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A NOTE ON THE SPECTRUM OF DIAGONAL
PERTURBATION OF WEIGHTED SHIFT OPERATOR

M. L. SAHARI - A. K. TAHA - L. RANDRIAMIHAMISON

This note provides a complete description of the spectrum of diago-
nal perturbation of weighted shift operator acting on a separable Hilbert
space.

1. Introduction

When working with infinite-dimensional linear dynamical systems, the spectral
theory is often helpful in determining of the asymptotic properties, as a stability,
cyclicity, hypercyclicity, chaoticity... (see [3, 4, 8, 10, 16–18, 23, 24]). On the
other hand the shift operator and his perturbation are a natural and appropriate
setting for testing those concepts (see [9, 11, 13, 22]).

Throughout this paper X will denote a separable complex Hilbert space with
an orthonormal basis {ei}i ⊂ X .

Let B(X) denote the algebra of all bounded linear operators acting on X .
The norm induced by the inner product on X and the associated operator norm
on B(X) are both denoted by ‖·‖. On the other hand, for T ∈B(X), we de-
note by σ(T ), ρ(T ) and r(T ) the spectrum, the resolvent and the spectral ra-
dius of T respectively. Recall that σ(T ) is a non-empty compact subset of
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C, r(T ) ≤ ‖T‖ and r(T ) = lim
∥∥T k

∥∥ 1
k = inf

∥∥T k
∥∥ 1

k . If T is invertible, the in-

verse is denoted by T−1 and we have σ(T−1) =

{
1
λ

: λ ∈ σ(T )
}

. Moreover,

1
r(T−1)

= inf{|λ | : λ ∈ σ(T )} (see [6, 7, 12, 14, 15, 19, 20]).

A bounded linear operator S on X is called a weighted shift operator with
weight sequence {wi}i ⊂ C, if

Sei = wiei+1. (1)

If the index i runs over the set N of non-negative integers, then S is called a uni-
lateral weighted shift and it is called a bilateral weighted shift when i runs over
the set Z of all integers. Such operators have been studied by many authors in re-
lation to various applications (theory of dynamical systems, integro-functional,
differential-functional, functional and difference equations, nonlocal boundary
value problems, nonclassical boundary value problems for certain partial differ-
ential equations, the general theory of operator theory, etc. see [1, 2, 12, 20? ]).
In [5, 6, 25], it is shown that if S is bounded, then there exists 0≤ r− ≤ r+ such
that the spectrum σ(S) of S is given by

σ(S) =
{

λ ∈ C : r− ≤ |λ | ≤ r+
}
.

In this work, we propose to extend this type of result to the case of the perturbed
operator S+D, where D is a diagonal operator.

2. The spectrum of perturbed weighted shift

Through the following results, we provide a complete description of the spec-
trum of diagonal perturbation of unilateral and bilateral weighted shift operators.

2.1. The spectrum of perturbed unilateral weighted shift

Let T ∈B(X) be a diagonal perturbation of a unilateral weighted shift S on X .
That is

T := S+D, (2)

where D is a diagonal operator on X with diagonal entries (di)i∈N; i.e. Dei :=
diei for all i ∈ N.

Theorem 2.1. Let T ∈B(X) be the operator given by (2) and set

RT (λ ) = lim
k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

∣∣∣∣∣∣∣∣


1
k

, (λ ∈ C). (3)
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Then
σ(T ) = {λ ∈ C : RT (λ )≥ 1} . (4)

Proof. Let λ /∈ σ(T ) then T −λ I be invertible. For i ∈ N, set xi = ∑ j∈N ai
je j =

(T −λ I)−1 ei we have
wi−1ai

i−1 +(di−λ )ai
i = 1,

w j−1ai
j−1 +d jai

j = 0, if j 6= i

(5)

and 
wiai+1

i +(di−λ )ai
i = 1,

wiai+1
j +diai

j = 0, if j 6= i.

(6)

The first equation of (5) implies that

ai
i =

1−ai
i−1wi−1

di−λ
, (7)

for all i ∈ N. Since d0 6= λ (otherwise T − λ I would be non-invertible) and
w−1 = 0, then

a0
0 =

1
d0−λ

, (8)

The first equation of (6) implies that

ai
i−1 =

1− (di−1−λ )ai−1
i−1

wi−1
. (9)

for all i ∈ N. From (7)-(9), we have

ai
idi = 1, for every i ∈ N.

Consequently, for all i ∈ N and k ≥ 0, we have

ai
i+k =

〈
(T −λ )−1 ei , ei+k

〉
= (−1)k

k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

,

with the assumption that ∏
−1
m=0 wi+m = 1. Cauchy-Schwarz inequality provides

the inequality∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

∣∣∣∣∣∣∣∣≤
∥∥∥(T −λ I)−1

∥∥∥ , for every i ∈ Nand k ≥ 0.
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By passing to the supremum over i ∈ N , we get

sup
i∈N

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

∣∣∣∣∣∣∣∣≤
∥∥∥(T −λ I)−1

∥∥∥ , for every k ≥ 0. (10)

Taking the kth root and letting k −→ ∞ in (10), we get RT (λ ) ≤ 1. But the
equality is excluded by the spectrum compactness. So we have

RT (λ )< 1. (11)

So, λ /∈ {λ ∈ C : RT (λ )≥ 1} and then

{λ ∈ C : RT (λ )≥ 1} ⊂ σ(T ).

Conversely, in order to show that

σ(T )⊂ {λ ∈ C : RT (λ )≥ 1} ,

we take λ ∈ C, such that (11) is verified and we show that λ /∈ σ(T ). Suppose
that RT (λ )< 1 and let F be a linear operator on X , defined by

F :=
∞

∑
k=0

Fk, (12)

such as, for all k ∈ N, Fk is an operator on X given by

Fkei = ai
i+kei+k, i = 0,1,2, ... (13)

and

ai
i+k = (−1)n

k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

, (14)

with the assumption that ∏
−1
m=0 wi+m = 1. Since ‖Fk‖= supi∈N

∣∣ai
i+k

∣∣ then the in-
equality (11), implies that the operator F is well defined, ‖F‖<∞ and limk→∞ ai+1

i+k =
limk→∞ ai

i+k = 0. From (12)-(14), and for all i ∈ N, we have (F ◦ (T −λ I))ei =
((T −λ I)◦F)ei = ei, then λ /∈ σ(T ). The proof of theorem is now com-
plete.



THE SPECTRUM OF PERTURBED WEIGHTED SHIFT OPERATOR 39

2.2. The spectrum of perturbed bilateral weighted shift

Let T ∈ B(X) be a diagonal perturbation of bilateral weighted shift S on X .
That is

T := S+D, (15)

where D is a diagonal operator with diagonals entries (di)i∈Z; i.e., Dei := diei

for all i ∈ Z.

Lemma 2.2. If T is invertible, then at least one of the following two inequalities
holds

R+
T = lim

k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
di+m

∣∣∣∣∣∣∣∣


1
k

≤ 1 (16)

or

R−T = lim
k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=1
di−m

k
∏

m=1
wi−m

∣∣∣∣∣∣∣∣


1
k

≤ 1. (17)

Proof. Let T be invertible and set xi = ∑ j∈Z ai
je j = T−1ei . Thus, we have

w j−1ai
j−1 +d jai

j = 1, if j = i,

w j−1ai
j−1 +d jai

j = 0, otherwise.

(18)

and 
wiai+1

j +diai
j = 1, if j = i,

wiai+1
j +diai

j = 0, otherwise.

(19)

The first equation of (18) and of (19) implies that

ai
idi = a0

0d0, (20)

for all i ∈ Z. From (18), we get, for all i ∈ Z and k > 0,

ai
i−k =

〈
T−1ei , ei−k

〉
= (−1)k+1

(1−diai
i)

k−1
∏

m=1
di−m

k
∏

m=1
wi−m

,
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assuming that ∏
0
m=1 di−m = 1. Cauchy-Schwarz inequality gives us∣∣∣∣∣∣∣∣

(1−d0a0
0)

k−1
∏

m=1
di−m

k
∏

m=1
wi−m

∣∣∣∣∣∣∣∣≤
∥∥T−1∥∥ , for every i ∈ Z and k ≥ 0. (21)

Consequently, for all i ∈ Z and k > 0, we have

ai
i+k =

〈
T−1ei , ei+k

〉
= (−1)k

diai
i

k−1
∏

m=0
wi+m

k
∏

m=0
di+m

,

Cauchy-Schwarz inequality provides the inequality∣∣∣∣∣∣∣∣d0a0
0

k−1
∏

m=0
wi+m

k
∏

m=0
di+m

∣∣∣∣∣∣∣∣≤
∥∥T−1∥∥ , for every i ∈ Zand k > 0. (22)

From the first equation of (18), for all i ∈ Z, either wi−1ai
i−1 or diai

i is not zero.
Thus, we can distinguish two cases:

1st case: diai
i 6= 0, from (20) and by taking the supremum over i in (21), we

get

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
di+m

∣∣∣∣∣∣∣∣< ∞, for every k > 0. (23)

2nd case: wi−1ai
i−1 6= 0, from (20) and by taking the supremum over i in

(22) , we get

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=1
di−m

k
∏

m=1
wi−m

∣∣∣∣∣∣∣∣< ∞, for every k > 0. (24)

We conclude, by taking the kth root and letting k −→ ∞ in (23) and (24).

In the folow, we give a converse of the previous lemma.

Lemma 2.3. If R+
T < 1 or R−T < 1 then T is invertible.
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Proof. Note that for all k > 0sup
i∈Z

∣∣∣∣∣∣∣∣
k
∏

m=0
di−m

k
∏

m=0
wi−m

∣∣∣∣∣∣∣∣

−1

= inf
i∈Z

∣∣∣∣∣∣∣∣
k
∏

m=0
wi−m

k
∏

m=0
di−m

∣∣∣∣∣∣∣∣≤ sup
i∈Z

∣∣∣∣∣∣∣∣
k
∏

m=0
wi+m

k
∏

m=0
di+m

∣∣∣∣∣∣∣∣ , (25)

then only one of inequality R+
T < 1 or R−T < 1 can be satisfied.

Let F be a linear operator on X to X , defined by

F :=
∞

∑
k=0

Fk, (26)

such as, for all k ∈ N, Fk is an operator given by

Fkei = ai
i+kei+k, i = 0,±1,±2, ... (27)

and

ai
i+k = (−1)k

k−1
∏

m=0
wi+m

k
∏

m=0
di+m

(28)

with the assumptions that ∏
−1
m=0 wi+m = 1. If R+

T < 1 then the operator F is well
defined, ‖F‖ < ∞ and limk−→∞ ai+1

i+n = limk−→∞ ai
i+k = 0. From (26)-(28), and

for all i ∈ Z, we have(F ◦T )ei = (T ◦F)ei = ei, which lead to

T ◦F = F ◦T = I,

where I denotes the identity operator.
If R−T < 1, let F ′ be an operator on X to X , defined by

F ′ :=
∞

∑
k=1

F ′−k, (29)

and for all k > 0, F ′−k is an operator given by

F ′−kei = ai
i−kei−k, i = 0,±1,±2, ... (30)

and

ai
i−k = (−1)k+1

k−1
∏

m=1
di−m

k
∏

m=0
wi−m

, (31)
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with assumptions that ∏
0
m=1 di−m = 1. Note that, the condition R−T < 1 implies

that the operator F ′ is well defined, ‖F ′‖ < ∞ and limk−→∞ ai
i−k = 0. From

(29)-(31) and for all i ∈ Z, we have (T ◦F ′)ei = (F ′ ◦T )ei = ei, which leads to

T ◦F ′ = F ′ ◦T = I,

then the claim is proved.

Theorem 2.4. Let T ∈B(X) be the operator given by (15) and for any λ ∈ C,
R+

T (λ ) , R−T (λ ) are given by

R+
T (λ ) = lim

k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wi+m

k
∏

m=0
(di+m−λ )

∣∣∣∣∣∣∣∣


1
k

(32)

and

R−T (λ ) = lim
k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
(di−m−λ )

k
∏

m=0
wi−m

∣∣∣∣∣∣∣∣


1
k

. (33)

(i) If S is an invertible operator, then

σ(T ) =
{

λ ∈ C : R+
T (λ )≥ 1 and R−T (λ )≥ 1

}
; (34)

(ii) if S is a non-invertible operator, then

σ(T ) =
{

λ ∈ C : R+
T (λ )≥ 1

}
, (35)

Proof. Let λ ∈ ρ(T ) =
{

λ ∈ C : (T −λ I)−1 ∈B(X)
}

. If we replace d j by

d j−λ in the Lemma 2.2, then we get either R+
T (λ )≤ 1 or R−T (λ )≤ 1. But the

equality is excluded by spectrum compactness. So we have at least

R+
T (λ )< 1 (36)

or
R−T (λ )< 1. (37)

If S is invertible, then from (25), only one of inequality (36) and (37) can be
satisfied. Thus,{

λ ∈ C : R+
T (λ )≥ 1 and R−T (λ )≥ 1

}
⊂ σ(T ).
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Therefore, if S is non invertible, supi∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=1
(di−m−λ )

k
∏

m=1
wi−m

∣∣∣∣∣∣∣∣ is not bounded and we

have only R+
T (λ )< 1. So,{

λ ∈ C : R+
T (λ )≥ 1

}
⊂ σ(T ).

Conversely, in order to show that

σ(T )⊂
{

λ ∈ C : R+
T (λ )≥ 1andR−T (λ )≥ 1

}
,

we take λ ∈ C, such that
R+

T (λ )< 1 (38)

or
R−T (λ )< 1 (39)

and we show that λ /∈ σ(T ). From Lemma 2.3, T −λ I is invertible and there
will exist an operator (T −λ I)−1 ∈B(X) such that

I = (T −λ I)−1(T −λ I) = (T −λ I)(T −λ I)−1. (40)

Therefore, λ /∈ σ(T ). Similarly one can show that if S is not invertible, then

σ(T )⊂
{

λ ∈ C : R+
T (λ )≥ 1

}
.

The proof of theorem is now complete.

Remark 2.5. In the previous theorem, if we take di = 0 for all i ∈ Z, then we
obtain a result already shown in [5, 6, 21, 25] about the spectrum of the operator
S. That is

σ(S) = {λ ∈ C : q(S)≤ |λ | ≤ r(S)} .

where q(S) = 0 if S is not invertible and q(S) =
1

r(S−1)
if S is invertible.

3. Remark about the spectrum of perturbed bilateral weighted n-shift

For a strictly positive integer n, we define the bilateral weighted n-shift operator
in X by

Snei = wn
i ei+n, i = 0,±1,±2, ...

The sequence {wn
i }i∈Z ⊂ C represents the weights of the operator Sn. It is clear

that the weighted 1-shift coincide with weighted shift (in the usual sense, see
[26]).
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Remark 3.1. Let Tn ∈B(X) be a diagonal perturbation of bilateral weighted
n-shift Sn on X . That is

Tn := Sn +D, (41)

where D is a diagonal operator defined in (15). For every j ∈ {0, ..., n−1}
and i ∈ Z, let that e j

i := e j+in, w j
i := wn

j+in and S j
ne j

i = w j
i e j

i+1. Where S j
n is

the restriction of Sn on X j, the Sn−invariant closed linear subspace spanned by{
e j

i : i ∈ Z
}

. Note that

X = X0⊕X1⊕·· ·⊕Xn−1

and
Sn = S0

n⊕S1
n⊕·· ·⊕Sn−1

n

Also, since each S j
n is a weighted 1-shift, then the spectra of Sn is the union of

the spectra of all S j
n, j = 0, ..., n−1 (see [14]). In particular,

σ(Sn) = σ(S0
n)∪σ(S1

n)∪· · ·∪σ(Sn−1
n ).

Moreover, if we denote by D j the restriction of D to X j, then

Tn =
(
S0

n +D0)⊕ (S1
n +D1)⊕·· ·⊕ (Sn−1

n +Dn−1)
and thus

σ(Tn) = σ(S0
n +D0)∪σ(S1

n +D1)∪·· ·∪σ(Sn−1
n +Dn−1)

Furthermore, for j ∈ {0, ..., n−1}, R+
j (λ ) and R−j (λ ) are given by

R+
j (λ ) = lim

k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
wn

j+(i+m)n

k
∏

m=0
(d j+(i+m)n−λ )

∣∣∣∣∣∣∣∣


1
k

(42)

and

R−j (λ ) = lim
k→∞

sup
i∈Z

∣∣∣∣∣∣∣∣
k−1
∏

m=0
(d j+(i−m)n−λ )

k
∏

m=0
wn

j+(i−m)n

∣∣∣∣∣∣∣∣


1
k

. (43)

By Theorem 2.4, if S j
n is invertible operator, then we have

σ(S j
n +D j) =

{
λ ∈ C : R+

j (λ )≥ 1 and R−j (λ )≥ 1
}
,

and if S j
n is non-invertible operator then

σ(S j
n +D j) =

{
λ ∈ C : R+

j (λ )≥ 1
}
.
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