possible to show that problem (7) is solvable and that the extremal values of the
two problems are equal.
At rst we recall the denition of a convex�–like function.

Denition 2. Let X be a real linear space and let Y be a real linear space
partially ordered by a convex cone C . A function f : X → Y is called convex�–
like if the set f (X ) + C is convex.

Theorem 4. Let the function ϕ(v) = (〈L(v), B(v)〉, g(v)) be convex-like with
respect to the product cone R+ × C in R × Y . Let qri [g(X ) + C] /= ∅,
qriC /= ∅ and C − C = Y . If Problem (3) is solvable and there exists v̄ ∈ X
with g(v̄) ∈ − qriC, then also Problem (7) is solvable and the extremal values
of the two problems are equal. Moreover, if u is a solution to Problem (3) and
l̄ ∈C∗ of (7), it turns out to be 〈l̄, g(u)〉 = 0.

3. Proof of the Theorems.

Let us consider the Lagrangean functional L : X × C∗ → R, L(v, l) =
〈L(v), B(v)〉 + 〈l, g(v)〉. Using the preceding theorems we are able to state the
following theorem (see for the proof [5]).

Theorem 5. Let the assumptions of Theorem 4 be fullled, with C closed. Then
a point (u, l̄)∈ X × C∗ is a saddle point of L, namely

(8) L(u, l) ≤ L(u, l̄) ≤ L(v, l̄), ∀v ∈ X, ∀l ∈C∗

if and only if u is a solution of problem (3) (or (6)), l̄ is a solution of Problem
(7) and the extremal values of the two problems are equal, namely

min
v∈X

sup
l∈C∗

{〈Lv, Bv〉 + 〈l, g(v)〉} = max
l∈C∗

inf
v∈X

{〈Lv, Bv〉 + 〈l, g(v)〉}

= 〈Lu, Bu〉 + 〈l̄, g(u)〉 = 0 .



INFINITE DIMENSIONAL LAGRANGEAN THEORY AND. . . 479

From (8), bearing in mind that L : X → Y , B : X → Y, g : X → Y are
Fréchet differentiable functions, we may derive (4), (5).

In a similar way, using a suitable version of Theorem 4 for Problem (7)
with X replaced by S , we obtain Theorem 2.
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ESISTENZA E CLASSIFICAZIONE DI PUNTI CRITICI
PER FUNZIONI NON DIFFERENZIABILI

ROBERTO LIVREA

The aim of this lecture is to extend a general min-max principle establi-
shed by Ghoussoub to the case of nondifferentiable functions. A non smooth
version of the Brézis-Nirenberg�’s critical point theorem in presence of split-
ting is also presented and accompanied with an application to a class of el-
liptic variational-hemivariational eigenvalue problem. Finally a study of the
critical set at a suitable level is pointed out.

1. Due teoremi di punto critico.

Uno dei punti di partenza per lo studio dei punti critici di funzionali di
classe C1 deniti su uno spazio di Banach innito dimensionale X è il ben noto
teorema di passo di montagna (in acronimo TPM) di Ambrosetti e Rabinowitz
[1], Theorem 2.1. Successivamente, autori come Chang [3], Szulkin [9] e, più
recentemente, Motreanu e Panagiotopoulos [8] hanno fornito versioni del TPM
per funzionali sempre meno regolari.

Nella presente nota ci proponiamo, inizialmente, di presentare un risultato
che, facendo uso della seguente ipotesi di struttura,

(H′f ) f = ?(x ) + ψ(x ) per ogni x ∈ X , dove ? : X → R è localmente
lipschitziana e ψ : X → R ∪ {+∞} è convessa, propria e semicontinua
inferiormente. Inoltre, ψ è continua su ogni insieme compatto A ⊂ X tale
che supx∈A ψ(x ) < +∞
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estende un principio generale di min-max di Ghoussoub [4], Theorem 1.bis,
ottenuto in ambito C1 .

Nel contesto dell�’ipotesi (H′f ) ricordiamo che

?0(x; z) := lim sup
w→z,t→0+

?(w + t z) −?(w)
t

è la derivata direzionale generalizzata di ? in x lungo la direzione z, mentre
x ∈ X è un punto critico di f se soddisfa la seguente disequazione variazionale-
emivariazionale

?0(x; z − x )+ ψ(z) −ψ(x ) ≥ 0 ∀ z ∈ X .

La classica condizione di Palais-Smale diventa:
(PS) f Ogni successione {xn} ⊂ X tale che { f (xn)} è limitata e

?0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −εn‖z − xn‖
per ogni n ∈N, z ∈ X , dove εn → 0+, possiede un�’estratta convergente.

Nel seguito, per un dato λ∈R, poniamo

Kλ( f ) := {x ∈ X : f (x ) = λ, x è punto critico di f }.
Faremo inne uso del seguente insieme * := {γ ∈ C0(Q, X ) : γ|Q0 = γ0},
dove Q ⊂ X è un insieme compatto, Q0 è un sottoinsieme non vuoto e chiuso
di Q e γ0 appartiene a C0(Q0, X ). Ad esempio, se x0, x1 ∈ X e consideriamo
Q = [x0, x1], Q0 = {x0, x1} e γ0 = id|Q0 , si ha

(1) * := {γ ∈C0([x0, x1], X ) : γ (xi ) = xi, i = 0, 1}.
Vale quindi il seguente risultato.

Theorem 1.1. ([5], Theorem 3.3) Assumiamo che la funzione f soddis le
seguenti ipotesi oltre a (H′f ) e (PS) f .
(a1) supx∈Q f (γ (x )) < +∞ per qualche γ ∈*.
(a2) Esiste un sottoinsieme chiuso S di X tale che

(2) (γ (Q) ∩ S) \ γ0(Q0) /= ∅ per ogni γ ∈*

e

(3) sup
x∈Q0

f (γ0(x )) ≤ inf
x∈S

f (x ).

Poniamo c := infγ∈* supx∈Q f (γ (x )). Allora l�’insieme Kc( f ) è non vuoto.
Se, inoltre, infx∈S f (x ) = c allora Kc( f ) ∩ S /= ∅.
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Un opportuno e articolato utilizzo del Teorema 1.1, nel caso in cui X :=
X1 ⊕ X2, dove dim(X1) > 0 e 0 < dim(X2) < ∞, consente di ottenere
la seguente versione non-smooth di un noto risultato di Brézis-Nirenberg [2],
Theorem 4.

Theorem 1.2. ([6], Theorem 3.1) Assumiamo che f sia limitata inferiormen-
te e soddis (H′f ) e (PS) f . Sia x0 un punto di minimo globale di f . Se
infx∈X f (x ) < f (0), f (0) = 0 e inoltre

(f1) l�’insieme {x ∈ X : f (x ) < a} è aperto per qualche a > 0,
(f2) esiste r ∈

]
0, ‖x0‖2

[
tale che f|Br∩X1 ≥ 0, f|Br∩X2 ≤ 0 e f|∂Br∩X2 < 0,

allora la funzione f ammette almeno due punti critici non banali.

2. Un�’applicazione ad una classe di disequazioni variazionali - emivaria-
zionali.

Sia ! un sottoinsieme aperto e limitato di (RN , | · |), N ≥ 3, con frontiera
regolare ∂!. Poniamo

‖u‖ :=
(∫

!

|∇u(x )|2 dx
)1/2

per ogni u ∈ H 1
0 (!). Assegnata una funzione a ∈ L∞(!), si consideri il

problema

(4)
{−-u + a(x )u = λu in !

u = 0 su ∂!.

È noto che (4) possiede una successione {λn} di autovalori tale che λ1 <
λ2 ≤ . . . ≤ λn ≤ . . .. Sia {ϕn} la corrispondente successione di autofunzioni
normalizzate in modo tale che, per ogni n ∈N

∫

!

[|∇ϕn(x )|2 + a(x )ϕ2 n(x )
]
dx = λn

∫

!

ϕ2n(x ) dx = λn

∫

!

[∇ϕm(x ) · ∇ϕn(x )+ a(x )ϕm(x )ϕn(x )
]
dx =

∫

!

ϕm(x )ϕn(x ) dx = 0

a condizione che m, n ∈N e m /= n.

Assumiamo che λs < 0 < λs+1 per qualche s ∈N.
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Sia g : R → R una funzione tale che:

(g1) g è misurabile,
(g2) esistono a1 > 0, p ∈ ]2, 2∗[ tali che

|g(t)| ≤ a1(1+ |t |p−1) per ogni t ∈R,

e si considerino le funzioni G : R→ R e G : H 1
0 (!)→ R date da

G(ξ ) :=
∫ ξ

0
−g(t) dt ∀ξ ∈R, G(u) :=

∫

!

G(u(x )) dx ∀u ∈ H 1
0 (!).

Per la nostra applicazione, supponiamo inoltre che

(g3) limt→0
g(t)
t = 0,

(g4) lim sup|t |→+∞
g(t)
t < 0,

(g5) esiste ξ0 ∈R tale che G(ξ0) < 0.

(g2) e (g4) assicurano l�’esistenza di due costanti positive β, γ tali che

g(t) ≥ −βt − γ ∀ t ≤ 0 , g(t) ≤ −βt + γ ∀ t ≥ 0 .

Per λ, µ > 0, se c1 è la costante dell�’immersione H 1
0 (!) ↪→ L1(!), poniamo

rλ,µ := λγ c1 +
√

(λγ c1)2 + 2µ .

Un insieme Kλ ⊆ H 1
0 (!) è detto di tipo (K

g
λ) se

(Kg
λ) Kλ è convesso e chiuso in H 1

0 (!). Inoltre, esiste µ > 0 tale che
Brλ,µ

⊆ Kλ .

Se X := H 1
0 (!), X2 := span{ϕ1, ϕ2, . . . , ϕs}, X1 := X⊥2 , f := ? + ψ , con

?(u) := 1
2

∫

!

(|∇u(x )|2 + a(x )u2(x )
)
dx + λG(u),

ψ :=
{
0 se u ∈ Kλ,
+∞ altrimenti,

dal Teorema 1.2 discende il seguente risultato.
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Theorem 2.1. ([6], Theorem 4.1) Assumiamo che siano vericate (g1)�–(g5).
Allora, per ogni λ abbastanza grande e Kλ di tipo (Kg

λ), il problema (Pλ) :

Trovare u ∈ Kλ tale che

−
∫

!

∇u(x ) · ∇(v − u)(x ) dx −
∫

!

a(x )u(x )(v − u)(x ) dx

≤ λG0(u; v − u) ∀v ∈ Kλ

ammette almeno due soluzioni non banali.

Osserviamo che se u è soluzione di (Pλ) allora si ha anche che per ogni
v ∈ Kλ

−
∫

!

∇u(x ) · ∇(v − u)(x ) dx −
∫

!

a(x )u(x )(v − u)(x ) dx

≤ λ

∫

!

G0(u(x ); (v − u)(x )) dx .

Quindi, se g è continua e Kλ := H 1
0 (!), u ∈ H 1

0 (!) risulta una soluzione debole
del problema di Dirichlet

−-u + a(x )u = λg(u) in ! , u = 0 su ∂!.

3. Sulla struttura dell�’insieme critico al livello c.

Se x0, x1 ∈ Dψ := {x ∈ X : ψ(x ) < +∞}, poniamo c :=
infγ∈* supx∈[x0 ,x1] f (γ (x )), dove, in questo caso, * è come in (1).

Theorem 3.1. Supponiamo che la funzione f soddis (H′f ) e (PS) f . Inoltre,
assumiamo che {x ∈ X : f (x ) ≥ c} sia chiuso e che
(a3) x0 sia un punto di minimo locale di f ,
(a4) f (x1) ≤ f (x0).

Se c > f (x0), allora Kc( f ) contiene un punto che non è di minimo locale.
Altrimenti, per ogni r > 0 sufcientemente piccolo, esiste un punto di minimo
locale xr ∈ ∂B(x0, r) con f (xr ) = f (x0).
In particolare, ciò avviene ogni volta che x0 e x1 sono entrambi punti di minimo
locale.
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Ricordiamo che un punto critico x ∈ X si dice di sella per f se per ogni
δ > 0 esistono x ′, x ′′ ∈ B(x , δ) tali che f (x ′) < f (x ) < f (x ′′).

Theorem 3.2. Supponiamo che dim(X ) = +∞ e che la funzione f soddis
(H′f ) e (PS) f . Se

(a5) {x ∈ X : f (x ) ≥ c} è chiuso,
(a6) max{ f (x0), f (x1)} < c,

allora Kc( f ) contiene un punto di sella.
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A DIRECT METHOD FOR THE CALCULATION OF THE
EQUILIBRIUM IN THE TRAFFIC NETWORK PROBLEM

PAOLO FALSAPERLA - FABIO RACITI

We propose an algorithm for the determination of the equilibrium in the
trafc network problem. Our algorithm belongs to the class of direct (i.e.
non iterative) methods for variational inequalities and extends the range of
applicability of previous methods of the same class to equilibrium problems
whose size is not necessarily small.

1. Introduction.

In the last decades many equilibrium problems arising from various elds
of applied science have been formulated and studied in the framework of
variational inequalities (v.i.) [7], [3], [2]. The v.i. formulation provides a
unifying tool for their theoretical analysis and numerical solution. Among the
numerical methods for (nite-dimensional) v.i., iterative methods are probably
the most popular.

On the contrary, direct methods have often been discarded because they
are, in general, difcult to apply to large problems and also, in our opinion,
because their implementation is more involved with respect to iterative methods.
However, when applicable, direct methods do not introduce iteration errors and
this can be very useful, e.g., when nite dimensional v.i. are used to approximate
innite dimensional v.i., to isolate the error due to discretization (see e.g.
[4]). Thus, starting from the consideration that direct methods deserve more
attention, we focus on a particular problem, the celebrated trafc equilibrium
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problem, and present a direct algorithm that can be applied to networks whose
size is not necessarily small.

Our algorithm is based on a general procedure proposed by O. Mancino
and G. Stampacchia long ago [5], which we adapt to the particular problem
under consideration, taking advantage of the particular structure of the convex
polytope described by the constraints. The application of direct methods to the
trafc equilibrium problem dates to A. Maugeri [6].

We shall assume that the problem has a solution and that the cost operator
is strictly monotone. Then, we shall associate to the initial v.i. a hierarchy of
simpler subproblems of decreasing dimension.

The maximum number of subproblems to be solved equals the total number
of polytope faces. We point out that, as can be easily computed, the number of
faces of the polytope associated to our problem increases exponentially with
its dimension. Therefore a selection rule is needed if one wants to deal with
problems with a large number of variables.

Following our algorithm, after solving each subproblem, either we nd the
solution, or we are able to reduce themaximum number of subproblems of lower
dimensionality to be solved. Moreover, the formulation of each subproblem
is achieved by using directly the equilibrium principle equivalent to the v.i.,
making the implementation of the algorithm straightforward.

We shall give the proofs of the theorems related to our algorithm and
perform extensive numerical computations in a subsequent paper.

2. The trafc equilibrium problem.

The trafc assignment problem has a relatively recent history. For a
variational inequality formulation of this problem we refer to the inuential
papers by Smith [9] and Dafermos [1]. For a comprehensive treatment of models
and methods we refer to [8].

Let us rst introduce the notation commonly used to state the standard
trafc equilibrium problem from the user point of view. A trafc network
consists of a triple (N, A,W ) where N = {N1, . . . , Np} is the set of nodes,
A = (A1, . . . , An ) represents the set of the directed arcs connecting couples
of nodes and W = {W1, . . . ,Wm} ⊂ N × N is the set of the origin-destination
(O-D) pairs. The ow on the arc Ai is denoted by fi , f = ( f1, . . . , fn). We call
a set of consecutive arcs a path, and assume that each O-D pairWj is connected
by rj ≥ 1 paths whose set is denoted by Pj ( j = 1, . . . ,m). All the paths in the
network are grouped in a vector (R1, . . . , Rk). We can describe the link structure
of the paths by using the arc - path incidence matrix - = {δir }i=1,...,n;r=1,...,k ,
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whose entries take the value 1 if Ai ∈ Rr , 0 if Ai /∈ Rr . To each path Rr there
corresponds a ow Fr . The path ows are grouped in a vector (F1, . . . , Fk)
which is called the path (network)ow. The ow fi on the arc Ai is equal to the
sum of the path ows which contain Ai , so that f = -F . Let us now introduce
the cost of going through Ai as a function ci ( f ) ≥ 0 of the ows on the network,
so that c( f ) = (c1( f ), . . . , cn( f )) denotes the arc cost vector on the network .
Analogously, one can dene a cost on the paths as C(F) = (C1(F), . . . ,Ck (F)).
In most applications the cost Cr (F) associated to path r is just the sum of the
costs on the arcs which build that path;

(1) Cr (F) =
n∑

i=1
δir ci ( f )

or in compact form, C(F) = -TC(-F). For each O-D pair Wj there is a
given trafc demand Dj ≥ 0, so that (D1, . . . , Dm) is the demand vector on the
network. Feasible ows are nonnegative ows which satisfy the demands, i.e.,
which belong to the set

K := {F ∈Rk | F ≥ 0, ?F = D } ,

where ? is the well known O-D pair-path incidence matrix whose elements φj,r
( j = 1, . . . ,m; r = 1, . . . , k) are set equal 1 if the path Rr connects the pair
Wj , 0 else.

A path ow H is called an equilibriumow (orWardropEquilibriumow),
if H ∈K and ∀Wj ∈W , ∀ Rq , Rs ∈ Pj , there holds:

(2) Cq (H ) < Cs (H ) @⇒ Hs = 0 .

This statement is equivalent to:

(3) H ∈K and [C(H )]T [F − H ] ≥ 0 ∀F ∈K .

Roughly speaking, the meaning of Wardrop Equilibrium is that the road
users choose minimum cost paths, and the meaning of the cost is usually that of
traversal time.
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3. The algorithm.

As stated in Section 2, we consider a network with m O-D couples Wj ,
each joined by rj paths. Moreover we assume that (3) has a solution and that
the cost function is strictly monotone.

In our algorithm we shall consider a family of subproblems, obtained by
assuming that the ows on some set of paths are equal to zero, and search for the
subproblem that yields to the desired solution. In view of the implementation
it is then necessary to introduce a new object, the collection of �“candidate
subproblems�”, which, given the nature of the algorithm, is not known a priori
but will be populated during the execution of the algorithm.

Let I = {1, . . . , k} and denote by Ij = {r : Rr ∈ Pj } the set of indexes of
the paths connecting Wj . Let Q ⊂ I be the set of indexes corresponding to a
generic set of ows which we shall set to zero, and q its cardinality. We require
that each couple Wj is still connected by at least one path, that is Ij \ Q /= {∅}.
We can then generate a system which contains only the quantities connected to
the paths Rr , r /∈ Q .

(4)






∑

r∈I1\Q
Fr = D1

Cr (F) = Cs (F) r, s ∈ I1 \ Q, s /= r
. . . . . . .∑

r∈Ij \Q
Fr = Dj

Cr (F) = Cs (F) r, s ∈ Ij \ Q, s /= r
. . . . . . .∑

r∈Im\Q
Fr = Dm

Cr (F) = Cs (F) r, s ∈ Im \ Q, s /= r

The rst equation in group j is the conservation law forWj ; the subsequent
equations express the condition that the costs on the paths of Wj , associated to
the ows not set to zero, are equal. Let us notice that the number of the possible
equations Cr = Cs in group j is pj (pj − 1)/2 (where pj is the cardinality of
the set Ij \ Q of the nonzero ows in the group j ), but only pj − 1 of them are
independent. For this reason, we understand that system (4) is made up of only
independent equations, hence it consists of k − q equations in k− q unknowns.

After solving system (4), we build a vector H ∈ Rk , where Hr = 0 for
r ∈ Q , and the remaining components are obtained from the solution of (4). H
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is the solution of (3) if the following feasibility and compatibility conditions are
met:

(5) Hs ≥ 0 and Cr (H ) ≥ Cs (H ), ∀r ∈ Ij ∩ Q, ∀s ∈ Ij \ Q, ∀ j.

We note that for pj = 1, in the system it will not appear any equality
between costs in group j , and if pj = rj no compatibility conditions are needed
for group j .

Since the solution of (3) exists, it will be found in correspondence to at
least one set Q . Thus a possible approach could be to explore the subproblems
corresponding to all the possible choices of Q , which however are Aj (2rj −
1). The exponential proliferation of subproblems can be connected, from
a geometrical point of view, with the fact that the polytope described by
the constraints has a number of faces which increases exponentially with its
dimension. In order to decrease the computational effort in the case of large
problems, a selection strategy is obviously needed.

Initial step. Consider the set Q0 = {∅}, and let S0 be the corresponding system
(4) and H 0 its solution. If H 0

r ≥ 0, ∀r , then H 0 is the solution of (3) and
the algorithm stops. Otherwise we shall start to collect and solve a family of
subproblems, identied by a corresponding family Q of subsets of I . Note
that Q will be updated in the subsequent steps, since after the solution of each
subproblem a certain number of sets will be added to it. Initially Q consists
of the sets Q1 = {t01 }, . . . , Ql = {t0l }, where t01 , . . . , t0l are the indexes t such
that H 0

t < 0. In this way we select only l among the possible (in general k)
subproblems where one ow is set to zero.

All the subsequent steps of the algorithm can be described by the following
general procedure.

General step. We choose a set Qi ∈ Q (among those not previously consid-
ered), solve the corresponding system Si , and build the vector Hi ∈ Rk where
Hr = 0 for r ∈ Qi , and the other components are given by the solution of Si .
If Hi satises (5), then it is the solution of (3), otherwise there are two possi-
bilities. If Hi is feasible but the compatibility conditions are not satised, then
the subproblem does not provide further information on the solution of (3), and
we iterate the general step. If Hi is not feasible, then Hi

r < 0 for some r and
we shall update Q according to the following rule. If t i1, . . . , t ili are the indexes
t such that Hi

t < 0, then we add to Q the sets Qi ∪ {t i1}, . . . , Qi ∪ {t ili }.
The algorithm described above yields the solution independently of the

criterion used to choose the subproblem to solve at each step. A possible
criterion is to solve always all the problems of a given dimension d , before
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solving those of immediately lower dimension d−1. Thus, after S0, we solve all
the subproblems of dimension k−1, generating in this way all the subproblems
of dimension k − 2, which in turn generate all the subproblems of dimension
k − 3, and proceed in this way until we get the solution. It is then evident that,
analogously to the initial step, where we selected only a fraction of the possible
k − 1-dimensional subproblems, we continue to operate a selection also for the
subproblems of lower dimension.

4. Conclusion and further remarks.
We have presented an algorithm for the solution of the trafc equilibrium

problem which belongs to the class of direct methods and which provides a
strategy for reducing the computational effort with respect to methods of the
same type. We point out that the family of subproblems that we have considered
can be explored in different ways and that the search for an optimal strategy is
an open problem.
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TRENDS AND TOPICS ON SOME PARTIAL
DIFFERENTIAL EQUATIONS AND SYSTEMS

MARIA ALESSANDRA RAGUSA

We present some results concerning partial differential equations and
systems, we point out our attention to operators having discontinuous coef-
cients of the higher order derivatives.

Let ! be an open bounded set in Rn, n ≥ 2 with ∂! sufciently smooth,
0 < λ < n, 1 < p <∞.

We say that a function f ∈ L1loc(!) belongs to the Morrey Space L p,λ(!)
if it is nite

‖ f ‖pL p,λ(!) ≡ sup
x∈!, ρ>0

1
ρλ

∫

Bρ (x)∩!
| f (y)|p dy

where Bρ(x ) is a ball of radius ρ centered at the point x .
We also say that a function f belongs to the John-Nirenberg space BMO ,

(see [13]), or that f has �“bounded mean oscillation�”, if

‖ f ‖∗ ≡ sup
B⊂Rn

1
|B|

∫

B
| f (x )− fB | dx <∞

where fB is the integral average 1
|B|

∫
B f (x ) dx of the function f (x ) over the

set B and B belongs to the class of balls of Rn .

AMS Subject Classications: 35K70, 35J10, 35K20, 32A37, 35B65.
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Let, for a function f ∈ BMO

η(r) = sup
x∈Rn , ρ≤r

1
|Bρ|

∫

Bρ

| f (x )− fBρ
| dx .

A function f ∈ BMO belongs to the class V MO , (see [17]) or f has
�“vanishing mean oscillation�” if

lim
r→0+

η(r) = 0.

We recall the following classical Sobolev spaces

Wk,p(!) =
{
f (x ) : Dα f ∈ L p(!), |α| ≤ k

}

where k is an integer, equipped with the norm

‖ f ‖Wk, p(!) = ‖ f ‖L p(!) + ‖Dk f ‖L p(!).

The closure of the space C∞0 (!) with respect to the norm in Wk,p(!) will
be denoted, as usual, by Wk,p

0 (!).
We set Wk,p,λ(!) the Banach space of functions belonging to Wk,p(!)

and having k-th order derivatives lying in the Morrey space L p,λ(!). A natural
norm in this space is

‖ f ‖Wk, p,λ(!) = ‖ f ‖L p(!) + ‖Dk f ‖L p,λ(!).

At rst let us consider the Dirichlet problem associated to an uniformly
elliptic operatorL of second order in nondivergence form having coefcients of
higher order derivatives bounded and belong to the vanishing mean oscillation
class and the known term f in L p,λ(!). Specically let us study regularity
results in Morrey spaces of solutions to the above problem.

If the coefcients ai j are Hölder continuous regularizing properties of L
in Hölder spaces and unique classical solvability of the Dirichlet problem for
Lu = f have been studied in the book by Gilbarg and Trudinger [11].

If the coefcients ai j are uniformly continuous Agmon, Douglis and
Nirenberg in the note [1] (see also the book by Gilbarg and Trudinger) prove
that if Lu ∈ L p(!) then the strong solution u of Lu = f belongs to W 2,p(!),
∀ p ∈ ]1, +∞[.

The case of coefcients ai j not uniformly continuous is less studied be-
cause the L p -theory ofL and the strong solvability of the Dirichlet problem for
Lu = f do not hold any more.
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If n = 2 and p = 2 Talenti in [18] suppose ai j measurable and bounded
functions and prove the isomorphism of the map L from W 2,2(!) ∩ W 1,2

0 (!)
into L2(!).

Let n ≥ 3, if ai j ∈ W 1,n(!) (see [14] by Miranda) or ai j satisfy other
assumptions, as the �“Cordes condition�” (see the note by Campanato [5]), the
local W 2,p regularity has been proved for p ∈ (2 − ε, 2 + ε) for an opportune
ε > 0.

An important result in local and global Sobolev regularity of strong solu-
tions to Lu = f is the study made by Chiarenza, Frasca and Longo, in [6]
and [7], of the Dirichlet problem for Lu = f in W 2,p(!) ∩ W 1,p

0 (!), where
ai j ∈ VMO∩L∞(!). In these notes the authors supposeLu ∈ L p(!) and prove
that for all p ∈ (1,∞) the function u belongs to W 2,p(!). It is also studied the
well posedness of the related Dirichlet problem.

Regularity properties of the operator L in Morrey spaces if ai j ∈ V MO
are studied in [3]. The author prove that, if

f ∈ Ln,nαloc (!), α ∈ (0, 1),

a W 2,p−viscosity solution of
Lu = f

belongs to C1+α
loc (!). Using the same technique, the hypothesis for the function

f could not be weakened for f ∈ L p,λ
loc (!), p < n, λ > 0.

Interior estimates in Morrey spaces for the second derivatives of the W 2,p

solutions to
Lu = f,

where ai j ∈ VMO ∩ L∞ are proved in the paper [10]. The authors showed that
if the known term f ∈ L p,λ

loc (!), the second derivatives of a strong solution u
of the above nondivergence form equation belong to the same space. Then it is
later extended the regularity property from local to global in the paper [9]. In
this note the authors suppose! be an open bounded set in Rn with C1,1 smooth
boundary and the coefcients ai j of L such that

ai j (x )∈ L∞(!) ∩ V MO, ai j (x ) = aji (x ),

∃ κ > 0 : κ−1|ξ |2 ≤ ai j (x )ξiξj ≤ κ|ξ |2, ∀ξ ∈Rn, q. o. x ∈!.

The boundary regularity in Morrey spaces for second order derivatives of
solutions to the Dirichlet problem for the operator L is proved. Combining
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these results with the W 2,p−strong solvability of the Dirichlet problem proved
in [7], it is proved in [9] the well-posedness of

{
Lu = f (x ) a.e. in !,

u ∈W 2,p,λ(!) ∩ W 1,p
0 (!).

Moreover, there exists a constant c independent on u and f such that

‖Dij u‖L p,λ(!) ≤ c‖ f ‖L p,λ(!).

We observe that the result obtained for the homogeneous Dirichlet problem
can be applied in the nonhomogeneous case. More precisely, if f ∈ L p,λ(!),
ϕ ∈W 2,p,λ(!) and

{
Lu = f (x ) a.e. in !
u = ϕ on ∂!, u − ϕ ∈W 1,p

0 (!)

the authors have Lϕ ∈ L p,λ(!), then u(x ) − ϕ(x ) satisfy the homogeneous
Dirichlet problem and the strong solutions of the nonhomegeneous problemwill
belong to W 2,p,λ(!).

As a consequence in [9] is proved that, if n − p < λ < n, u ∈ W 2,p(!)
is a strong solution to the nonhomogeneous problem with f ∈ L p,λ(!) and
ϕ ∈ W 2,p,λ(!), the gradient Du is a Hölder continuous function on ! with
exponent α = 1− (n − λ)/p.

Moreover, known properties of Morrey spaces (see the note by Campanato
[4]) for suitable values of p ∈ (1,∞) and λ ∈ (0, n) allow to obtain global
Hölder regularity for the gradient Du of the strong solution of the nonhomoge-
neous problem.

This kind of Morrey estimates has been studied also for elliptic equations
in divergence form.

In the paper [15] is considered

Lu ≡
n∑

i, j=1
Di (ai j (x )Dju) = div f

f = ( f1, . . . , fn); fi ∈ L p,λ(!), i = 1, . . . , n, 1 < p <∞, 0 < λ < n.
In this case, with respect to the nondivergence one, the representation

formula used is that one in [8], we point out that it is not written for the second
derivatives of the solution, Dij u, but for the rst derivatives Diu.

We obtain that if fi ∈ L p,λ(!) ∀ i , it follows that ∇u ∈ L p,λ(!) and, as a
consequence, u ∈C0,α(!), α = 1− n−λ

p , 0 < λ < n, p > n − λ.
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In the sequel we are interested in the study of elliptic systems in nondiver-
gence form. In the note [16] local L p regularity for highest order derivatives of
an elliptic system of arbitrary order in nondivergence form has been proved. We
point out that in [16] cannot be applied the deep technique used by Caffarelli in
[3] because of it relies on the Aleksandrov-Pucci maximum principle.

Let n ≥ 3, α a multi-index and set

|α| = α1 + . . . + αn, Dα = ∂ |α|

∂xα1
1 . . . ∂xαn

n
.

Let us consider the system

Lu ≡
N∑

j=1

∑

|α|=2s
a(α)i j (x )D

αuj (x )+(1.1)

+
N∑

j=1

∑

|α|≤2s−1
b(α)i j (x )D

αuj (x ) = fi (x ), i = 1, . . . , N

where fi ∈ L p,λ(!), i = 1, . . . , N , 1 < p <∞, 0 ≤ λ < n.
We dene a local solution of the above equation a vector function u =

(u1, . . . , uN ) with ui ∈ W 2s,p
loc (!), ∀ i = 1, . . . , N , s ∈ N satisfying the above

equation almost everywhere in !.
Throughout the paper we consider

1) a(α)i j ∈ V MO(Rn) ∩ L∞(Rn), i, j = 1, . . . , N , |α| = 2s .
Let us set

S = max
i, j=1,...,N

|α|=2s

sup
!

| a(α)i j |.

Let us dene
∑

|α|=2s a
(α)
i j φα , ∀ i, j = 1, . . . , N , for almost every x ∈ !, the

homogeneous polynomial of degree 2s in φ obtained substituting Dα with
φα = φ

α1
1 . . . φαn

n .
2) (ellipticity condition)

∃9 > 0 : det
( ∑

|α|=2s
a(α)i j (x )φ

α
)
≥ 9|φ|2sN , ∀φ ∈Rn, for a. e. x ∈!.

The hypothesis on the lower order terms is to belong to a suitable Lebesgue
space.

Let us now dene the Calderón-Zygmund kernel, useful in the sequel.
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Denition 1.1. A function k : Rn \ {0} → R is a Calderón-Zygmund kernel
(C-Z kernel) if satises the following assumptions

CZ 1) k ∈C∞(Rn \ {0});
CZ 2) k(x ) is homogeneous of degree −n;
CZ 3)

∫

C

k(x ) dx = 0, where C is the surface of the unit sphere in Rn

C = { x ∈Rn : |x | = 1 }.

The following two Lemmas are contained in [10].

Lemma 1.2. Let us consider ! be an open subset of Rn , f ∈ L p,λ(!),
1 < p < ∞, 0 ≤ λ < n, a ∈ V MO ∩ L∞(Rn). Let us also set k(x , z) is
a Calderón�–Zygmund kernel in the z variable for almost all x ∈! such that

max
| j |≤2n

∥∥∥∥
∂ j

∂z j
k(x , z)

∥∥∥∥
L∞(!×C)

= M < +∞,

where C is dened as above.
For any ε > 0, we set

Kε f (x ) =
∫

|x−y|>ε
y∈!

k(x , x − y) f (y) dy,

Cε (a, f )(x ) =
∫

|x−y|>ε
y∈!

k(x , x − y)(a(x )− a(y)) f (y) dy.

Then there exist K f , C(a, f )∈ L p,λ(!) such that

lim
ε→0

‖Kε f − K f ‖L p,λ(!) = 0

and
lim
ε→0

‖Cε (a, f )− C(a, f )‖L p,λ(!) = 0

Also there exists a positive constant c independent on f and such that

‖K f ‖L p,λ(!) ≤ c‖ f ‖L p,λ(!),

and
‖C(a, f )‖L p,λ(!) ≤ c‖a‖∗‖ f ‖L p,λ(!).
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Lemma 1.3. If a function a belongs to V MO(Rn) then, for every ε > 0, there
exists ρ0 > 0 such that, if Br is a ball with radius r such that 0 < r < ρ0 ,
k(x , z) veries the hypothesis of the previous theorem in Br and f ∈ L p,λ(Br )
for every 1 < p <∞ and 0 ≤ λ < n, we have

‖C(a, f )‖L p,λ(Br ) ≤ c ε‖ f ‖L p,λ(Br )

for some constant c independent on f .

Theorem 1.4. Let s ∈ N, 2 < p < n, 0 ≤ λ < n, 0 ≤ ω < n. Assume that a(α)i j
verify 1) and 2), u ∈W 2s,p(Bσ ) is a solution of (1.1) in a ball Bσ ⊂⊂ ! and
fi ∈ L p,λ(Bσ ), ∀ i = 1, . . . , N.

In addition let us set

(1.2) b(α)i j D
αuj ∈ L p,ω(Bσ ), |α| ≤ 2s − 1, j = 1, . . . , N.

Then there exists σ ∈ ]0, σ [, such that for every Bρ concentric to Bσ ,
ρ ≤ σ , we have that

(1.3) Dαuj ∈ L p,δ(B ρ
2
), |α| = 2s, ∀ j = 1, . . . , N, δ = min(ω, λ).

Moreover there exists a constant k independent of uj , b(α)i j , fi such that

(1.4)
N∑

j=1

∑

|α|=2s
‖Dαuj‖L p,δ(B ρ

2
) ≤

≤ k




N∑

j=1

∑

|α|≤2s−1
‖b(α)i j D

αuj‖L p,ω(Bρ ) + ‖ fi‖L p,λ(Bρ )



 , ∀ i = 1, . . . , N.

Proof. We will consider a xed ball Bρ concentric to Bσ , where ρ ≤ σ , and a
cut-off function θ ∈C∞0 (Bρ ) such that θ · u ∈W 2s,p

0 (Bρ ).
Let v = θ · u ∈ W 2s,p

0 (Bρ), it is possible to write v(x ) in terms of the
John fundamental solution (see [12]). Integrating by parts and adapting an idea
of Bureau (see [2]) the derivatives Dαuj (x ), |α| = 2s , j = 1, . . . , N , can be
written almost everywhere in Bρ as a combination of the terms

N∑

j=1




∑

|α|=2s
a(α)i j (x )D

αuj (x )



 ,
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(1.5) P.V.
∫

B
Dγ+α*(x , x − y)

N∑

j=1




∑

|α|=2s
a(α)i j (y)D

αuj (y)



 dy,

P.V.
∫

B
Dγ+α*(x , x − y)

N∑

k, j=1

∑

|α|=2s

(
a(α)kj (x )− a(α)kj (y)

)
Dαuj (y) dy.

where |γ | = 2s(N − 1). Following the arguments used in [7] based on the
uniqueness of the xed point of a contraction it is possible to prove the existence
of σ̃ ∈ ]0, σ [ such that for every Bρ concentric to Bσ , with ρ ≤ σ̃ , we
obtain Dαuj ∈ L p,δ(B ρ

2
), |α| = 2s , ∀ j = 1, . . . , N and using the integral

representation formula, Lemma 1.2 and Lemma 1.3 we immediately have

N∑

j=1

∑

|α|=2s
‖Dαuj‖L p,δ(B ρ

2
) ≤

≤ k‖ fi − (
N∑

j=1

∑

|α|≤2s−1
b(α)i j D

αuj )‖L p,δ(Bρ ) ≤ ∀ i = 1, . . . , N

≤ k



‖ fi‖L p,λ(Bρ ) + ‖
N∑

j=1

∑

|α|≤2s−1
bαi j D

αuj‖L p,δ(Bρ )



 ≤ ∀ i = 1, . . . , N

≤ k



‖ fi‖L p,λ(Bρ ) +
N∑

j=1

∑

|α|≤2s−1
‖bαi j Dαuj‖L p,ω(Bρ )



 ∀ i = 1, . . . , N.

"
In this direction we wish to continue the study of regularity results for

highest order derivatives of u and of the Hölder regularity of D2s−1u, dependent
on the order s of the derivatives. We wish to remove the additional assumption
(1.2) and consider the coefcients of the lower order terms in suitable Morrey
spaces.
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SOME DECAY RESULTS FOR SOLUTIONS
OF PARABOLIC PROBLEMS

STELLA VERNIER PIRO

Si studia un problema parabolico semilineare con condizioni alla fron-
tiera di Robin e, sotto opportune condizioni sui dati e sulla geometria del
dominio, si ottiene una stima decrescente nel tempo per la soluzione. Sono
inoltre indicate possibili estensioni dei risultati ottenuti.

1. Introduction.

Let u(x , t) a classical solution of the following problem

(1.1)






-u + f (u, |∇u|2) = ut , (x, t)∈!× (0, T ),
αu + β

∂u
∂n

= 0, (x, t)∈ ∂!× (0, T ),
u(x, 0) = g(x), x∈!,

where ! is a bounded domain in RN with C2+ε boundary ∂!, T any time prior
to eventual blow-up time, f , g are assumed to be differentiable and nonnegative
functions, α and β nonnegative constants and

(1.2) αg(x)+ β
∂g(x)
∂n

= 0, x∈ ∂!.

AMS Subject Classication. 35K55, 35B50, 35B05.
Key words. Nonlinear parabolic problems, Maximum principles, Decay estimates.
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Here
∂

∂n
indicates the normal derivative directed outward from ∂!.

As a consequence of assumptions u will be non negative.
If f = 0, α = 0 and β = 1 (Neumann condition) and ! a strictly convex
domain in RN , in [4] Payne and Philippin prove for the solution u and its
gradient the following estimate

(1.3) |∇u|2 + δu2 ≤ *2e−2δt , in!× (t > 0),

with

(1.4) *2 = max
!

{|∇g|2 + δg2},

∫
! g = 0 and in (1.3), (1.4) 0 ≤ δ <

( π2

4D2
)
, D the diameter of !.

If f /= 0, f = f (u), α = 1 and β = 0 (Dirichlet condition) and ! a
convex domain in RN , in the same paper Payne and Philippin, by assuming
s f ′(s) ≤ f (s) ≤ 0, s > 0 and under restriction on initial data in order to
prevent a possible blow up and to have T = ∞, prove that

(1.5) |∇u|2 + δu2 + 2F(u) ≤ G2e−2δt , in!× (t > 0),

with F(u) = ∫ u
0 f (s) ds , G2 = max!{|∇g|2 + δg2 + 2F(g)}.

Moreover in (1.5) 0 ≤ δ <
( π2

4d2
)
, d the inradius of !.

If f = f (x , u, |∇u|2), α = 1, β = 0 in a joint paper with Payne and Philippin
([5]), we remove the convexity condition on ! and prove that

(1.6) |∇u|2 + λ1u2 ≤ *̃2e−2δt , in!× (t > 0),

with λ1 the rst eigenvalue of the xed membrane problem and δ and *̃ in (1.6)
suitable constants.
If f = 0 , β = 1 (Robin condition) and ! a convex domain in R2, Payne and
Schaefer in [6] extend to this case the estimate in (1.3), i.e.

(1.7) |∇u|2 + δu2 ≤ *2e−2δt , in !× (t > 0),

with * dened similar to (1.4) and where the positive constant δ in (1.7) is
restricted by the conditions

(1.8)
√
δ tg(

√
δd < α,

√
δ d <

π

2
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and

(1.9) -g + (α2 + 2δ) g ≥ 0,

provided g has bounded second derivatives. In (1.8) d is the inradius of !.
If f /= 0, in [6] similar results are obtained only in one dimension.

Aim of this paper is to obtain decay results for the solution of (1.1) and its
gradient, with f = f (u, |∇u|2), with β = 1, ! a convex domain in R2, T any
time before the eventual blow up time (Sec.2). Moreover some open problems
as the possibility to avoid the blow up, to nd explicit exponential decay bounds
for the gradient of the solution, extensions in RN are presented in Sec.3.

2. Decay results for u(x, t) and its gradient in problem (1.1 ) with Robin
boundary condition.

As annunced in the introduction, in this section we consider (1.1) with β =
1 (Robin condition) and ! a bounded convex domain in R2 with ∂!∈C2+ε .
Since it is well known that the solution u may blow up ([1],[ 4]) in nite time
T ∗ , we consider u(x, t) for x ∈! and t ∈ (0, T ), with T < T ∗ .
Concerning the function f , we suppose that there exists a function :(u, |∇u|2)
which is nondecreasing w.r.t. u and |∇u|2 such that

(2.1) max
{ f
u

, f ′ −2γ u ḟ
}
≤ :(u, |∇u|2), f ′ = ∂ f

∂u
, ḟ = ∂ f

∂(|∇u|2) ,

where γ is a positive constant to be specied later on. For examples see [5]. We
prove that u decays in time in !× (0, T ) in the following
Theorem 1. Let u(x , t) be a classical solution of problem (1.1) and let

:M := :(uM , |∇u|2M),

with :(x, t) in (2.1) and

uM := max
!×(0,T )

{u(x, t)} and |∇u|M := max
!×(0,T )

|∇u(x, t)|.

Then

(2.2) 0 ≤ u(x, t) ≤ *δ e−(δ−:M )t , (x, t)∈!× (0, T ),

with *δ = *√
δ
:= max

!

[
g2 + |∇g|2

δ

]1/2
, and δ, α and g satisfying (1.8), (1.9).
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Proof. By using (1.1) and (2.1) we have

0 = -u − ut +
{ f (u, |∇u|2)

u

}
u ≤ -u − ut + :M u.

We deduce that u(x, t) satises the following initial boundary value problem

(2.3)






-u − ut + :Mu ≥ 0, (x, t)∈!× (0, T ),
∂u
∂n

= −α u, (x, t)∈ ∂!× (0, T ),
u(x, 0) = g(x), x∈!,

In order to obtain a decay estimate for u(x, t), we introduce the auxiliary
function φ(x, t) = u(x, t) e−:Mt , which satises

(2.4)






-φ − φt ≥ 0, (x, t)∈!× (0, T ),
∂φ

∂n
= −α φ, (x, t)∈ ∂!× (0, T ),

φ(x, 0) = g(x), x∈!.

Now if φ̃ is a solution of the following problem

(2.5)






-φ̃ − φ̃t = 0, (x, t)∈!× (0, T ),
∂φ̃

∂n
= −α φ̃, (x, t)∈ ∂!× (0, T ),

φ̃(x, 0) = g(x), x∈!,

we know that, from a classical comparison theorem ([7]),

(2.6) φ(x, t) ≤ φ̃(x, t), (x, t)∈!× (0, T ).
From Theorem 1 in [6] the solution of (2.5) satises

(2.7) φ̃(x, t) ≤ *δ e−δt ,

since we have assumed (1.8),(1.9).
The conclusion (2.2) of the theorem follows from (2.6), (2.7) and the denition
of φ . We note that if in (2.2) δ ≥ :M , the bound for u is decay in time. In this
case we deduce u ≤ *δ in !× (0, T ).

Now to investigate the behaviour of |∇u|2 we introduce in !× (0, T ), the
auxiliary function

(2.8) ?(x, t) =
{
|∇u|2 + γ u2

}
e2δt ,

with γ and δ two positive constant to be determined in order to have a parabolic
inequality for ?. We prove the following
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Theorem 2. Assume Theorem 1 holds. If

(2.9) γ − δ ≥ :M ,

then

(2.10) -? + |∇u|−2wk?k −?t ≥ 0 ,

where wk is the k-th component of a vector eld, regular in !× (0, T ).
Proof. We obtain, after some computation and by using Schwarz inequality

-?−?t ≥
[
2|∇u|2

{
2 ḟ γ u − f ′ + (γ − δ)

}
+

2γ u2
{
(γ − δ)− f/u

}]
e2δt − |∇u|−2wk?k .

Since we have assumed (2.9), the coefcients of |∇u|2 and u2 are non negative
and (2.10) is proved.
As a consequence of the maximum principle ([2],[3]), ? can assume its max-
imum value either (i) at a point (x̂, t̂) with x̂ ∈ ∂!, or (ii) at a critical point
(x, t), such that ∇u(x, t) = 0, or (iii) at a point (x̃, 0), x̃ ∈!. Since we have
assumed (1.8), following [6], the second possibility cannot hold.
We derive

{
|∇u|2 + γ u2

}
≤ Ke−2δt, (x, t)∈!× (0, T ),

where K = max{K0, K1}, with

K0 = max
!

{
|∇g|2 + γ g2

}
and K1 = max

∂!×(0,T)
?(x, t).

3. Open problems.

The goal of this section is to indicate further results that can be obtained
for u and its gradient under Sec.2 assumptions.
One can try to obtain an explicit estimate for |∇u|2 as in [4], [5] and [6]. To
this end usually we introduce an auxiliary function , where both the solution and
its gradient are involved. In the case f = f (u, |∇u|2) a candidate can be the
function dened in (2.8); in the case in which f = f (u) a candidate can be

?(x, t) =
{
|∇u|2 + γ u2 + 2F(u)

}
e2σ t ,
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F(u) = ∫ u
0 f (s) ds, γ and σ suitable constants. Then sufcient conditionsmust

be introduced in order to avoid the possibility that the maximum is reached at a
boundary point or at a singular point, so that ? assumes its maximum value at
a point (x, 0), x ∈! and an explicit exponential decay estimate is obtained in
terms of initial data g(x). A second result can be to extend the estimate obtained
in the interval (0,T) to the whole interval, i.e. T = ∞. Sufcient conditions
must be introduced in order to avoid blow up: to this end initial data must be
restricted in some way. A further result can be the extension to RN of the results
obtained in R2, as suggested by Payne.
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STRONG A∞ WEIGHTS AND QUASILINEAR
ELLIPTIC EQUATIONS

GIUSEPPE DI FAZIO - PIETRO ZAMBONI

1. Introduction.

In this paper we investigate the regularity of the weak solutions for degen-
erate elliptic equations of the following kind

(1.1) div A(x , u(x ),∇u(x ))+ B(x , u(x ),∇u(x )) = 0 ,

under the following structure conditions

(1.2)






|A(x , u, ξ )| ≤ aω(x )|ξ |p−1 + b|u|p−1 + e
|B(x , u, ξ )| ≤ c|ξ |p−1 + d|u|p−1 + f
ξ ·A(x , u, ξ ) ≥ ω(x )|ξ |p − d|u|p − g

where ν is a strong A∞ weight, ω = ν1−
p
n and 1 < p < n. Equations like

(1.1) have been studied by many Authors - when ω(x ) ≡ 1 (see e.g. [1] and the
references therein) or when ω is an A2 Muckenhoupt weight ([5] and [7]).

The novelty here is the degeneracy condition given by choice of the weight
ω to be a power of a strong A∞ weight. Moreover, we assume very mild
integrability conditions on the lower order terms and known term in equation
(1.1). These conditions are sharp and - at least in some instances - are necessary
and sufcient (see e.g. [3] or [6]).
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The main result is a Harnack inequality for nonnegative weak solutions of
equation (1.1) (see Theorem 4.2) and, as a direct consequence, smoothness for
weak solutions. In particular, we have a continuity result under Stummel - Kato
type assumptions and Hölder continuity result under Morrey type assumptions
(see Theorems 4.4 and 4.5). This note is a condensed version of our paper [4].

2. Strong A∞ weights.

Let ν be an A∞ weight in Rn . This means that, for any ε > 0 there exists
δ > 0, such that if Q is a cube in Rn and E is a measurable subset of Q for
which |E | ≤ δ|Q| holds, then ν(E) ≤ ε ν(Q). If ν ∈ A∞ we can dene a
quasi distance in the following way: for x , y ∈ Rn let Bx,y the euclidean ball
containing both points having diameter |x − y |. We set

δ(x , y)=
(∫

Bx,y
ν(t) dt

)1/n
.

The function δ is a quasi distance. We can dene the length of a curve as the
limsup of the δ-length of the approximating polygonals.

On the other side, we can actually dene a distance related to the weight
ν . We take, as the distance between two points x and y , the inmum of the
δ-length of the curves connecting x and y . Namely we set,

dν(x , y) = inf {δ-length of the curves connecting x and y} .

In general, the function δ is not comparable to a distance.

Denition 2.1. If ν is an A∞ weight there exists a positive constant c such that
δ(x , y) ≤ c dν(x , y), for any x , y ∈Rn (see [2]). If, in addition,

(2.1) δ(x , y)∼ dν(x , y) , ∀x , y ∈Rn ,

then we say that ν is a strong A∞ weight.

The measure ν dx is Ahlfors regular and, as a consequence, doubling.

Remark 2.2. Any strong A∞ weight is a A∞ weight. For any 1 < p < ∞
there exists an Ap weight which is not a strong A∞ weight.
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3. Function spaces.
Using strong A∞ weights we dene Lebesgue and Sobolev classes.

Denition 3.1. Let ν be a strong A∞ weight and ω = ν1−p/n , ! ⊂ Rn . For
any u ∈C∞0 (!) we set,

(3.2) ‖u‖p,ν =
(∫

!

|u(x )|p ω(x ) dx
)1/p

, 1 ≤ p < ∞ .

We dene L p
ν (!) to be the completion of C∞0 (!) with respect to the above

norm. In a similar way we dene Sobolev classes. For any u ∈C∞(!) we set,

(3.3) ‖u‖1,p,ν =
(∫

!

|u(x )|p ω(x ) dx
)1/p

+
(∫

!

|∇u(x )|p ω(x ) dx
)1/p

,

1 ≤ p < n .

We dene H 1,p
0,ν (!) to be the completion of C∞0 (!) with respect to the above

norm and H 1,p
ν (!) to be the completion of C∞(!) with respect to the same

norm.
In the above denitions we put ν in the symbol of the norm and ω into the

integrals. This is because we want to stress the dependence on the strong A∞
weight ν .

Now we dene more function spaces which we need later.
Denition 3.2. Let f be a locally integrable function in ! ⊂ Rn and let ν be a
strong A∞ weight. We set,

(3.4) φ( f ; R) = sup
x∈!

(∫

B(x,R )

1
ν(B(x , dν(x , y)))1−

1
n

(∫

B(x,R )

| f (z)|
ν(B(z, dν (z, y)))1−

1
n
ν(z)1−

p
n dz

) 1
p−1

ν(y) dy




p−1

We shall say that f belongs to the class S̃ν(!) if φ( f ; R) is just a bounded
function in a neighborhood of the origin. If, moreover, limR→0 φ( f ; R) = 0
then we say that f belongs to the Stummel-Kato class Sν(!). If there exists
ρ > 0 such that

(3.5)
∫ ρ

0

φ( f ; t)1/p
t

dt < +∞ ,

then we say that the function f belongs to the class S ′ν(!).
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Denition 3.3. (Morrey spaces) Let p ∈ [1, +∞[ and ν be a strong A∞ weight.
We say that f belongs to L p,λ

ν (!), for some λ > 0, if

‖ f ‖L p,λ
ν (!) = sup

x∈!
0<r<d0

(
rλ

|B(x , r) ∩!|

∫

B(x,r)∩!
| f (y)|pν(y)1− p

n dy
) 1

p

< +∞,

where d0 = diam(!).

It is easy to compare the function classes previously dened.

Proposition 3.4. Let 1 < p < n, 0 < ε < p. We have

φ (V ; r) ≤ C‖V ‖L1, p−ε
ν

r
ε

p−1

for any 0 < r < d0 and then L1,p−ε
ν (!) ⊆ S ′ν(!) .

4. Regularity.

Denition 4.1. A function u ∈ H 1,p
ν (!) is a local weak solution of (1.1) in ! if

(4.6)
∫

!

A(x , u(x ),∇u(x ))∇ϕ(x ) dx +
∫

!

B(x , u(x ),∇u(x )) ϕ(x ) dx = 0 ,

for every ϕ ∈ H 1,p
0,ν (!).

Theorem 4.2. (Harnack inequality). Let ν be a strong A∞ weight and 1 <
p < n. Let ! be a bounded domain in Rn , u be a non negative weak solution
of (1.1). Let us assume that the structure conditions (1.2) hold true with

(4.7) a ∈R ,

(
b
ω

)p/p−1
,
( c
ω

)p
,
d
ω

,
( e
ω

)p/p−1
,
f
ω

,
g
ω

, ∈ S ′ν(!) ,

where ω(x ) = ν1−
p
n (x ). Then, there exists a positive constant c, independent of

u, such that, for any Br = B(x0, r) for which B(x0, 4r) ⊂ !, we have

max
Br

u ≤ c
{
min
Br

u + h(r)
}

where h(r) =
[
φ

(( e
ω

) p
p−1 ; 2r

)
+ φ

( g
ω

; 2r
)] 1

p

+
[
φ

(
f
ω

; 2r
)] 1

p−1
.
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Remark 4.3. The proof of Theorem 4.2 works also with weak subsolutions of
(1.1) and the proof of Theorem 4.2 provides a weak Harnack inequality for non
negative weak supersolutions.

It is an easy task now to show smoothness for weak solutions. We have

Theorem 4.4. (Continuity of weak solutions).Let ν be a strong A∞ weight and
1 < p < n. Let ! be a bounded domain in Rn, u be a weak solution of (1.1).
Let us assume that the structure conditions (1.2) hold true with

(4.8) a ∈R ,

(
b
ω

)p/p−1
,
( c
ω

)p
,
d
ω

,
( e
ω

)p/p−1
,
f
ω

,
g
ω

, ∈ S ′ν(!) ,

where ω(x ) = ν1−
p
n (x ). Then, u is continuous in !.

If we want to obtain better regularity we have to restrict our assumptions
on the lower order terms. Indeed, even in the linear uniformly elliptic case with
non negative known term, Stummel �– Kato classes are necessary and sufcient
for the weak solutions to be continuous ([3]).

Theorem 4.5. (Hölder Continuity of weak solutions). Let ν be a strong A∞
weight and 1 < p < n. Let ! be a bounded domain in Rn , u be a weak
solution of (1.1). Let us assume that the structure conditions (1.2) hold true
with

(4.9) a ∈R ,

(
b
ω

)p/p−1
,
( c
ω

)p
,
d
ω

,
( e
ω

)p/p−1
,

f
ω

,
g
ω

, ∈ L1,p−ε
ν (!) , ε > 0 ,

where ω(x ) = ν1−
p
n (x ). Then, u is locally Hölder continuous in !.
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