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REGULARITY AND GROBNER BASES OF THE REES
ALGEBRA OF EDGE IDEALS OF BIPARTITE GRAPHS

YAIRON CID-RUIZ

Let G be a bipartite graph and I = I(G) be its edge ideal. The aim
of this note is to investigate different aspects of the Rees algebra R ()
of I. We compute its regularity and the universal Grobner basis of its
defining equations; interestingly, both of them are described in terms of
the combinatorics of G.

We apply these ideas to study the regularity of the powers of I. For
any s > match(G) + |E(G)| + 1 we prove that reg(I**!) = reg(I*) +2.

1. Introduction

Let G= (V(G),E(G)) be a bipartite graph on the vertex set V(G) = X UY with
bipartition X = {xj,...,x,} and ¥ = {y1,...,ym}. Let K be a field and let R
be the polynomial ring R = K[xy,...,X,,y1,...,Vm]. The edge ideal I = I(G),
associated to G, is the ideal of R generated by the set of monomials x;y; such
that x; is adjacent to y;.
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One can find a vast literature on the Rees algebra of edge ideals of bipartite
graphs (see [28], [22], [11], [26], [25], [27], [10]), nevertheless, in this note
we study several properties that might have been overlooked. From a computa-
tional point of view we first focus on the universal Grobner basis of its defining
equations, and from a more algebraic standpoint we focus on its total and partial
regularities as a bigraded algebra. Applying these ideas, we give an estimation
of when reg(I*) starts to be a linear function and we find upper bounds for the
regularity of the powers of I.

Let R(I) = @ I't" C R[t] be the Rees algebra of the edge ideal I. Let
fi,..., fy be the square free monomials of degree two generating /. We can see
R(I) as a quotient of the polynomial ring S = R[T},...,T,| via the map

S=KXt,.. s X915 Ym, 1y, Ty Yy R(I) C R[],
v(x) =xi, vwi)=yi, w()=fi
Then the presentation of R(I) is given by S/ where K = Ker(y). We give a bi-
graded structure to S = K[x1, ..., Xy, ¥1,- .., ym| @k K[T1, . .., T}, where bideg(x;)
= bideg(y;) = (1,0) and bideg(7;) = (0, 1). The map y from Eq. 1 becomes bi-
homogeneous when we declare bideg(r) = (—2,1), then we have that S/ and
K have natural bigraded structures as S-modules.

The universal Grobner basis of the ideal K is defined as the union of all the
reduced Grobner bases G of the ideal K as < runs over all possible monomial
orders (see [23]). In our first main result we compute the universal Grobner
basis of the defining equations K of the Rees algebra R([).

ey

Theorem 1.1 (Theorem 2.5). Let G be a bipartite graph and K be the defining
equations of the Rees algebra R(I(G)). The universal Grobner basis U of K is
given by
U=A{T, | wisan even cycle}
U{voT,,+ —vaT,- | w= (vo,...,vq) is an even path}
U {Lt()l/taT(Wl’W2)+ — VOVbT(wl,wz)‘ ’ wi = (uo,...,u,) and
wy = (vo,...,Vp) are disjoint odd paths}.
From [25, Theorem 3.1, Proposition 3.1] we have a precise description of

given by the syzygies of I and the set even of closed walks in the graph G. The
algebra R(I), as a bigraded S-module, has a minimal bigraded free resolution

0—F— - —F—FK—R(I) —0, ()

where F; = @;S(—a;j,—b;j). In the same way as in [19], we can define the
xy-regularity of R(I) by the integer

regxy(R(l)) = n}aj;x{aij — l},
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or equivalently by
reg, (R(I)) = max{a € Z | ﬁlf(aJri’b) (R(I)) # 0 for some i,b € Z},

where ﬁif(a’b) (R(I)) = dimK(Torf(R(I),K)(ayb)).
Similarly, we can define the T -regularity

regr(R(I)) = max{b; — i}
and the total regularity
reg(R (1)) = max{a;; + bij — i}.
l’j

Our second main result is computing the total regularity and giving upper
bounds for both partial regularities.

Theorem 1.2 (Theorem 4.2). Let G be a bipartite graph. Then we have:
(i) reg(R(I(G))) = match(G),
(ii) reg,,(R(I1(G))) < match(G) — 1,

(iii) reg;(R(I(G))) < match(G),
where match(G) denotes the matching number of G.

Finally, we apply these results in order to study the regularity of the powers
of the edge ideal I = I(G).

It is a famous result (for a general ideal in a polynomial ring) the asymptotic
linearity of reg(1°) for s > 0 (see [8] and [18]). However, the exact form of this
linear function and the exact point where reg(/*) starts to be linear, is a problem
that continues wide open even in the case of monomial ideals.

In recent years, a number of researchers have focused on computing the
regularity of powers of edge ideals and on relating these values to combinatorial
invariants of the graph (see e.g. [4], [1], [2], [3], [5], [17]). Most of the upper
bounds given in these papers use the concept of even-connection introduced in
[3]. Actually, using this idea as a central tool, in [17] it was proved the upper
bound

reg(I’) < 2s+co-chord(G) — 1

for any bipartite graph G, where co-chord(G) represents the co-chordal number
of G (see [17, Definition 3.1]).

As a consequence of our study of the Rees algebra R (), we make an esti-
mation of when reg(I*) starts to be a linear function, and we obtain the weaker
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upper bounds for the regularity of the powers of / (see Remark 3.9, Corollary
4.3, Corollary 3.8). Perhaps, this could give new tools and fresh ideas to pursue
the stronger upper bound

reg(I’) <2s+reg(l) -2, 3)

that has been conjectured by Alilooee, Banerjee, Beyarslan and Ha ([4, Conjec-
ture 7.11]).

Using the upper bound for the partial T-regularity of R(I), we can get the
following estimation.

Corollary 1.3 (Corollary 4.4). Let G be a bipartite graph. Then, for all s >
match(G) + |E(G)|+ 1 we have

reg(1(G)"™") = reg(1(G)") + 2.

The basic outline of this note is as follows.

In Section 2, we compute the universal Grobner basis of X (Theorem 1.1).
In Section 3, we consider a specific monomial order that allows us to get upper
bounds for the xy-regularity of R(/). In Section 4 we exploit the canonical
module of R () in order to prove Theorem 1.2 and Corollary 1.3. Finally, in
Section 5 we give some general ideas about the conjectured upper bound Eq. 3.

2. The universal Grobner basis of C

In this section we will give an explicit description of the universal Grobner basis
U of K. Our approach is the following, first we compute the set of circuits of
the incidence matrix of the cone graph, and then we translate this set of circuits
into a description of 4.

The following notation will be assumed in most of this note.

Notation 2.1. Let G be a bipartite graph with bipartition X = {xi,...,x,} and
Y ={y1,...,Ym}, and R be the polynomial ring R = K[x|,...,x,,1,...,Vm]. Let
I be the edge ideal I(G) = (fi,..., f;) of G. We consider the Rees algebra R(I)
as a quotient of S = R([T1, ..., T,;] by using Eq. 1. Let C be the defining equations
of the Rees algebra R(I).

Let A = (a; j) € R be the incidence matrix of the graph G. Then we
construct the matrix M of the following form

a,y ... dig €1 ... enim
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where ey, ... e, m are the first n+ m unit vectors in R *! (see [11, Section 3]
for more details). This matrix corresponds to the presentation of R(/) given in
Eq. 1. For any vector B € Z"t"*4 with nonnegative coordinates we shall use
the notation

XyTB _ quH . xEquny?qunJrl . y’liq+n+m Tﬁl Tﬁq

A given vector o € Ker(M)NZ" ™4, can be written as o« = o™ — o~ where
ot and o~ are nonnegative and have disjoint support.

Definition 2.2 ([23]). A vector o € Ker(M) NZ""*4 is called a circuit if it
has minimal support supp(a) with respect to inclusion and its coordinates are
relatively prime.

Notation 2.3. Given a walk w = {vg,...,v,}, each edge {v;_1,v;} corresponds
to a variable 7;;, and we set T+ = [[;iseven I;; @and 1o~ = []is0aa 7i; (in case
a=1we rnake T,,~ = 1). We adopt the following notations:

(i) Letw={vo,...,vs=vo} be aneven cycle in G. Then by T,, we will denote
the binomial TW+ -T,- € K.

(ii) Let w = {vp,...,v,} be an even path in G, since G is bipartite then both
endpoints of w belong to the same side of the bipartition, i.e. either vo =
Xi,Vq = Xj O Vo = y;,Vq = y;j. Then the path w determines the binomial

voT,y+ — v T,- € K.

(iii) Let wy = {uo,...,uq}, wa = {vo,...,v} be two disjoint odd paths, then
the endpoints of w; and w, belong to different sides of the bipartition. Let
Tty wy)+ = TW1+ TW; and T, ,)- = Tw( TW2+, then wy and w;, determine the
binomial
uoa Ty, yy)+ — Vove T (v, wy)- € K.

Example 2.4. In the bipartite graph shown below

X1 X2 y2

1

T T;

we have that the odd paths wy = (x1,y;) and wy = (x2,y2,x3,y3) determine the
binomial X1)Y1 T2T4 —X2Y)3 T] T3 .
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Let U be the universal Gobner basis of K. In general we have that the set of
circuits is contained in U ([23, Proposition 4.11]). But from the fact that M is
totally unimodular ([11, Theorem 3.1]), we can use [23, Proposition 8.11] and
obtain the equality

U = {xyT* —xyT® | a is a circuit of M}.

Therefore we shall focus on determining the circuits of M, and for this we
will need to introduce the concept of the cone graph C(G). The vertex set of the
graph C(G) is obtained by adding a new vertex z to G, and its edge set consists of
the edges in E(G) together with the edges {xy,z},...,{xn, 2}, {y1,2},- -, {ym. 2}

Theorem 2.5. Let G be a bipartite graph and I = I(G) be its edge ideal. The
universal Grobner basis U of K is given by

U={T, | wis an even cycle}
U{voTy+ —vaT,- | W= (vo,...,v4) is an even path}
U{uota T, )+ = VoVoT(wy o)~ | W1 = (U0, .- -, Ua) and

wy = (vo,...,Vp) are disjoint odd paths}.

Proof. Let K[C(G)] be the monomial subring of the graph C(G), which is gen-
erated by the monomials

KIC(G)] =K [{xiyj| {xi,y;} €E(G)}U{xiz|i=1,...,n}U{yiz|i=1,...,m}].

As we did for the Rees algebra R(I), we can define a similar surjective
homomorphism

n:S — K[C(G)] C R[Z],
w(x;) =xiz, (i) =yiz, #(T)=fi

We have a natural isomorphism between R(I) and K[C(G)] [24, Excercise
7.3.3]. For instance, we can define the homomorphism ¢ : R[t] — R[z,z '] given
by ¢(x;) = x;z, @(y;) = yiz and @(t) = 1/72, then the restriction ¢ \r(r) of @ to
R(I) will give us the required isomorphism because both algebras are integral
domains of the same dimension (see Proposition 4.1 (i)).

Hence we will identify the ideal X with the kernel of 7. Let N be the inci-
dence matrix of the cone graph C(G). From [25, Proposition 4.2], we have that
a vector o € Ker(N)NZ™"+4 is a circuit of N if and only if the monomial walk
defined by « corresponds to an even cycle or to two edge disjoint odd cycles
joined by a path.

Since the graph G is bipartite, then an odd cycle in C(G) will necessarily
contain the vertex z. Therefore the monomial walks defined by the circuits of N
are of the following types:
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(i) An even cycle in C(G) that does not contain the vertex z.
(ii) An even cycle in C(G) that contains the vertex z.

(iii) Two odd cycles in C(G) whose intersection is exactly the vertex z.

The figure below shows how the cases (i) and (iif) may look.

(a) The two possible cycles of (ii). (b) The graph of (iii).

Since the circuits of the matrices M and N coincide, now we translate these
monomial walks in C(G) into binomials of K. An even cycle in C(G) not con-
taining z, is also an even cycle in G, and it determines a binomial in C using
Notation 2.3. In the cases (ii) and (iii), we delete vertex z in order to get a sub-
graph H of G. Thus we have that H is either an even path or two disjoint odd
paths, and we translate these into binomials in K using Notation 2.3. O

Remark 2.6. Alternatively in Theorem 2.5, we can see that the matrices M and
N have the same kernel because they are equivalent. We multiply the last row
of M by —2 and then we successively add the rows 1,...,n+ m to the last row;
with these elementary row operations we transform M into N.

Example 2.7. Using Theorem 2.5, the universal Grobner basis of the defining
equations of the Rees algebra of the graph in Example 2.4 is given by
{22t —xiyi T, X293 TV T3 — xiy1 o Ta, 313 — x2T3, x3y2T1 — x1y1 T,
x3y3Ty —xiyi Ty, y313 — yo Ty, x3y3Ta — xay2 T }.
It can also be checked in [12] using the command universalGroebnerBasis.
Corollary 2.8. Let G be a bipartite graph and I = I(G) be its edge ideal. The

universal Grobner basis U of K consists of square free binomials with degree at
most linear in the variables x;’s and at most linear in the variables y;’s.

3. Upper bound for the xy-regularity

In this section we get an upper bound for the xy-regularity of R(I), and the
important point is that we will choose a special monomial order. Using the xy-
regularity we can find an upper bound for the regularity of all the powers of the
edge ideal /.
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Since most of the upper bounds for the regularity of the powers of edge ide-
als are based on the technique of even-connection [3], then a strong motivation
for this section is trying to give new tools for the challenging conjecture:

Conjecture 3.1 (Alilooee, Banerjee, Beyarslan and Ha). Let G be an arbitrary
graph then
reg(1(G)*) < 2s+reg(I(G)) —2

for all s > 1.
The following theorem will be crucial in our treatment.

Theorem 3.2. ([19, Theorem 5.3], [14, Proposition 10.1.6]) The regularity of
each power I’ is bounded by

reg(l’) <2s+ regxy(R(I)).

By fixing a particular monomial order < in S, then we can see the initial
ideal in. (/) as the special fibre of a flat family whose general fibre is K (see
e.g. [14, Chapter 3] or [9, Chapter 15]), and we can get a bigraded version of
[14, Theorem 3.3.4, (¢)].

Theorem 3.3. Let < be a monomial order in S, then we have
reg,, (R(I)) <reg,,(S/in<(K)).

Let M be an arbitrary maximal matching in G with |[M| = r. We assume
that the vertices of G are numbered in such a way that M consists of the edges

M= {{xlyyl},{x%yZ}v .. '>{xrayr}}’

and also we assume that n = |X| < |Y| =m.
In R=Klx;...,x,y1,...,Ym) We consider the lexicographic monomial or-
der induced by

Xn> .. 2X22>X1 2>V > .. > Y2 > )1

We choose an arbitrary monomial order <* on K[T1,...,T,], then we define the
following monomial order <™ on § = K[x1,..., %y, Y1, ,Ym; T1,-- ., Ty]: for
two monomials X* y#1'T? and x2yP2T?% we have

X% yﬁl ™ <M XazyﬁzTYz
if either

(1) Xalyﬁl < X“Zyﬁ2 or
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(i) x¥yP =x®yP2 and T <* T,

Let G_x(KC) be the reduced Grébner basis of C with respect to <™. The
possible type of binomials inside G_m (K) were described in Theorem 2.5, now

we focus on obtaining a more refined information about the type (iii) in Notation
2.3.

Notation 3.4. In this section, for notational purposes (and without loss of gen-
erality) we shall assume that w; and w, are disjoint odd paths of the form

wi = (X, U1,. .., U2a,Yf),
Wwa = (Xg,Vi,...,V2p, Vh)-
Then we analyze the binomial xey s T(,,, 1)+ — XgVnT (1, 2)- -
Lemma 3.5. Let X,y T(yy, )+ — XgVn Ty wy)~ € Gem (K), then we have
(i) at least one of the vertices x,,yy is in the matching M, i.e. e <ror f <r;
(ii) at least one of the vertices Xg,yy, is in the matching M, i.e. g <rorh <r.

Proof. (i) First, assume that a =0, i.e. w; has length one. Since M is a maximal
matching then we necessarily get thate < ror f <r.

Now let a > 0, and by contradiction assume that e > r and f > r. From the
maximality of M, we get that u; = y; where j < r. We consider the even path

w3 = (yja s 7”2a7)’f)7
then using Notation 2.3 we get the binomial
F :ijwgr —yfTWS— e k.

We have in_am(F) =y T,,; because f > j. So we obtain that in_ (F) divides
XY £ T, wy)+» and this contradicts that G_a« () is reduced.
(ii) Follows identically. O

In the rest of this note we assume the following.

Notation 3.6. b(G) represents the minimum cardinality of the maximal match-
ings of G and match(G) denotes the maximum cardinality of the matchings of
G

Theorem 3.7. Let G be a bipartite graph and I = I(G) be its edge ideal. The
xy-regularity of R(I) is bounded by

reg, (R(I)) <min{[X| -1, [Y| -1, 2b(G) — 1}.
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Proof. From Theorem 3.3, it is enough to prove that
reg, (S/in_m(K)) <min{|X| -1, [Y| -1, 2r—1}.

Let {my,...,m.} be the monomials obtained as the initial terms of the elements
of G_m(K). We consider the Taylor resolution (see e.g. [14, Section 7.1])

0—T.— - —T1 — T — S/in_.m(K) — 0,
where each 7; as a bigraded S-module has the structure

T = @ S(—degxy(lcm(mjl,...,mji)),—degT(lcm(mjl,...,mjl.))).

1<ji<..<ji<c

From it, we get the upper bound
reg,(S/in_m(K)) < max{degxy(lcm(mjl,...,mji)) —i|{j1,..., it c{1,...,c}}.
When deg,(m;,) < 1, then we have
deg,,(lem(mjy,...,mj)) —i < deg, (lem(mj,...,m;_)) = (i—1). (5)

So, according with Theorem 2.5, we only need to consider subsets { ji, ..., ji}
such that for each 1 <k <i we have mj = in_m(Fy) and F; is a binomial as
in Notation 3.4. We use the notation in_m (Fy) = X,y Bk, where By is a mono-
mial in the 7;’s. Also, we can assume that x¢,y s, ,Xe,Y 55 - - - 1 Xe Y, are pairwise
relatively prime, because we can make a reduction like in Eq. 5 if this condition
is not satisfied.

Thus, in order to finish the proof, we only need to show that we necessarily
have i < min{|X|—1, |Y|—1, 2r — 1} under the two previous conditions. Since
the two paths that define each Fj are disjoint, then by the monomial order chosen
we have that ¢, > 1 for each &, and by a “pigeonhole” argument follows that
i <|X|—1<|Y|—1. Also, from Lemma 3.5 there are at most 2r — 1 available
positions to satisfy the condition of being co-primes. Thus we have i < 2r —
1, and the result of the theorem follows because M is an arbitrary maximal
matching. O

Corollary 3.8. Let G be a bipartite graph and I = I(G) be its edge ideal. For
all s > 1 we have

reg(l*) <2s+min{[X|—1, [Y| -1, 2b(G) — 1}.

Proof. It follows from Theorem 3.7 and Theorem 3.2. O
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Remark 3.9. From the fact that co-chord(G) < match(G) < min{|X|,|Y|} (see
[17]) and match(G) < 2b(G) (see [15, Proposition 2.1]), then we have the fol-
lowing relations

co-chord(G) — 1 < match(G) —1 <min {|X|—1, |Y| -1, 2b(G) — 1}.

Although the last upper bound is weaker, it is interesting that an approach
based on Grobner bases can give a sharp answer in several cases.

In the last part of this section we deal with the case of a complete bipartite
graph. The Rees algebra of these graphs was studied in [26].

Notation 3.10. By G we will denote a complete bipartite graph with bipartition
X={xi,....,x}and Y ={yy,...,ym}. Let I = {x;y; | 1 <i<n,1<j<m}be
the edge ideal of G and let T;; be the variable that corresponds to the edge x;y;.
Thus we have a canonical map

S=K[x’s, y;’s, Ti;’s) = R(I) C R[],

(6)
v(x) =xi, wi)=yi, w(Tj)=xyjt

Let IC be the kernel of this map. For simplicity of notation we keep the same
monomial order <M.

Exploiting our characterization of the universal Grobner basis of /C, we shall
prove that all the powers of the edge ideal of G have a linear free resolution.

Lemma 3.11. Let G be a complete bipartite graph. The reduced Grobner basis
G_m(K) consists of binomials with linear xy-degree.

Proof. From Theorem 2.5 we only need to show that any binomial determined
by two disjoint odd paths is not contained in G_m(K). Let xeyrT(yy, )+ —
Xg¥nT(y, w,)- be a binomial like in Notation 3.4. By contradiction assume that
XeY £ Tty o)+ — XgYnT (v )~ € G.m(K).

Without loss of generality we assume that e > g. Since G is complete bipar-
tite, we choose the edge x.y;, and we append it to wy, that is

w3 = (xg,vl,. .. ,v2b,yh,xe).
Using Notation 2.3 we get the binomial

F=xT,

n
V3

—x T, €Kk,

with initial term in_a (F) = x.T,- because ¢ > g. Thus we get that in_«(F)
divides x¢yT(, ,)+ @ contradiction. O
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Corollary 3.12. Let G be a complete bipartite graph and I = I(G) be its edge
ideal. For all s > 1 we have reg(I*) = 2s.

Proof. Using Lemma 3.11 and repeating the same argument of Theorem 3.7 we
can get reg,,(R(I)) = 0. Again, the result follows by Theorem 3.2. O

We remark that this previous result also follows from [17] since it is easy to
check that co-chord(G) = 1 (i.e. it is a co-chordal graph) in the case of complete
bipartite graphs.

4. The total regularity of (/)

In the previous sections we heavily exploited the fact that the matrix M (corre-
sponding to R (1)) is totally unimodular in the case of a bipartite graph G. From
[11, Theorem 2.1] we have that R(/) is a normal domain, then a famous theo-
rem by Hochster [16] (see e.g. [6, Theorem 6.10] or [7, Theorem 6.3.5]) implies
that R () is Cohen-Macaulay. So, the Rees algebra R () of a bipartite graph G
is also special from a more algebraic point of view (see [22]).

For notational purposes we let N be N = n+m. It is well known that the
canonical module of S (with respect to our bigrading) is given by S(—N,—q)
(see e.g. [6, Proposition 6.26], or [7, Example 3.6.10] in the Z-graded case).
The Rees cone is the polyhedral cone of RV*! generated by the set of vectors

A={v|visacolumn of M in Eq. 4},

and we will denote it by R .A. The irreducible representation of the Rees cone
for a bipartite graph was given in [11, Section 4].

Proposition 4.1. Adopt Notation 2.1. The following statements hold:
(i) The Krull dimension of R(I) is dim(R(I)) = N+ 1.

(ii) The projective dimension of R(I) as an S-module is equal to the number
of edges minus one, that is, p = pdg(R(I)) =g — 1.

(iii) The canonical module of R(I) is given by
or() = “Ext§ (R(I), S(-N,—q)).
(iv) The bigraded Betti numbers of R(I) and ®r;y are related by

Bi:g(a,b) (R(1>) = 1;9—1',(N—a.,q—b) (a)R(I) ) :
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Proof. (i) The Rees cone R4 has dimension N + 1 and the Krull dimension
of R(I) is equal to it (see e.g. [23, Lemma 4.2]). More generally, it also follows
from [21, Proposition 2.2].

Since clearly R (/) is a finitely generated S-module, then the statements (if)
and (iii) follow from [6, Theorem 6.28] (see [7, Proposition 3.6.12] for the Z-
graded case).

The statement (iv) follows from [6, Theorem 6.18]; also, see [6, page 224,
equation 6.6]. O

Due to a formula of Danilov and Stanley (see e.g. [6, Theorem 6.31] or [7,
Theorem 6.3.5]), the canonical module of R ([) is the ideal given by

— ({x‘ll . xunyTnH .. .y]ath“N+l |a — (ai) c (R+A)O QZN-H}),

where (R .A)° denotes the topological interior of R A.
Now we can compute the total regularity of R (/).

Theorem 4.2. Let G be a bipartite graph and I = I(G) be its edge ideal. The
total regularity of R(I) is given by

reg(R(I)) = match(G).

Proof. In the case of the total regularity, we can see R([) as a standard graded
S-module (i.e. deg(x;) = deg(y;) = deg(T;) = 1), and since R(I) is a Cohen-
Macaulay S-module then the regularity can be computed with the last Betti
numbers (see e.g. [20, page 283] or [9, Exercise 20.19]). Thus, from Propo-
sition 4.1 we get

reg(R(I)) =max{a+b—p| ﬁS ab R(I)) # 0}
—maX{a+b p‘BON a,q— b(a)R #0}
=N-+1—min {a+b | ﬁo,(a,b) (1) 0}’

and by the bigrading that we are using (bideg(x;) = bideg(y;) = (1,0) and bideg(z) =
(=2, 1)) then we obtain

reg(R(I)) =N+1-min{a;+- +ay—ay+1 | a= (a;) € (R.A)°NZN}.
One can check that the number
—min{a;+---+ay—ays1 |a=(a;) € (R+A)OOZN+]}

coincides with the a-invariant of R(I) with respect to the Z-grading induced by
deg(x;) =deg(y;) = 1 and deg(r) = —1. This last formula can be evaluated with
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the irreducible representation of the Rees cone [11, Corollary 4.3], it was done
in [11, Proposition 4.5], and from it we get

reg(R(1)) = N — B,

where By denotes the maximal size of an independent set of G. The minimal
size of a vertex cover is equal to N — 3y, and we finally get

reg(R(I)) = match(G)
from Konig’s theorem. O

The following bound was obtained for the first power of the edge ideal in
[13, Theorem 6.7].

Corollary 4.3. Let G be a bipartite graph and I = I(G) be its edge ideal. For
all s > 1 we have

reg(I’) < 2s+match(G) — 1.

Proof. It is enough to prove that reg, (R (1)) < reg(R(I)) — 1. In the minimal
bigraded free resolution Eq. 2 of R([), suppose that reg,,(R) = a;; — i for some
i, j € N. Since necessarily b;; > 1 and

aij+bij—i <reg(R(1)),
then we get the expected inequality. 0

This previous upper bound is sharp in some cases (see [5, Lemma 4.4]). In
the following corollary we get information about the eventual linearity.

Corollary 4.4. Let G be a bipartite graph and I = I(G) be its edge ideal. For
all s > match(G) + g+ 1 we have

reg(I*™) = reg(I*) + 2.

Proof. With the same argument of Corollary 4.3 we can prove that reg; (R (7)) <
reg(R(I)), here the difference is that in the minimal bigraded free resolution Eq.
2 we can have free modules of the type S(0,—b;;) (for instance, in the syzygies
of R(I) the ones that come from even cycles). Then the statement of the corol-
lary follows from [8, Proposition 3.7]. ]
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5. Some final thoughts

In the last part of this note we give some ideas and digressions about Conjecture
3.1. Using a “refined Rees approach” with respect to the one of this note, one
might get an answer to this conjecture for general graphs or perhaps for special
families of graphs:

e Restricting the minimal bigraded free resolution Eq. 2 of R(I) to a graded
T-part gives an exact sequence

0— (Fp)hy — = (F1)(s) — (F0)(se) — (RU)) s) — 0
for all k. This gives a (possibly non-minimal) graded free R-resolution of
(R(I)) gy 2 1(2K).

But in the case k = 1 one can check that
0— (Fp)p)y — - — (F1) (1) — (F0) (1) — 1(2) — 0

is indeed the minimal free resolution of 7(2). Thus, one can read the
regularity / from Eq. 2, and a solution to Conjecture 3.1 can be given by
proving that

max {a;; — i} = max {a;; —i| bjj =1}
L i,j

e For bipartite graphs, Grobner bases techniques can give very good results
(for instance, in the case of complete bipartite graphs). Perhaps, for spe-
cial families of bipartite graphs one can give “good” monomial orders.

e The existence of a canonical module in the case of bipartite graphs could
give more information about the minimal bigraded free resolution of R (7).
From [6, Theorem 7.26] we have that the maximal xy-degree and the max-
imal T-degree on each F; of Eq. 2 form weakly increasing sequences of
integers, that is

max{a;} <max{azi,}  and  max{b;} < max{bi )
J J J J

(see e.g. [9, Exercise 20.19] for the Z-graded case). Thus a more detailed
analysis of the polyhedral geometry of the Rees cone R .4 could give
better results.
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