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SEARCHING AND SWEEPING GRAPHS: A BRIEF SURVEY

BRIAN ALSPACH

This papers surveys some of the work done on trying to capture an
intruder in a graph. If the intruder may be located only at vertices, the
term searching is employed. If the intruder may be located at vertices or
along edges, the term sweeping is employed. There are a wide variety of
applications for searching and sweeping. Old results, new results and active
research directions are discussed.

1. Introduction.

For the most part, the graph theory terminology of [24] is employed.
Nevertheless, for the sake of clarity, the following terminology is specifically
mentioned. The term reflexive multigraph is used when both loops and multiple
edges are allowed, the term multigraph means that multiple edges are allowed,
and the term graph means that neither loops nor multiple edges are allowed.
The term valency is used for the number of edges incident with a vertex, where
a loop contributes two to the valency of the appropriate vertex. We use val(u)
to denote the valency of the vertex u. An edge with end vertices u and v is
denoted uv.

An edge has no direction so that reflexive multigraphs, multigraphs and
graphs do not have arcs (directed edges). The appropriate terms when arcs are
employed are reflexive multidigraphs, multidigraphs, and digraphs. An arc from
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vertex u to vertex v is denoted (u, v). The terms corresponding to valency are
out-valency and in-valency.

We discuss only finite graphs in this paper. Because of this convention, we
shall omit the adjective finite, but it is always present and necessary in some of
the proofs.

Graphs and digraphs, and their more general cousins, have become a
standard modelling device for many applications. This survey paper deals with
applications for which it is natural to employ some kind of graph or digraph as
a model with an intruder present in the graph. The two main problems arising
when employing this model are detecting and capturing the intruder. This survey
deals with capturing an intruder.

There are two distinct contexts for the problem. If an intruder may be
located only at vertices, then the process of attempting to capture an intruder is
called searching. If an intruder may be located at vertices or along edges (or
arcs), then the process of attempting to capture an intruder is called sweeping.
In the case of sweeping, it is convenient to think of the graph or digraph as
embedded in 3-space so that the points of the edges or arcs have geometric
realizations. However, the algorithms actually used to sweep graphs and
digraphs do not require that the graphs and digraphs be embedded in 3-space.
Thus, even for sweeping it is possible to think of graphs and digraphs as
abstractions.

The problem initially was motivated by the spelunking community and
the first publication dealing with searching for someone lost in a cave system
appears to be [7]. A mathematician at Pennsylvania State University, Tory
Parsons, was approached by local spelunkers in the mid 1970s to see if he
had any ideas about improving their searching techniques. Parsons immediately
formulated the problem in terms of graph theory. He wrote two papers [19]. [20]
about sweeping graphs. His work initiated the study of searching and sweeping
graphs.

There are other problems, besides trying to find someone lost or hiding in a
cave system, that are modelled naturally by sweeping graphs. Searching a road
system for a vehicle that is either moving or parked somewhere is another such
problem. Another problem that can be modelled as a graph sweeping problem,
though it may not be obvious at first sight, is the problem of clearing a complex
system of interconnected pipes that is contaminated by some noxious gas. The
process of clearing the system of the noxious gas uses essentially the same
algorithms used for sweeping a graph. So we may think of this as a graph
sweeping problem. There are many similar problems that may be viewed in one
of these two ways.

The connection between looking for an intruder who can hide at vertices or
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at a point in an edge, and clearing a graph of a noxious gas arises via sweeping
algorithms. Even though one is searching for an intruder in that model, the
sweepers conducting the sweep do so by clearing an edge at a time. This
corresponds to expelling the contaminant along the edge. This will be made
clear when the concept of intruder territory is defined.

There are problems for which searching a graph serves as a natural model.
For example, if one is trying to find a piece of software in a computer network,
one needs to check the computers corresponding to the vertices of the network.
It does not make sense to think of the software as residing in the lines linking
the computers together. There are other instances where search problems form
the natural model.

Since this is intended to be a brief survey, proofs are omitted. We do
provide a quick outline for proofs that are short.

2. Sweeping Models.

Almost all of the existing literature on sweeping deals with five sweeping
models. We now describe these models. The first model is what Parsons
originally presented.

Let X be a connected graph embedded in E? so that the vertices of X are
distinct points in E*, and each edge of X is represented by a line segment whose
endpoints are the corresponding vertices. It is known this can be done so that
the interiors of all line segments corresponding to edges are pairwise disjoint.

We let X inherit the usual topology of E3. Imagine there may be an
intruder in X who can be located at any point of X, that is, anywhere along
an edge or at a vertex. We wish to capture any intruder or establish that the
graph is free of an intruder. We describe what we mean by a general sweep
strategy.

Definition 2.1. Let X be a connected graph embedded in E3 as described
above. For each positive integer k, let C;(X) be the set of all families F =
{fi, 2, ..., fx} of continuous functions f; : [0, 00) — X. A general sweep
strategy for X is a family F € C;(X) such that for every continuous function
h:[0,00) — X, thereisat, €[0, 00) and f; € F satisfying h(t,) = f; (t,). We
say that f; captures the intruder at time #,.

There is an obvious extension of the preceding definition to reflexive
multigraphs. The required alteration arises because multiple edges and loops
cannot be embedded in E? as line segments. Loops are simply drawn as closed
curves and multiple edges are drawn as internally disjoint simple curves. These
can be done with no overlap of points other than at vertices.
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Arbitrary continuous functions can exhibit unusual behavior making the
notion of a general sweep strategy not always easy to work with. Consequently,
we introduce a more discrete sweeping model that is considerably easier to
work with. It involves placing some restriction on sweepers, but placing no
restrictions on an intruder. We introduce discrete time intervals, and we lose no
generality by assuming each time interval has length 1. The basic idea is that for
each time interval, only one sweeper moves from a vertex to an adjacent vertex.
The following definition formalizes the concept.

Definition 2.2. Let X be a connected graph embedded in E> as described
earlier. A general sweep strategy F = { f, f2, ..., fi} of continuous functions
in Gy (X) is simply called a sweep strategy if the following conditions are
satisfied:

(1) fi(r) € V(X) for every integer ¢ € [0, 00), 1 Si <k;

(ii) there is an integer N(F') > 0 such that f;(¢) is constant for ¢ € [N(F'), 00),
15i<k;
(iii) for every nonnegative integer n < N(F), there exists a unique i, €
{1,2, ..., k} such that for i # i,,1<i =<k, f; is constant on [n, n + 1], while
fi, moves uniformly along the edge joining f; (n) to f; (n + 1).

The next sweeping model allows sweepers to move in a discontinuous
way while maintaining the restriction that an intruder moves according to some
continuous function.

Definition 2.3. Let X be a connected graph embedded in E>. A family
F =1{fi, f2, ..., fx} of functions satisfying f; : [0,00) —> X,i =1,2,...,k,
is called a wormhole family if the following conditions are satisfied:

(1) fi(r) € V(X) for every integer ¢ € [0, 00), 1 St <k;

(ii) there is an integer N(F') > 0O such that f;(¢) is constant for ¢ € [N(F'), 00),
15i<k;

(iii) for every nonnegative integer n < N(F), there exists a unique i, €
{1,2,...,k} such that for i # i,, 1 <i <k, f; is constant on [n, n + 1], while
fi, either moves uniformly from u = f; (n) to a neighboring vertex v along the
edge uv on the interval [n, n 4 1], or is constant on the interval [n, n + 1) and
then f; (n + 1) = v # u . We denote all the wormhole families on X with k
functions by 'Wi(X). A wormhole sweep strategy for X is a family F € Wi(X)
such that for every continuous function 4 : [0, o0) — X, there is a #; € [0, 00)
and f; € F satisfying h(t,) = f;(tx). We say that f; captures the intruder at
time ;.
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It is easy to see that the collections of general sweep strategies and
wormhole sweep strategies are not the same. In fact, the intersection of the
two collections is the family of sweep strategies.

Another way to look at a wormhole sweep strategy is to observe that it is
an extension of a sweep strategy in that sweepers are allowed an extra action.
Sweepers are only allowed to traverse edges of the graph X from their present
location to an adjacent vertex in sweeping, whereas, they are allowed to jump
to any vertex of X in wormhole sweeping.

The last two sweeping models differ in that the notion of capturing an
intruder is not the same. In the models already described, capture takes place
only by having a sweeper occupy the same point occupied by the intruder at the
same time.

Definition 2.4. Let X be a connected graph embedded in E3. A family
F ={f1, f2, ..., fx} of functions satisfying f; : [0,00) —> X,i =1,2,...,k,
is called a laser family if the following conditions are satisfied:

(1) fi(r) € V(X) for every integer ¢ € [0, 00), | St <k;

(ii) there is an integer N(F') > O such that f;(¢) is constant for r € [N(F'), 00),
15i<k;

(iii) for every nonnegative integer n < N(F), there exists a unique i, €
{1,2,...,k} such that for i # i,, 1 <i <k, f; is constant on [n, n + 1], while
fi, is constant on the interval [n,n 4 1) and then f; (n +1) = v # u. We
denote all the laser families on X with k functions by £;(X). A laser sweep
strategy for X is a family F € £;(X) such that for every continuous function
h :10,00) — X, thereis a t; € [0, 00) and f;, f; € F for which h(#;) lies in an
edge joining f;(#) and f;j(#;). We say that the intruder is captured at time ;.

Definition 2.5. A mixed sweep strategy is the same as a wormhole sweep
strategy except that now capture takes place by either a sweeper and the intruder
occupying the same point at the same time, as in earlier sweep strategies, or for
two sweepers to occupy adjacent vertices u and v at the same time ¢, and for
the intruder to be located on an edge joining u and v, including multiple edges,
at time 7.

Definition 2.6. We say that a reflexive multigraph X has been cleared following
the conclusion of one of the various sweep strategies on X .

What we are calling wormhole sweeping has been called edge searching,
our laser sweeping has been called node searching, and our mixed sweeping
has been called mixed searching. We believe the distinction we make between
sweeping and searching will lead to less confusion regarding terminology.
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3. Sweep Numbers.

Once the various sweep models have been presented, it is natural to ask
questions about the existence of sweep strategies, how many sweepers are
needed to clear a graph, and relationships between the numbers of sweepers
required to carry out various sweep strategies. The first result establishes the
basis for the next sequence of definitions.

Theorem 3.1. If X is a connected reflexive multigraph, then for each of the
five sweeping models, there exists a sweep strategy using a finite number of
sweepers.

It is easy to prove this by stationing a sweeper on each vertex of X. Any
intruder is immediately captured under laser sweeping and mixed sweeping.
One additional sweeper can clear X.

Given a reflexive multigraph X, the preceding theorem tells us it makes
sense to consider the minimum number of sweepers required to capture any
intruder in X for each of the five sweeping models. The next theorem tells us, in
fact, that the minimum number for general sweeping, sweeping and wormhole
sweeping is the same. Parsons [20] promised to produce a proof for general
sweeping and sweeping, but never published a proof. Subsequently, a proof has
appeared in [2]. The next lemma [19], of interest in itself, is required for the
proof of the theorem.

Lemma 3.2. If F = {f; : 1 £i Sk} is a general sweep strategy for the reflexive
multigraph X, then there exists a constant C such that any intruder in X is
captured at some time less than C.

Theorem 3.3. If X is a reflexive multigraph, then the minimum number of
sweepers required to carry out a general sweep strategy, a sweep strategy, or a
wormhole sweep strategy on X is the same.

Theorem 3.3 justifies the next definition.

Definition 3.4. The sweep number of a connected reflexive multigraph X is
the smallest k& such that there exists a general sweep strategy, sweep strategy, or
wormhole sweep strategy for X. The sweep number is denoted sw(X). We shall
see later there are reasons to have a distinct notation for the wormhole sweep
number and we use wsw(X).

Definition 3.5. The laser sweep number of a connected reflexive multigraph X
is the smallest value of k such that there exists a laser sweep strategy for X. We
denote the laser sweep number of X by £sw(X).
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Definition 3.6. The mixed sweep number of a connected reflexive multigraph
X is the smallest value of k such that there exists a mixed sweep strategy for X .
We denote the mixed sweep number of X by xsw(X).

Theorem 3.7. If X is a reflexive multigraph, then
1) sw(X)—1Ztsw(X)<sw(X)+1,

(i) sw(X) — 1 <xsw(X) < sw(X), and

(i) £sw(X) — 1 < xsw(X) < fsw(X).

The preceding theorem is easy to prove so we take a look at the extremes.
If P denotes a path of length at least 1, then xsw(P) = sw(P) = 1 but
Isw(P) = 2. If 3K, denotes the multigraph of order 2 with an edge of
multiplicity 3, then ¢sw(3K;) = xsw(3K,) = 2 and sw(3K;) = 3. For K4,
all of the values are the same. Thus, for each of the inequalities, there exists a
multigraph for which equality holds.

4. Search Models.

We now move to searching as opposed to sweeping. Recall that the
essential diference is that the intruder and the searchers may be located only
at vertices.

Definition 4.1. Let X be a reflexive multigraph. There may be an intruder in the
graph and his location may be any vertex. There is some number of searchers
in the graph all of whom also must be located at vertices. The intruder and the
searchers move according to some set of rules, but without exception a move
is a movement from vertex to vertex (staying put is allowed). Capture takes
place when a searcher and the intruder occupy the same vertex at the same time.
The problem of attempting to capture the intruder is known as searching the
multigraph X .

There are an immense variety of rules and restrictions we may put in place
for searching a graph. The following model has been the most widely studied.

Definition 4.2. Let X be a reflexive multigraph. First distribute k searchers at
the vertices of X, where more than one searcher may be located at a vertex.
Then place the intruder at a vertex of X. The searchers and the intruder move at
alternate ticks of a clock. Any subset of searchers may move at even values
of ¢, and the intruder may move at any odd value of . A move consists
of going from a vertex to an adjacent vertex in X or staying at the current
vertex. All participants have complete knowledge of the location of all other
participants. This model is known as the basic pursuit-evasion model with
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complete information. We refer to this model as the BPE model. The search
number of X, denoted sn(X), is the smallest k£ such that k£ searchers can capture
any intruder using the BPE model.

There is a vast gap between sweeping a graph and searching a graph using
the BPE search model. We shall return to search numbers later in the paper, but
include one result about search numbers in order to indicate the extent of the
aforementioned gap. We do so using the family of trees. In the next section, we
shall see that there are trees with arbitrarily large sweep number. The next result
tells us that every tree has search number 1 under the BPE search model.

Theorem 4.3. If T is a tree, then sn(T) = 1.

The proof of this theorem follows easily by always having the searcher
move towards the intruder along the unique shortest path between them. Since
trees are finite, capture eventually takes place.

5. Intruder Territory.

There have been several rather colorful ways to describe the processes of
searching and sweeping. Some authors have phrased all of their work in terms
of cops and robbers, where the robber is, of course, an intruder, and the cops are
the searchers or sweepers. As a matter of fact, the cops and robber terminology
has been used so far in the literature only in the case of BPE searching, but I
suspect it will spread to other models.

The language in this paper uses intruder, searcher, and sweeper. In this
case, capture is thought of in terms of stumbling upon the intruder or two
sweepers simultaneously seeing him in an edge.

Another way of looking at the problem involves thinking of edges in a
graph as being contaminated. Instead of capturing an intruder, what we now
want the sweepers to do is to remove the contamination along edges, and being
finished when no more edges of the graph are contaminated. This fits precisely
with the notion of sweeping an edge. One sweeper y; is located at a vertex u
and a second sweeper y, traverses the edge uv from u to v. Upon reaching the
vertex v, y, either captures an intruder or forces an intruder to vacate the edge
uv. What we know at this point is that the edge uv is not a possible location for
an intruder. As long as y; remains at u and y, remains at v, an intruder cannot
slip back into the edge uv.

Note that exactly the same process is involved when we think of this in
terms of contamination. As y; is traversing the edge from u to v, he is removing
the contamination as he goes. Upon reaching the vertex v, the edge uv is no
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longer contaminated. As long as y; and y, remain at u and v, respectively, the
edge uv cannot become recontaminated.

The notion that ties the intruder-sweeper view together with the contami-
nation view is the following notion of intruder territory for sweeping.

Definition 5.1. Let X be a reflexive multigraph embedded in E3. Suppose X
is being swept according to some sweep strategy. At any given time ¢, let Y be
the set of points of X where an intruder cannot be located assuming capture has
not taken place. The subset X \ Y is defined to be the intruder territory at time
t. The set Y is called the cleared set at time . Any edge uv entirely contained
in Y is said to be cleared or clear depending on the context. Similarly, we say
that a vertex v is cleared when all edges incident with v are cleared.

There is a corresponding notion of intruder territory for graph searching.

Definition 5.2. Let X be a reflexive multigraph. Suppose X is being searched
according to some search strategy. At any given time ¢, let Y be the set of
vertices of X where an intruder cannot be located assuming capture has not
taken place. The subgraph of X induced by V(X) \ Y is defined to be the
intruder territory at time t. The subgraph induced by X on Y is called the
cleared subgraph at time t.

Note the difference in defining the intruder territory for sweeping and
searching. When a reflexive multigraph is being swept, sweepers may be located
in the interior of edges. This implies that segments of an edge may be free of an
intruder. So it makes sense to talk about the set of points that are cleared. On the
other hand, when searching a graph, the intruder and the searchers are located
at vertices. The role of the edges is to establish which vertices are allowed as
the next location of a searcher or the intruder on a given move. Thus, it makes
sense to talk about induced subgraphs.

In terms of the definition of intruder territory for sweeping, the intruder
territory consists of the points of the multigraph where the intruder may be
located. On the other hand, this is the same set as the set of points that are still
contaminated. Hence, if one prefers thinking in terms of contamination, then
the portion of the multigraph that is still contaminated is precisely the same as
the intruder territory.

Suppose a sweeper y is located on a vertex u, where there are cleared
edges incident with u and there are contaminated edges incident with u. If y
jumps to another vertex in the multigraph and there are no other sweepers left
on u, then it is clear that an intruder hiding in one of the contaminated edges
incident with # may now move into any edge incident with u. In other words,
all of the edges incident with # now become part of the intruder territory. In



14 BRIAN ALSPACH

the language of contamination, we say that any cleared edge incident with u
becomes recontaminated. We should mention, that if e is a cleared edge incident
with u and there is another sweeper located at an interior point of e, then only
the half-open segment of e from u to the interior point becomes recontaminated.

The material in this brief section allows us to jump back and forth freely
from intruder terminology to contamination terminology.

6. Sweeping Trees.

After seeing Theorem 4.3, it may come as a bit of surprise that sweeping
trees is so much more complicated. The principle reasons for the difference are
lack of information about the intruder’s location, and the freedom of movement
the intruder has in sweeping models. The next lemma plays a key role in the
development of sweeping trees.

Lemma 6.1. Let Ty, T,, and T be vertex-disjoint trees each having at least one
edge, and let v; be a vertex of valency 1'in T;, j = 1,2,3. Let T be the tree
obtained by identifying the vertices vy, vy, v3 as a single vertex v. If sw(T;) =k,
j=1,2,3 thensw(T) =k + 1.

Here are the essential ideas for proving this useful result. First, note that
there is a sweep strategy for k + 1 sweepers. Station a single sweeper at vertex
v and use k sweepers to clear each of the three subtrees one at a time. The
sweeper stationed at v forces any intruder to stay in the subtree where he is
initially located.

The harder part of the proof is to show that there is no sweep strategy
for k sweepers. The point is that in order to clear any one of the subtrees, all
k sweepers must be in the subtree away from the vertex v. At such a time,
an intruder can move freely back and forth between the other subtrees. Thus,
k sweepers have no way of clearing a subtree and making certain it remains
cleared when they move into another subtree.

Lemma 6.1 can be used to produce the following upper bound on the sweep
number of a tree.

Lemma 6.2. If T is a tree of order n, then the sweep number satisfies

sw(T) = 1+ logs(n — 1).

We are going to give an important theorem concerning the complexity of
sweeping a tree and provide no proof. However, we shall present some structural
aspects of trees that are used to prove the theorem. Recall that a branch of a tree
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T at vertex v is a subtree obtained by taking one of the components arising from
the deletion of v and reattaching v and the edge from v to the component . Let
Br(vu) denote the branch of T at vertex v containing the edge vu € E(T).

Definition 6.3. Let T be atree. A vertex v € V(T) is called a hub if all branches
of T at v have sweep number less than sw(7). A path vivy-- v, ¢t > 1,0f T
is called an avenue if each of the two terminal vertices has exactly one branch
with sweep number sw(7') and each interior vertex v;, 1 < i < t, has exactly
two branches with sweep number sw(7'). In fact, this implies sw(B7(v;v;)) =
sW(Br(vivi—1)) = sw(T'), and sw(Br(v;v;_1)) = sw(Br(viviy1)) = sw(T),
1 <i<t.

If T has a hub, we can place one sweeper on the hub and use sw(7") — 1
sweepers to clear all branches at the hub. Similarly, if 7 has an avenue vy v;...v;,
we can place one sweeper on v; and use sw(7)— 1 sweepers to clear all the non-
avenue branches at v;. We then move all sweepers along v;v, to v,. Repeating
this process at v,, we can clear the avenue and all branches at the vertices of the
avenue. We conclude that avenues and hubs are important structure in trees as
far as sweeping is concerned. The next result tells us that they also are plentiful.
This then gives us a foundation for determining an algorithm to sweep trees.

Theorem 6.4. Every tree has either a hub or a unique avenue, but not both.

We use the divide-and-conquer method to find the sweep number of a tree
T. The idea is to divide T into two subtrees of smaller order, recursively
compute the sweep number and certain corresponding information for each
subtree, and then merge this information for the subtrees to produce a solution
for T'. Each time we divide a tree into two subtrees, the two subtrees share only
one common vertex in V(7). Some of the information we keep is about hubs
and avenues in the various trees that arise.

Using the above ideas, one can prove the following theorem. This result
was first given in [15].

Theorem 6.5. The sweep number of a tree can be computed in linear time.

Knowing the number of sweepers required to sweep a tree depends on
cretain structural features of the tree, and this is what is used to determine the
sweep number. However, this is not the same problem as actually producing a
strategy to capture any intruder in the tree. The following two results give us
information about what is required in terms of producing a strategy. Some of
this was discussed in [15].

Theorem 6.6. Under the wormhole sweep model, a sweep strategy for a tree
T, using sw(T) sweepers, can be computed in O(nlogn) time.
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Theorem 6.7. Under the sweep model, a sweep strategy for a tree T, using
sw(T') sweepers, can be computed in O(n*logn) time.

7. Complexity of Sweeping.

Earlier we defined cleared edges in the context of intruder territory. There
is a natural intuitive notion of clearing an edge when discussing sweeping. Both
sweeping and wormhole sweeping lead to simple interpretations because in both
of these models, there is a single sweeper who moves for a given unit interval.
The move itself consists of a sweeper traversing an edge from one end vertex u
to the other end vertex v. If there is no way for the intruder to gain access to the
vertex # while a sweeper is moving along the edge from u to v, upon reaching
the vertex v, we know the intruder is not located at any point of the edge uv.
For the other sweeping models, there are times for which it is impossible for the
intruder to be located at any point of #v. This is how to view what it means by
an to edge be cleared.

Definition 7.2. Given a set E of edges in a graph X, a vertex u of X is said
to be exposed with respect to E if u is incident with at least one edge from E
and at least one edge not in E. The set of exposed vertices with respect to E is
denoted exv(E).

If E is the set of cleared edges at some point in the midst of sweeping
a graph, then the set of exposed vertices with respect to E is a lower bound
on the sweep number. There must be a sweeper stationed on each vertex of
exv(E). There are situations for which it is desirable to not allow edges to
become recontaminated once they have been cleared. We have a special name
for sweeps in which edges do not become recontaminated.

Definition 7.2. Let I(n) denote the intruder territory at time » for a given sweep
strategy on a graph X . We say that a sweep strategy, wormhole sweep strategy,
laser sweep strategy or mixed sweep strategy is monotonic if 1(j) € I(j + 1)
for all integers j over the length of the sweep strategy.

A convenient way of thinking about a monotonic sweep strategy is to
say that once an edge is cleared it remains clear. That is, recontamination
never occurs. An important step in examining the complexity of sweeping
is establishing that there are monotonic sweep strategies with the minimum
number of sweepers. This tells us that each edge needs to be cleared only once.
This result was proved first in [13] and an alternate proof was given in [6]. The
proof in [13] is for wormhole sweeping and the elegant proof in [6] is for mixed
sweeping.
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Theorem 7.3. If the sweep number of a connected multigraph X is k, then there
is a monotonic wormhole sweep strategy using k sweepers.

Since determining the sweep number of a multigraph X is an optimization
problem, in that we are looking for the smallest k such that k sweepers can clear
X, we look at a corresponding decision problem when discussing complexity.
Accordingly, we make the following definition.

Definition 7.4. A graph X is k-sweepable if sw(X) < k.

The corresponding decision problem is to determine whether X is k-
sweepable.

Problem: Wormhole Sweeping
Instance: Multigraph X = (V(X), E(X)), positive integer k.
Question: Is X k-sweepable under the wormhole sweeping model?

Theorem 7.3 implies that the Wormhole Sweeping Problem is in NP. The
problem was proved to be NP-complete [15] by using a reduction from the
following problem which is known to be NP-complete [11].

Problem: Min-Cut into Equal-Cardinality Subsets

Instance: Graph X = (V(X), E(X)) of even order, positive integer k.
Question: Is there a partition of V(X) into two subsets V; and V, with
|Vi| = |Va] = |V(X)|/2 such that |[{uv e E(X) : u € Vi, ve Vy}| Sk?

Theorem 7.5. The Wormhole Sweeping problem is NP-complete.

The complexity of sweeping and wormhole sweeping is the same. The
complexity of wormhole sweeping depends heavily on Theorem 7.3, but this
theorem is not valid for sweeping. There are graphs with sweep number k for
which there is no monotonic sweep with k sweepers. We shall discuss this later.

8. Bounds.

In the cases for which we actually want to determine the sweep number of a
multigraph X, a method that sometimes works is to show how to clear X with k
sweepers and then show that sw(X) > k£ — 1. The latter task typically is difficult
because, in general, we do not have effective good lower bounds on sw(X). We
now consider lower bounds for graphs with special structure. Some of them
may not seem particularly meaningful, but it turns out that they are useful for
graphs that are constructed in special ways to answer particular questions.
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Proposition 8.1. If the graph X has minimum valency k 2 3, then
sw(X)=2k+1.

We use Theorem 7.3 to prove this result, by assuming there is a monotonic
wormhole sweep strategy for X using k sweepers. One considers the first
cleared vertex and how this forces the sweepers to be deployed. It quickly leads
to a contradiction. It is not difficult to produce a strategy for k + 1 sweepers that
works.

Note that Proposition 8.1 is stated for graphs and not multigraphs. The
simple explanation for this is that the proposition is not true for multigraphs.
The multigraph 3K, has minimum valency 3 but has sweep number 3. Whether
Proposition 8.1 is true for multigraphs for which every edge has multiplicity at
most 2 is an open problem.

The next result is an immediate corollary of Proposition 8.1.

Corollary 8.2. If the graph X is k-connected and k 2 3, then sw(X) =k + 1.

The following result also is useful for some situations. The subsequent
result is then a corollary of Proposition 8.1 and Theorem 8.3.

Theorem 8.3. If the graph Y is a minor of the graph X, then sw(Y) < sw(X).

Corollary 8.4. If the graph X has clique number k 2 4, then sw(X) = k. In
particular, sw(K,) = n for n 2 4.

Definition 8.5. Let X be a multigraph with vertex set V and edge set E. A

path-decomposition of X is a sequence Vi, V,, ..., V, of subsets of V such that
ViuV,U---UV, =V, every edge of X appears in some (V;), for every vertex
ueV,theset {i : veV;}formasegmentin {1,2,...,t}. The width of a path-

decomposition is max;{|V;| — 1}, 1 £i <. The pathwidth of X is the smallest
width taken over all path-decompositions of X.

Theorem 8.6. If X is a multigraph of pathwidth k, then k —1 < sw(X) S k+1.

9. Graphs with Small Sweep Number.

In this section we describe the reflexive multigraphs whose sweep numbers
are either 1, 2 or 3. The description involves homeomorphic reductions.
We next give two definitions to make it perfectly clear what we mean by
homeomorphically reducing a reflexive multigraph. Homeomorphic reduction
is an operation that potentially takes us out of the class of graphs. That is, there
are graphs whose homeomorphic reduction has both loops and multiple edges.
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Definition 9.1. Let X be a reflexive multigraph. Let V' = {u € V(X) : val(u) #
2}. A suspended path in X is a path of length at least 2 joining two vertices of
V’ such that all internal vertices of the path have valency 2. A suspended cycle
in X is a cycle of length at least 2 such that exactly one vertex of the cycle is in
V' and all other vertices have valency 2.

Definition 9.2. Let X be a reflexive multigraph. Let V' = {u € V(X) : val(u) #
2}. The homeomorphic reduction of X is the reflexive multigraph X" obtained
from X with vertex set V' and the following edges. Any loop of X incident
with a vertex of V' is a loop of X’ incident with the same vertex. Any edge of
X joining two vertices of V' is an edge of X’ joining the same two vertices. Any
suspended path of X joining two vertices of V' is replaced by a single edge in X’
joining the same two vertices. Any suspended cycle of X containing a vertex
u of V', is replaced by a loop in X’ incident with u. Finally, any suspended
cycle of X that has only vertices of valency 2 is a component of X containing
no vertices of V'. We replace this cycle by a new vertex in X’ with a single
isolated loop incident with the vertex.

It is not difficult to prove that the homeomorphic reduction of a reflexive
multigraph is unique to within isomorphism.

Lemma 9.3. If X is a graph and Y is its homeomorphic reduction, then
sw(X) = sw(Y).

This result is proved by showing how to go from a wormhole sweep
strategy on X with sw(X) sweepers to a wormhole sweep strategy on Y with
the same number of sweepers, and vice versa.

It is easy to see how to prove the next result.

Theorem 9.4. A multigraph X is 1-sweepable if and only if X is a path.

Theorem 9,5. A reflexive multigraph X is 2-sweepable if and only if its homeo-
morphic reduction consists of a path uiu; . . . u, such that there are an arbitrary
number of loops incident with uy and u,, and an arbitrary number of loops and
pendant edges incident with each vertex u;, 2 <i < n — 1, and the multiplicity
of any non-loop edge is at most 2.

The preceding theorem is fairly easy to prove. If we restrict ourselves to the
class of graphs, then we can see how to get 2-sweepable graphs from Theorem
9.5. Any loops must be subdivided at least twice so that they become cycles with
one vertex of valency bigger than 2. Whenever we find an edge of multiplicity
2, at least one of the edges must be subdivided at least once in order to remove
multiple edges thereby producing a graph.
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The description of 3-sweepable multigraphs requires the introduction of
a special family of multigraphs we now describe. Recall that an outerplanar
multigraph X is a multigraph that can be embedded in the plane so that every
vertex of X lies in the boundary of the infinite face. In other words, the boundary
of the infinite face is a Hamilton cycle C of X. All edges of X not in C are
chords of C lying in the interior of the region bounded by C.

Definition 9.6. Let X be an outerplanar graph embedded in the plane so that
C is the Hamilton cycle bounding the infinite face. As we traverse the cycle
C clockwise, let uju; ...u, be a subpath of C. We say that the chord u;u;,
1 =i < j < p, spans each edge in the subpath u;u;,; ... u;. Two such chords
are nested if there is an edge of u u;, . . . u,, spanned by both of them. We say that
two boundary edges e; and e, are opposing poles if neither of the two subpaths
comprising E(C) \ {e;, e»} has a pair of nested chords. We allow either one of
the two opposing poles to be a single vertex. If an outerplanar embedding of X
has a pair of opposing poles, then we say that X is bipolar.

The Figure 1 shows a bipolar outerplanar graph with opposing poles uv;
and Uu7vs.

Figure 1: A bipolar outerplanar graph

Theorem 9.7. A homeomorphically reduced, 2-connected reflexive multigraph
X is 3-sweepable if and only if X is outerplanar and bipolar.
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A description of the 3-sweepable reflexive multigraphs is going to involve
ways for combining multigraphs, with bipolar outerplanar graphs playing a
basic role. We are going to use 1- and 2-sweepable reflexive multigraphs, and
2-connected 3-sweepable reflexive multigraphs as our basic building blocks.
There is a common method for combining multigraphs that appears now and we
describe it.

Definition 9.8. Let X and X, be vertex-disjoint reflexive multigraphs. Choose
a vertex u; € V(Xy) and u, € V(X,). The amalgamation of X, and X, by
identifying u; and u, is the graph X we obtain in the following way. The
vertex set V(X) consists of (V(X 1)\ {u1}) UV (X)\ {uz}) together with a new
vertex u. The edge set E(X) consists of the edges of X joining two vertices
of V(X 1)\ {u1}, the edges of X, joining two vertices of V(X>) \ {u;}, together
with an edge from u to any vertex that was adjacent to either u; or u; in X, or
X5, respectively.

We also may amalgamate three or more vertex-disjoint graphs by identi-
fying them at a single vertex chosen from each. It is done in the obvious way
suggested by the amalgamation of two graphs as described in the preceding
paragraph. (One may also amalgamate along subgraphs bigger than a single
vertex, but we are not concerned with that in this material.)

Proposition 9.9. Let X be the amalgamation of reflexive multigraphs X1,
Xo, ..., X, by identification of a single vertex from each X;. If X; is 2-
sweepable for 1 <i <t, then X is 3-sweepable.

The proof of Proposition 9.9 follows from stationing a single sweeper at
the amalgamated vertex of X which allows two sweepers to clear X .

Consider a block B of a homeomorphically reduced 3-sweepable reflex-
ive multigraph X. The block B must be 3-sweepable, but B itself need not be
homeomorphically reduced since it may contain 2-valent vertices belonging to
other blocks of X. It follows from Theorem 9.7 that when B is homeomor-
phically reduced, the resulting reflexive multigraph B’ must be outerplanar and
bipolar. So we need to extend the definitions of boundary edges and opposing
poles from B’ to B itself. We say that an edge e of B reduces to an edge ¢’ of
B’ if e = ¢’ or e is in a suspended path of B which becomes the edge ¢’ when
B is homeomorphically reduced to B’. Given that e of B reduces to ¢’ of B’,
we say that e is a boundary edge of B if ¢’ is a boundary edge of B’, and we
say that two boundary edges of B are opposing poles for B if they reduce to
opposing poles for B’. If uu’ and vv’ are a pair of opposing poles for B, then u
and v are called opposingl vertices of B.



22 BRIAN ALSPACH

For purposes of discussions involving blocks, we consider a loop to be a
block by itself.

Definition 9.10. Let X be a connected, homeomorphically reduced, reflexive
3-sweepable multigraph consisting of 3-sweepable blocks By, By, ..., B, such
that the block-cut-graph of X is a path. By the definition of block-cut-graph,
this means we can write the blocks and cut-vertices as a sequence

B]va]7B27a27"'7Br7]7ar7]7Br

so that ay, as, ..., a, are distinct vertices of X, where a; € V(B;) N V(Bj41),
1 £ j<r —1.1If, in addition, ¢; and a;4,, 0 < j <r — 1, are opposing vertices
for Bj;1, we call C = (ag, By, ai, By, ..., a,_1, B,, a,) a 3-chain for X.

Definition 9.11. Let X be a connected, homeomorphically reduced, reflexive
3-sweepable multigraph containing a 3-chain of the form

C = (a07 B] 9 a] 9 BZv ceey arfl 9 Brv ar)-
A valid set of opposing poles for C is any sequence of edges

apXi, d1yi1, aiXz, day2, AzX3, ..., Ay yr

such that a;_;x;, a;y;, 1 £ j <r, are opposing poles for B;. Define N(C) =
{x1, yi. x2, y2, oo, X0, Y}, A(C) = {ay, a, ...,a,—1} and V(C) = U{V(B)) :
1 < j <r}. For any block B; and its specified opposing poles a;_;x; and a;y;,
let P; be either of the two boundary paths obtained by removing the edges
aj—1x; and a;y;, and let Hp, denote the subgraph of B; consisting of P; and
all edges of B; that reduce to chords whose end vertices belong to P; when B;
is homeomorphically reduced. We call a vertex of Hp, free if it is a cut-vertex
of Hp, or it belongs to A(C) U N(C). Let X' be a subgraph of X. We say that
X' hangs from, or is hanging by, the vertex ve V(C) if v = V(C) N V(X')

Theorem 9.12. A homeomorphically reduced, connected reflexive multigraph
X has sw(G) £ 3 if and only if X consists of a 3-chain

C = (a07 B]valv B27 "'7ar7]7 Brvar)
with a valid set of opposing poles apxy, a1y1, aixa, axyz, X3, . .., 4, y,, along

with vertex-disjoint reflexive submultigraphs of the following forms hanging
from the vertices in V(C):
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(a) an arbitrary number of edges and loops hanging from each free vertex;

(b) an arbitrary number of pinched graphs hanging by their coalesced nodes
from each vertex in A(C);

(c) for 1 < j<r, at most one 2-sweepable graph hanging by one of its end
vertices from each of x; and yj;, or, if x; = y;, at most two such subgraphs
hanging from the single vertex x; = y;.

10. Restricted Sweeping.

The notion of general sweeping first introduced by Parsons allows consid-
erable freedom for both sweepers and an intruder. The move to sweeping and
wormhole sweeping places restrictions on the sweepers in terms of how many
may move and the moves themselves. The notion of monotonic is another kind
of restriction. The next definition introduces another restriction in which we are
interested.

Definition 10.1. Let X be a reflexive multigraph and let E; denote the set of
cleared edges at time i, i € Z. A sweep strategy for which the submultigraphs
(E;) induced by E; are connected for all i is called connected.

Even though the sweep number of a reflexive multigraph is the same for
general sweeping, sweeping, wormhole sweeping, and mixed sweeping, once
we begin considering monotonicity and connectedness, we shall find that the
different sweep models may behave differently. Consequently, we need to
introduce extra notation. On the other hand, in this section, we are going to
consider only sweeping and wormhole sweeping. Accordingly, we let msw(X)
denote the minimum number of sweepers required for a monotonic sweep
strategy for X, we let mksw(X) denote the minimum number of sweepers
required for a monotonic connected sweep strategy for X, we let mwsw(X)
denote the minimum number of sweepers required for a monotonic wormhole
sweep strategy for X, and we let mkwsw(X) denote the minimum number of
sweepers required for a monotonic connected wormhole sweep strategy for X .
These numbers are called the monotonic sweep number, monotonic connected
sweep number, monotonic wormhole sweep number, and monotonic connected
wormhole sweep number of X, respectively.

From Theorem 7.3, we know that mwsw(X) = wsw(X), where we
emphasize the fact we are comparing wormhole strategies by using wsw(X)
for wormhole sweeping. The following result was given in [5].

Theorem 10.2. If X is a connected graph, then sw(X) = wsw(X) =
mwsw(X) S msw(X) < kwsw(X) = ksw(X) < mkwsw(X) = mksw(X).
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The first two inequalities were proven in [5] together with examples that
showed the inequalities could be strict.
Whether the inequality ksw(X) < mkwsw(X) could be strict was left as an
unsolved problem in [5]. It is shown in [26] that the inequality may be strict.
In fact, the difference may be arbitrarily large. The example depends heavily
on the way in which cliques must be swept, and that cliques provide lower
bounds for sweep numbers. Even though the difference between mkwsw(X)
and ksw(X) can be made arbitrarily large, the number of vertices grows rapidly.
An interesting unsolved problem is whether the ratio of mkwsw(X) to ksw(X)
is bounded. There is some speculation the ratio may be bounded by 2.

11. Sweeping Digraphs.

Most of the research on sweeping has concentrated on reflexive multi-
graphs, and little has been done on digraphs. We include a brief description
of some recent work dealing with digraphs. Some of this appears in [8]. Since
digraphs are equipped with a notion of direction, this should play a role in what
it means to sweep a digraph. In fact, we introduce four distinct underlying no-
tions of sweeping digraphs.

Definition 11.1. Let X be a reflexive multidigraph. If both sweepers and
the intruder must obey the directions of the arcs of 7, we call this directed
sweeping. The minimum number of sweepers required to capture any intruder
using directed sweeping on X is denoted sw],](Y). If both sweepers and the
intruder may move with or against the directions of the arcs of 7, we call this
undirected sweeping. The minimum number of sweepers required to capture
any intruder using undirected sweeping on X is denoted swo,o(Y). If the
sweepers may move with or against the directions of the arcs but the intruder
must obey the directions of the arcs, we call this strong sweeping. The minimum
number of sweepers required to capture any intruder using strong sweeping on
X is denoted swo,](Y). Finally, if the sweepers must obey the directions of
the arcs but the intruder may move with or against the directions of the arcs, we
call this weak sweeping. The minimum number of sweepers required to capture
any intruder using weak sweeping on X is denoted SW1 ,0(7).

Of course, performing undirected sweeping on a reflexive multidigraph X
is exactly the same as sweeping the reflexive multigraph underlying X . The
other three modes of sweeping are, in some sense, more interesting for reflexive
multidigraphs.
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Theorem 11.2. If X isa reflexive multidigraph, then
swo, 1 (X) S swy1(X) Sswyo(X),

and

SWO,](Y) < SWo,o(Y) < SW],O(Y)-
Since the directed path P, is easily seen to satisfy
— —
swWo,1(Pp) = swyo(Py) = 1,

we see that we can achieve equality throughout both strings of inequalities. On
the other hand, if ?n is the transitive tournament of order n, it is not difficult
to see that swo,](Tn)) = 1. Since the graph underlying Tn) is K,, we have
swo,o(Tn)) = n, when n =4, by Corollary 8.4. It is not difficult to show
that sw],](Tn)) = L%J. This shows that the first inequality in each string of
inequalities can be strict.

The digraph X with vertex set {v1, vp, v3} and arc set {(v,, v1), (V2, V3)}
satisfies swo,o(Y) =1 and sw],o(Y) = 2. The digraph Y with vertex set
{v1, vp, v3, v4} and arc set {(vy, v2), (V2, v3), (V2, V4), (U3, V1), (v, V1)} satisfies
sw],](7) = 2 and sw; o( ¥ ) = 3. Thus, all of the inequalities may be strict in
Theorem 11.2.

Theorem 11.3. If 7 is a subdigraph of a reflexive multidigraph 7 then
%
swo,1(X) < swo 1 (X).

The preceding theorem does not hold for directed sweeping. If we let T
be the tournament we obtain by reversing the arc from the source to the sink
in the transitive tournament of order 4, then sw],](?) = 2. If we then let
Y be the subdigraph of T obtained by removing the reversed arc, we have
SWi 1 = 3.

Definition 11.4. The arc digraph L(Y) of a digraph X has its vertices
corresponding to the arcs of 7, and an arc from (u, v) to (x, y) whenever
(u, v) and (x, y) are arcs of X such that v = x.

Definition 11.5. The path cover number of a digraph X is the fewest number
of directed paths of X that cover the vertex set of X . We denote this by

pc(?).
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An acyclic digraph is a digraph without directed cycles. The following
result is proved in [17].

Theorem 11.6. If? is an acyclic digraph, then sw],o(Y) = pc(?).

In contrast to the preceding result for weak sweeping, the next result for
strong sweeping has a much different conclusion.

Theorem 11.7. If X isan acyclic digraph, then swo,](Y) =1.

Let D denote the collection of the following digraphs: The directed cycles
of length 2 or more, the directed cycles of length 2 or more with a suspended
directed path of length 2 or more joining two distinct vertices of the directed
cycle, and the digraphs formed by amalgamating two directed cycles of lengths
at least 2 at a single vertex. It is not difficult to verify that any digraph in D
has strong sweep number 1. We say that such digraphs are 1-strong- sweepable.
The next theorem tells us that they are essentially the only building blocks.

Theorem 11.8. A digraph X isl -strong-sweepable if and only if every strong
component of X is either in D or is a single vertex.

The descriptions of the digraphs with sweep number 1 under the other
sweeping modes is simpler. We have swo)o(Y) = 1 if and only if X is
an orientation of a path. For directed sweeping and weak sweeping, the only
digraph with sweep number 1 is the directed path.

12. Bounding the Search Number.

We now leave sweeping and return to searching. Recall that the search
model we are using is BPE search. The first thing we point out is that we
restrict ourselves to graphs. Since searching involves only vertex locations and
we allow the intruder to not move on any of the intruder’s turns, neither multiple
edges nor loops play any role in capturing an intruder. Also recall that sn(X)
denotes the search number of X under this search model.

In this section we examine upper and lower bounds on sn(X). Some of the
bounds are crude but still useful in determining search numbers.

Definition 12.1. The girth of a graph X is the length of a shortest cycle in X.
We let the girth of a tree be 0. We use gir(X) to denote the girth of X.

The next result by Aigner and Fromme [1] indicates that the girth of a
graph is involved in determining the search number. We explore this connection
for the rest of this section.
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Theorem 12.2. Let X be a graph with minimum valency at least d. If X
contains no 3-cycles or 4-cycles, then sn(X) = d.

Frankl [10] improved the preceding result as follows.

Theorem 12.3. If X is a connected graph with gir(X) = 8¢ — 3 and minimum
valency at least d + 1, then sn(X) > d'.

Frankl [9] also proved the following.

Theorem 12.4. Let d denote the minimum valency of a connected graph X . If
any two vertices of X are connected by at most two paths of length at most 2,
then sn(X)d /2. Moreover, if X contains no 3-cycles, then sn(X) = (d + 1)/2.

The results in this section so far have dealt with lower bounds for the search
number. We conclude the section with results that give upper bounds for certain
graphs. The first is a trivial upper bound.

Definition 12.5. Let X be a graph. A dominating set of X is a set V| C V(X)
such that every vertex of X either belongs to V; or is adjacent to a vertex in
V1. The cardinality of a minimum dominating set of X is called the domination
number of X, and is denoted dom(X).

Proposition 12.6. If X is a graph, then sn(X) < dom(X).
Aigner and Fromme [1] obtained the following result on upper bounds.

Theorem 12.8. Let X be a connected graph with maximum valency at most 3.
If any two adjacent edges of X are contained in a cycle of length at most 5, then
sn(X) < 3.

Theorem 14.4 establishes an upper bound on the search number of a planar
graph. Since planarity may be characterized in terms of minors, this suggests
that minors might be a useful avenue for investigation. The next two theorems
by Andreae [3] deal with minors.

Theorem 12.8. Let u be a vertex of a graph Y such that Y \ u has no isolated
vertices. If X is a graph with no Y -minor, then sn(X) < |E(Y \ u)|.

Let A and B be the two graphs displayed in Figure 2. Since K5 and K3 3
are both minors of B, a planar graph cannot have a B-minor. Consequently, the
next theorem extends Theorem 14.4 given later.

Theorem 12.9. Let X be a graph. We then have sn(X) <2 if A £ X, and
sn(X)S3ifB £X.
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Figure 2

13. Searching Cayley Graphs.

We now move to consideration of search numbers for some special classes
of graphs. The first is the class of Cayley graphs. We give the definition first.

Definition 13.1. Let G be a finite groupand S C G, with 1 ¢ Sand S = S~!,
that is, s € S implies s~! € S. The Cayley graph Cay(G; S) is the graph with
vertex set G and edges joining g and gs, for all g € G and s € S. We refer to
Cay(G; S) as the Cayley graph on G with connection set S.

Theorem 13.2. If X(G; S) is a connected Cayley graph on the abelian group
G, then sn(X(G; §)) < f“s‘;])].

Corollary 13.3. The d-dimensional cube Q, satisfies

d+ 1
n(Q) = [“5—1.

Theorem 13.2 is a consequence of a more general result in [9] that we
omit here. The essential contributing factor to the bound appearing in Theorem
13.2 is that Cayley graphs of valency 3 or more on abelian groups have many
4-cycles. This translates into a single searcher being able to reduce the search
to a quotient Cayley graph of valency two or three less with one less searcher.
This is the basis of an inductive proof.

Corollary 13.3 gives the actual search number for the d-dimensional cube.
We know the search number is at most this value from Theorem 13.2. To show
that we need this many searchers, note that the intruder is captured when he is
located at a vertex v such that every neighbor of v is adjacent to a vertex with a
searcher on it, and at least one neighbor of v itself has a searcher on it. When
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d is even, it takes at least d/2 searchers to cover the d neighbors of the vertex
v at which the intruder is located because any two vertices of O, have at most
two common neighbors. One additional searcher is required to be on a vertex
adjacent to v. Thus, it takes at least 1 +d /2 = [(d + 1)/2] searchers to capture
an intruder in Q.

When d is odd, it takes at least (d 4+ 1)/2 searchers to take care of the d
neighbors of v. One of them actually may be located at a neighbor of v taking
care of v as well. Thus, at least (d 4+ 1)/2 = [(d 4+ 1)/2] searchers are required.
Hence, we see that equality holds in both cases and the result follows.

One other result specifically dealing with Cayley graphs is the following.
It was obtained by Frankl [10] .

Theorem 13.4. Let Cay(G; S) be a connected Cayley graph on the finite group
G.IfgSg™ ' = S for all g € G, then sn(Cay(G; S))) < |S].

14. Searching and Genus.

There is no transparent connection between searching and embedding
graphs in surfaces. Nevertheless, planar graphs often have nice properties
with respect to various graph parameters. Hence, it is no surprise that graphs
embedded on surfaces have been considered. In this section we consider only
orientable surfaces.

Definition 14.1. We say that a collection § of searchers protects a subgraph Y
of X if the searchers in § can move so that for any sequence of intruder moves
leading to the intruder moving to a vertex of Y, the intruder is immediately
captured by a searcher in § upon moving to a vertex of Y.

Lemma 14.2. Let vy, v, be distinct vertices of a graph X and P = vv;... v,
be a shortest path from vy to v,. After a finite number of moves, a single searcher
can protect P.

The lemma is proved by showing that a single searcher y can reach a vertex
of P, after a finite number of moves, so that the distance from y to any vertex
of P is at most the distance from the intruder to the vertex. Once this situation
is achieved, it is not hard to see that no matter how the intruder moves, the
situation can be maintained by the searcher on the path.

The preceding lemma plays an important role in what follows. It also has
surprising consequences. One such consequence is the following corollary.
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Corollary 14.3. Let C be a shortest cycle in a graph X . If there are at least
two searchers in X, then after a finite number of moves a single searcher can
protext C.

The corollary is proved by moving a searcher to a vertex u of C. At
this point, the intruder cannot use either edge of C incident with u. Apply
Lemma 14.2 to the path P obtained by removing an edge e of C incident with
u. A single searcher can move so that P is protected in the subgraph X \ {e}.
However, the intruder can never use this edge without first reaching a vertex of
P. That is, the intruder is forced to move in X \ {e}. Hence, the single searcher
protecting P in X \ {e} is simultaneously protecting C in X.

The following result was obtained in [1], but as pointed out in the discus-
sion of Theorem 12.9, it is subsumed by the earlier result. Nevertheless, we give
it here as a separate result because of the special role played by planar graphs.
There are planar graphs achieving the upper bound. One such example is the
dodecahedron. This is easily seen by observing that no matter the location of the
intruder, two searchers cannot cover all three neighbors of the vertex containing
the intruder.

Theorem 14.4. If X is a planar graph, then sn(X) < 3.

A non-planar graph X is called foroidal if it can be embedded in the torus.
The following result was given in [22]. What is interesting is that no one knows
of a toroidal graph with search number 4.

Theorem 14.5. If X is toroidal, then sn(X) < 4.

No one has much of an idea what happens for larger genus. Schroeder
[22] has established that L%‘ij + 3 is an upper bound for the search number
of a graph of genus g, and he has conjectured that g + 3 is an upper bound.
However, there is little evidence to indicate how good the established bound or
conjectured bound might be.

15. Graph Products.

For some graph parameters, there is a strong connection between the values
of the parameter for graphs in the product, and the value of the parameter for
the product itself. In this section, we examine this theme for search numbers.
The first product we consider is the cartesian product.

Definition 15.1. Let X; = (V;, E;), 1 <i < n, be graphs. The cartesian product
of X1, X5,...,X,,denoted X; DX, ... 0X,,has vertex set Vi x Vo x - --x
V., where two vertices (u1, us, ..., u,) and (v, vz, ..., v,) are adjacent if and
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only if there exists j satisfying 1 < j <n such that u;v; € E; and u; = v; for
alli # j.

Maamoun and Meyniel [14] investigated bounds on the search numbers of
cartesian products. The next three results deal with that work.

Theorem 15.2. If Ty, T», ..., T, are trees, then

r+1
2

SH(T]DTz\:‘DTr)él— —|

Theorem 15.3. If X is the cartesian product of r connected graphs X; =
(Vi, Ep), with |V;| 22, then sn(X) > [51].

Theorems 15.2 and 15.3 give an immediate proof of the following corol-
lary. This corollary is a generalization of Corollary 13.3, in which the search
number of the d-dimensional cube Q, is presented, since the d-dimensional
cube Qy is the cartesian product of d trees.

Corollary 154. If Ty, Ty, ..., T, are trees of order at least 2, then

r+1

SH(T]DTz\:‘DTr):l— —|

Tosi¢ [23] considered the cartesian product of arbitrary connected graphs.
The next theorem is his.

Theorem 15.5. If X, and X, are two connected graphs, then

sn(X; 0 X5) <sn(X;) + sn(X>).

Corollary 15.4 establishes the search number of the cartesian product of
any number of trees. We now consider the same problem for the cartesian
product of cycles. This is from [16].

Theorem 15.6. If X = C,JC, 0 - -- OC,, where each C; is a cycle of length
at least 4, then sn(X) =r + 1.

Definition 15.7. Let X; = (V|, Ey), X, = (Vo, Ey), ..., X, = (V,, E,) be

a collection of r graphs. The categorical product of X1, X, ..., X,, denoted
X1 x X, x---xX,,is defined to be the graph with vertex set Vi x Vo x - - - x V.,
where vertex (u1, us, ..., u,) is adjacent to vertex (vy, v, ..., v,) if and only if

Uu;v; EE(X,‘) for all i, 1 él él".
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We now discuss searching categorical products. In some sense, categorical
products behave strangely. For example, unlike cartesian products, the categor-
ical product of two connected graphs need not be connected. It turns out to be
easy to determine when connected graphs have connected categorical products.
That is the subject of the next well-known result.

Theorem 15.8. If X and X, are connected graphs, then their categorical

product X1 x X, is connected if and only if at least one of them is not bipartite.

Theorem 15.9. Let X| and X, be connected non-bipartite graphs such that
sn(X,) = sn(X).

(i) If sn(X;)2, then
sn(X; x X,) <2sn(X;) + sn(X5) — 1.
(ii) If sn(X1) = sn(X,) = 1, then

sn(X; x X,) 3.

The following corollary is an immediate consequence of the preceding
theorem.

Corollary 15.10. Ler X;, 1 <i <r, be connected non-bipartite graphs.
If sn(X;) 2 2 for some i, then

sn(X; x Xp X+ X X,)§2(an(Xi)) —max sn(X;) —r + 1.

i=1
Ifsn(X;)=1foralli, 1 <i<r, then

sn(X; x Xo x---xX,)Sr+1.

The next two theorems are from [16].

Theorem 15.11. If X is the categorical product of r 2 2 complete graphs, each

of order at least 3, then
1
sn(X) < r%] Y
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Definition 15.12. The strong product of X1, X5, ..., X,, denoted X; X X, X -
-- X X,, is defined to be the graph with vertex set V(X ) x V(X;) x - - - x V(X,),
where vertex (u1, us, ..., u,) is adjacent to vertex (vy, v, ..., v,) if and only if
foreach i, 1 <i <r, either u;v; € E(X;) or u; = v;.

Theorem 15.13. If X| and X, are graphs satisfying either sn(X,) =2 or
sn(X,) =2, then sn(X; X X,) <sn(X;) + sn(X,) — 1.

The following result is an immediate corollary of Theorem 15.13 since the
search number of a cycle is 2.

Corollary 15.14. If Cy, C,, ..., C, are cycles all of whose lengths are at least
5, then
sn(C,XC, K- - XCH)Sr 4+ 1.

Definition 15.15. Let X; and X, be two graphs. The wreath product, denoted
X1 1X,,has V(X;) x V(X,) as the vertex set, where (1, u;) and (v;, v,) are
adjacent if and only if either u; = v; and u; is adjacent to v, in X,, or u; and
vy are adjacent in X;.

The easy way to picture the wreath product X;: X is to replace each vertex
of X with a copy of X, and make two vertices in distinct copies of X, adjacent
if and only if the corresponding vertices are adjacent in X ;. The wreath product
of more than two graphs is defined in the obvious way since this product is
associative.

Theorem 15.16. Let X| and X, be two graphs. If sn(X) =2 or sn(X;) =
sn(X,) = 1, then sn(X; 2 X5) = sn(Xy). If sn(Xy) = 1 and sn(X») =2, then
sn(X; 1 X,) =2.

16. 1-Searchable Graphs.

Definition 16.1. If X is a graph and sn(X) <k, then we say that X is k-
searchable.

The purpose of this section is to present the nice characterization of 1-
searchable graphs as given by Nowakowski and Winkler [18]. It also was
obtained independently by Quilliot [21].

One characterization involves an order relation defined on the vertex set of
a graph. We use the notation N(u) to denote the closed neighborhood of u, that
is, the neighbors of u together with u itself. We define a relation Ry on V(X),
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where X is a graph, by letting Ry = {(u, u) : u € V(X)}. In other words, Ry is
just the diagonal relation. Assume that the relation R, has been defined for each
integer k € [0, ¢]. Define R, by saying (u, v) € R, if and only if for every
w € N(u), there is a vertex w’ € N(v) such that (w, w’) € R, for some k € [0, ¢].

We now observe that R, € Ry;.;. If we choose a pair (u, u) from the
diagonal, then for each w € N(u), we choose the same w and have (w, w) € Ry.
This implies that (u, u) € Ry, q. If (u, v) € Ry, where u # v, then whatever
satisfies the definition to include (u, v) € R, also works to include (u, v) € Ry .
It follows that R, € Ry ;.

It is easy to see that whenever we reach a ¢ such that R, = R;_;, then
Ry = R;_; for all kK =¢. On the other hand, the graph X is finite so that it has
only finitely many ordered pairs of vertices. Since R; C Ry, there must be a
smallest ¢ for which R, = R;_;. We then define the relation R to be R;_;.

The relation just defined is not particularly intuitive, but it does lead to the
nice Theorem 16.4 below.

Definition 16.2. The order R will be called complete if every ordered pair (u, v)
belongs to R.

Lemma 16.3. If the graph X is either a tree or a complete graph, then R is the
complete order on V(X).

Theorem 16.4. A graph X is I-searchable if and only if the order R on X is
complete.

Definition 16.5. A graph X is said to be bridged if for every cycle C of length
at least 4 in X, there is a bridge B with vertices u, v of attachment such that the
shortest u, v-path in B has length strictly less than the length of either of the
two (u, v)-paths along C.

From the definition, we see that any cycle of length 4 or 5 in a bridged
graph must have a chord. The following result provides a non-trivial class of
1-searchable graphs.

Theorem 16.6. Bridged graphs are 1-searchable.

17. Research Directions.

This brief survey omits a considerable amount of material that has been
produced during the course of investigating searching and sweeping graphs.
Given the length of this survey, the scarcity of details, and the just mentioned
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omissions, one might conclude that the problems have been thoroughly investi-
gated. I believe this to be far from the case. In fact, I would say that the problem
has been barely touched. Following are some directions that future research
might take.

There has been very little work done on digraphs. Section 11 gives some
information on new work regarding sweeping digraphs. Searching digraphs is
considered in [4], [12], [17]. Special classes of digraphs, such as tournaments,
seem like a rich source of new problems.

All of the work on sweeping considered in this survey assumes that no
information on the location of an intruder is available. Indeed, it isn’t even
known whether an intruder is present in the graph. Another wide open area for
new research is to allow various levels of information. Yang [25] has obtained
results on allowing sweepers to be able to see all the points of their closed 1-
neighborhoods; that is, all the points of the incident edges together with the
vertices on the other end of the incident edges. There are a variety of approaches
to partial information on the intruder’s location.

Other than general sweeping, only one sweeper at a time is allowed to
move in the sweeping models discussed. For most practical applications, it is
apparent that there would be many instances where simultaneous moves would
be desirable. What happens to the time performance of sweeping if we allow
more than one sweeper to move at a time?

Suppose we associate costs with sweepers, edge traversals, jumps and time
until completion. What can be said about some notion of optimization if we
allow extra sweepers? Again, this has practical implications.

BPE search has complete information available for both the intruder and
the searchers. What happens to search numbers if we restrict the information?
For example, it seems natural to consider zero information searching. Will
some of the characteristics of sweeping carry over to searching with little or
no information?

What happens to both searching and sweeping if we build the graph as we
go? Essentially all of the work on both searching and sweeping assume the
graph is known ahead of time. Having the graph unfold as vertices are reached
will change the number of sweepers required dramatically. This also seems to
have practical importance.
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