A NOTE ON THE SPECTRUM OF DIAGONAL PERTURBATION OF WEIGHTED SHIFT OPERATOR

M. L. SAHARI - A. K. TAHA - L. RANDRIAMIHAMISON

This note provides a complete description of the spectrum of diagonal perturbation of weighted shift operator acting on a separable Hilbert space.

1. Introduction

When working with infinite-dimensional linear dynamical systems, the spectral theory is often helpful in determining of the asymptotic properties, as a stability, cyclicity, hypercyclicity, chaoticity... (see $[3,4,8,10,16-18,23,24]$). On the other hand the shift operator and his perturbation are a natural and appropriate setting for testing those concepts (see [9, 11, 13, 22]).

Throughout this paper X will denote a separable complex Hilbert space with an orthonormal basis $\left\{e_{i}\right\}_{i} \subset X$.

Let $\mathscr{B}(X)$ denote the algebra of all bounded linear operators acting on X. The norm induced by the inner product on X and the associated operator norm on $\mathscr{B}(X)$ are both denoted by $\|\cdot\|$. On the other hand, for $T \in \mathscr{B}(X)$, we denote by $\sigma(T), \rho(T)$ and $r(T)$ the spectrum, the resolvent and the spectral radius of T respectively. Recall that $\sigma(T)$ is a non-empty compact subset of

[^0]$\mathbb{C}, r(T) \leq\|T\|$ and $r(T)=\lim \left\|T^{k}\right\|^{\frac{1}{k}}=\inf \left\|T^{k}\right\|^{\frac{1}{k}}$. If T is invertible, the inverse is denoted by T^{-1} and we have $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}: \lambda \in \sigma(T)\right\}$. Moreover, $\frac{1}{r\left(T^{-1}\right)}=\inf \{|\lambda|: \lambda \in \sigma(T)\}($ see $[6,7,12,14,15,19,20])$.

A bounded linear operator S on X is called a weighted shift operator with weight sequence $\left\{w_{i}\right\}_{i} \subset \mathbb{C}$, if

$$
\begin{equation*}
S e_{i}=w_{i} e_{i+1} \tag{1}
\end{equation*}
$$

If the index i runs over the set \mathbb{N} of non-negative integers, then S is called a unilateral weighted shift and it is called a bilateral weighted shift when i runs over the set \mathbb{Z} of all integers. Such operators have been studied by many authors in relation to various applications (theory of dynamical systems, integro-functional, differential-functional, functional and difference equations, nonlocal boundary value problems, nonclassical boundary value problems for certain partial differential equations, the general theory of operator theory, etc. see [1, 2, 12, 20?]). In [5, 6,25], it is shown that if S is bounded, then there exists $0 \leq r^{-} \leq r^{+}$such that the spectrum $\sigma(S)$ of S is given by

$$
\sigma(S)=\left\{\lambda \in \mathbb{C}: r^{-} \leq|\lambda| \leq r^{+}\right\}
$$

In this work, we propose to extend this type of result to the case of the perturbed operator $S+D$, where D is a diagonal operator.

2. The spectrum of perturbed weighted shift

Through the following results, we provide a complete description of the spectrum of diagonal perturbation of unilateral and bilateral weighted shift operators.

2.1. The spectrum of perturbed unilateral weighted shift

Let $T \in \mathscr{B}(X)$ be a diagonal perturbation of a unilateral weighted shift S on X. That is

$$
\begin{equation*}
T:=S+D \tag{2}
\end{equation*}
$$

where D is a diagonal operator on X with diagonal entries $\left(d_{i}\right)_{i \in \mathbb{N}}$; i.e. $D e_{i}:=$ $d_{i} e_{i}$ for all $i \in \mathbb{N}$.

Theorem 2.1. Let $T \in \mathscr{B}(X)$ be the operator given by (2) and set

$$
\begin{equation*}
R_{T}(\boldsymbol{\lambda})=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\lambda\right)}\right|\right]^{\frac{1}{k}},(\lambda \in \mathbb{C}) \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sigma(T)=\left\{\lambda \in \mathbb{C}: R_{T}(\lambda) \geq 1\right\} \tag{4}
\end{equation*}
$$

Proof. Let $\lambda \notin \sigma(T)$ then $T-\lambda I$ be invertible. For $i \in \mathbb{N}$, set $x_{i}=\sum_{j \in \mathbb{N}} a_{j}^{i} e_{j}=$ $(T-\lambda I)^{-1} e_{i}$ we have

$$
\left\{\begin{array}{l}
w_{i-1} a_{i-1}^{i}+\left(d_{i}-\lambda\right) a_{i}^{i}=1, \tag{5}\\
w_{j-1} a_{j-1}^{i}+d_{j} a_{j}^{i}=0, \quad \text { if } j \neq i
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
w_{i} a_{i}^{i+1}+\left(d_{i}-\lambda\right) a_{i}^{i}=1, \tag{6}\\
w_{i} a_{j}^{i+1}+d_{i} a_{j}^{i}=0, \quad \text { if } j \neq i .
\end{array}\right.
$$

The first equation of (5) implies that

$$
\begin{equation*}
a_{i}^{i}=\frac{1-a_{i-1}^{i} w_{i-1}}{d_{i}-\lambda} \tag{7}
\end{equation*}
$$

for all $i \in \mathbb{N}$. Since $d_{0} \neq \lambda$ (otherwise $T-\lambda I$ would be non-invertible) and $w_{-1}=0$, then

$$
\begin{equation*}
a_{0}^{0}=\frac{1}{d_{0}-\lambda} \tag{8}
\end{equation*}
$$

The first equation of (6) implies that

$$
\begin{equation*}
a_{i-1}^{i}=\frac{1-\left(d_{i-1}-\lambda\right) a_{i-1}^{i-1}}{w_{i-1}} \tag{9}
\end{equation*}
$$

for all $i \in \mathbb{N}$. From (7)-(9), we have

$$
a_{i}^{i} d_{i}=1, \text { for every } i \in \mathbb{N}
$$

Consequently, for all $i \in \mathbb{N}$ and $k \geq 0$, we have

$$
a_{i+k}^{i}=\left\langle(T-\lambda)^{-1} e_{i}, e_{i+k}\right\rangle=(-1)^{k} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\lambda\right)}
$$

with the assumption that $\prod_{m=0}^{-1} w_{i+m}=1$. Cauchy-Schwarz inequality provides the inequality

$$
\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\lambda\right)}\right| \leq\left\|(T-\lambda I)^{-1}\right\|, \text { for every } i \in \mathbb{N} \text { and } k \geq 0
$$

By passing to the supremum over $i \in \mathbb{N}$, we get

$$
\begin{equation*}
\sup _{i \in \mathbb{N}}\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\lambda\right)}\right| \leq\left\|(T-\lambda I)^{-1}\right\|, \text { for every } k \geq 0 \tag{10}
\end{equation*}
$$

Taking the k th root and letting $k \longrightarrow \infty$ in (10), we get $R_{T}(\lambda) \leq 1$. But the equality is excluded by the spectrum compactness. So we have

$$
\begin{equation*}
R_{T}(\lambda)<1 \tag{11}
\end{equation*}
$$

So, $\lambda \notin\left\{\lambda \in \mathbb{C}: R_{T}(\lambda) \geq 1\right\}$ and then

$$
\left\{\lambda \in \mathbb{C}: R_{T}(\lambda) \geq 1\right\} \subset \sigma(T)
$$

Conversely, in order to show that

$$
\sigma(T) \subset\left\{\lambda \in \mathbb{C}: R_{T}(\lambda) \geq 1\right\}
$$

we take $\lambda \in \mathbb{C}$, such that (11) is verified and we show that $\lambda \notin \sigma(T)$. Suppose that $R_{T}(\lambda)<1$ and let F be a linear operator on X, defined by

$$
\begin{equation*}
F:=\sum_{k=0}^{\infty} F_{k}, \tag{12}
\end{equation*}
$$

such as, for all $k \in \mathbb{N}, F_{k}$ is an operator on X given by

$$
\begin{equation*}
F_{k} e_{i}=a_{i+k}^{i} e_{i+k}, \quad i=0,1,2, \ldots \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i+k}^{i}=(-1)^{n} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\lambda\right)} \tag{14}
\end{equation*}
$$

with the assumption that $\prod_{m=0}^{-1} w_{i+m}=1$. Since $\left\|F_{k}\right\|=\sup _{i \in \mathbb{N}}\left|a_{i+k}^{i}\right|$ then the inequality (11), implies that the operator F is well defined, $\|F\|<\infty$ and $\lim _{k \rightarrow \infty} a_{i+k}^{i+1}=$ $\lim _{k \rightarrow \infty} a_{i+k}^{i}=0$. From (12)-(14), and for all $i \in \mathbb{N}$, we have $(F \circ(T-\lambda I)) e_{i}=$ $((T-\lambda I) \circ F) e_{i}=e_{i}$, then $\lambda \notin \sigma(T)$. The proof of theorem is now complete.

2.2. The spectrum of perturbed bilateral weighted shift

Let $T \in \mathscr{B}(X)$ be a diagonal perturbation of bilateral weighted shift S on X. That is

$$
\begin{equation*}
T:=S+D \tag{15}
\end{equation*}
$$

where D is a diagonal operator with diagonals entries $\left(d_{i}\right)_{i \in \mathbb{Z}}$; i.e., $D e_{i}:=d_{i} e_{i}$ for all $i \in \mathbb{Z}$.

Lemma 2.2. If T is invertible, then at least one of the following two inequalities holds

$$
\begin{equation*}
R_{T}^{+}=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}}\right|\right]^{\frac{1}{k}} \leq 1 \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{T}^{-}=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}}\right|\right]^{\frac{1}{k}} \leq 1 \tag{17}
\end{equation*}
$$

Proof. Let T be invertible and set $x_{i}=\sum_{j \in \mathbb{Z}} a_{j}^{i} e_{j}=T^{-1} e_{i}$. Thus, we have

$$
\left\{\begin{array}{l}
w_{j-1} a_{j-1}^{i}+d_{j} a_{j}^{i}=1, \text { if } j=i \tag{18}\\
w_{j-1} a_{j-1}^{i}+d_{j} a_{j}^{i}=0, \text { otherwise. }
\end{array}\right.
$$

and

$$
\begin{cases}w_{i} a_{j}^{i+1}+d_{i} a_{j}^{i}=1, & \text { if } j=i \tag{19}\\ w_{i} a_{j}^{i+1}+d_{i} a_{j}^{i}=0, & \text { otherwise }\end{cases}
$$

The first equation of (18) and of (19) implies that

$$
\begin{equation*}
a_{i}^{i} d_{i}=a_{0}^{0} d_{0} \tag{20}
\end{equation*}
$$

for all $i \in \mathbb{Z}$. From (18), we get, for all $i \in \mathbb{Z}$ and $k>0$,

$$
a_{i-k}^{i}=\left\langle T^{-1} e_{i}, e_{i-k}\right\rangle=(-1)^{k+1} \frac{\left(1-d_{i} a_{i}^{i}\right) \prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}}
$$

assuming that $\prod_{m=1}^{0} d_{i-m}=1$. Cauchy-Schwarz inequality gives us

$$
\begin{equation*}
\left|\frac{\left(1-d_{0} a_{0}^{0}\right) \prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}}\right| \leq\left\|T^{-1}\right\|, \text { for every } i \in \mathbb{Z} \text { and } k \geq 0 \tag{2}
\end{equation*}
$$

Consequently, for all $i \in \mathbb{Z}$ and $k>0$, we have

$$
a_{i+k}^{i}=\left\langle T^{-1} e_{i}, e_{i+k}\right\rangle=(-1)^{k} \frac{d_{i} a_{i}^{i} \prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}},
$$

Cauchy-Schwarz inequality provides the inequality

From the first equation of (18), for all $i \in \mathbb{Z}$, either $w_{i-1} a_{i-1}^{i}$ or $d_{i} a_{i}^{i}$ is not zero. Thus, we can distinguish two cases:
$\mathbf{1}^{s t}$ case: $d_{i} a_{i}^{i} \neq 0$, from (20) and by taking the supremum over i in (21), we get

$$
\begin{equation*}
\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}}\right|<\infty, \text { for every } k>0 \tag{23}
\end{equation*}
$$

$2^{\text {nd }}$ case: $w_{i-1} a_{i-1}^{i} \neq 0$, from (20) and by taking the supremum over i in (22), we get

$$
\begin{equation*}
\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}}\right|<\infty, \text { for every } k>0 . \tag{24}
\end{equation*}
$$

We conclude, by taking the k th root and letting $k \longrightarrow \infty$ in (23) and (24).
In the folow, we give a converse of the previous lemma.
Lemma 2.3. If $R_{T}^{+}<1$ or $R_{T}^{-}<1$ then T is invertible.

Proof. Note that for all $k>0$

$$
\begin{equation*}
\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k} d_{i-m}}{\prod_{m=0}^{k} w_{i-m}}\right|\right]^{-1}=\inf _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k} w_{i-m}}{\prod_{m=0}^{k} d_{i-m}}\right| \leq \sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}}\right| \tag{25}
\end{equation*}
$$

then only one of inequality $R_{T}^{+}<1$ or $R_{T}^{-}<1$ can be satisfied.
Let F be a linear operator on X to X, defined by

$$
\begin{equation*}
F:=\sum_{k=0}^{\infty} F_{k}, \tag{26}
\end{equation*}
$$

such as, for all $k \in \mathbb{N}, F_{k}$ is an operator given by

$$
\begin{equation*}
F_{k} e_{i}=a_{i+k}^{i} e_{i+k}, i=0, \pm 1, \pm 2, \ldots \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i+k}^{i}=(-1)^{k} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}} \tag{28}
\end{equation*}
$$

with the assumptions that $\prod_{m=0}^{-1} w_{i+m}=1$. If $R_{T}^{+}<1$ then the operator F is well defined, $\|F\|<\infty$ and $\lim _{k \rightarrow \infty} a_{i+n}^{i+1}=\lim _{k \rightarrow \infty} a_{i+k}^{i}=0$. From (26)-(28), and for all $i \in \mathbb{Z}$, we have $(F \circ T) e_{i}=(T \circ F) e_{i}=e_{i}$, which lead to

$$
T \circ F=F \circ T=I
$$

where I denotes the identity operator.
If $R_{T}^{-}<1$, let F^{\prime} be an operator on X to X, defined by

$$
\begin{equation*}
F^{\prime}:=\sum_{k=1}^{\infty} F_{-k}^{\prime}, \tag{29}
\end{equation*}
$$

and for all $k>0, F_{-k}^{\prime}$ is an operator given by

$$
\begin{equation*}
F_{-k}^{\prime} e_{i}=a_{i-k}^{i} e_{i-k}, \quad i=0, \pm 1, \pm 2, \ldots \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i-k}^{i}=(-1)^{k+1} \frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=0}^{k} w_{i-m}} \tag{31}
\end{equation*}
$$

with assumptions that $\prod_{m=1}^{0} d_{i-m}=1$. Note that, the condition $R_{T}^{-}<1$ implies that the operator F^{\prime} is well defined, $\left\|F^{\prime}\right\|<\infty$ and $\lim _{k \rightarrow \infty} a_{i-k}^{i}=0$. From (29)-(31) and for all $i \in \mathbb{Z}$, we have $\left(T \circ F^{\prime}\right) e_{i}=\left(F^{\prime} \circ T\right) e_{i}=e_{i}$, which leads to

$$
T \circ F^{\prime}=F^{\prime} \circ T=I
$$

then the claim is proved.
Theorem 2.4. Let $T \in \mathscr{B}(X)$ be the operator given by (15) and for any $\lambda \in \mathbb{C}$, $R_{T}^{+}(\lambda), R_{T}^{-}(\lambda)$ are given by

$$
\begin{equation*}
R_{T}^{+}(\boldsymbol{\lambda})=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k}\left(d_{i+m}-\boldsymbol{\lambda}\right)}\right|\right]^{\frac{1}{k}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{T}^{-}(\boldsymbol{\lambda})=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1}\left(d_{i-m}-\lambda\right)}{\prod_{m=0}^{k} w_{i-m}}\right|\right]^{\frac{1}{k}} \tag{33}
\end{equation*}
$$

(i) If S is an invertible operator, then

$$
\begin{equation*}
\sigma(T)=\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1 \text { and } R_{T}^{-}(\lambda) \geq 1\right\} \tag{34}
\end{equation*}
$$

(ii) if S is a non-invertible operator, then

$$
\begin{equation*}
\sigma(T)=\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1\right\} \tag{35}
\end{equation*}
$$

Proof. Let $\lambda \in \rho(T)=\left\{\lambda \in \mathbb{C}:(T-\lambda I)^{-1} \in \mathscr{B}(X)\right\}$. If we replace d_{j} by $d_{j}-\lambda$ in the Lemma 2.2, then we get either $R_{T}^{+}(\lambda) \leq 1$ or $R_{T}^{-}(\lambda) \leq 1$. But the equality is excluded by spectrum compactness. So we have at least

$$
\begin{equation*}
R_{T}^{+}(\lambda)<1 \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{T}^{-}(\lambda)<1 \tag{37}
\end{equation*}
$$

If S is invertible, then from (25), only one of inequality (36) and (37) can be satisfied. Thus,

$$
\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1 \quad \text { and } R_{T}^{-}(\lambda) \geq 1\right\} \subset \sigma(T)
$$

Therefore, if S is non invertible, $\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=1}^{k-1}\left(d_{i-m}-\lambda\right)}{\prod_{m=1}^{k} w_{i-m}}\right|$ is not bounded and we have only $R_{T}^{+}(\lambda)<1$. So,

$$
\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1\right\} \subset \sigma(T)
$$

Conversely, in order to show that

$$
\sigma(T) \subset\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1 \text { and } R_{T}^{-}(\lambda) \geq 1\right\}
$$

we take $\lambda \in \mathbb{C}$, such that

$$
\begin{equation*}
R_{T}^{+}(\lambda)<1 \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{T}^{-}(\lambda)<1 \tag{39}
\end{equation*}
$$

and we show that $\lambda \notin \sigma(T)$. From Lemma 2.3, $T-\lambda I$ is invertible and there will exist an operator $(T-\lambda I)^{-1} \in \mathscr{B}(X)$ such that

$$
\begin{equation*}
I=(T-\lambda I)^{-1}(T-\lambda I)=(T-\lambda I)(T-\lambda I)^{-1} \tag{40}
\end{equation*}
$$

Therefore, $\lambda \notin \sigma(T)$. Similarly one can show that if S is not invertible, then

$$
\sigma(T) \subset\left\{\lambda \in \mathbb{C}: R_{T}^{+}(\lambda) \geq 1\right\}
$$

The proof of theorem is now complete.
Remark 2.5. In the previous theorem, if we take $d_{i}=0$ for all $i \in \mathbb{Z}$, then we obtain a result already shown in $[5,6,21,25]$ about the spectrum of the operator S. That is

$$
\sigma(S)=\{\lambda \in \mathbb{C}: q(S) \leq|\lambda| \leq r(S)\}
$$

where $q(S)=0$ if S is not invertible and $q(S)=\frac{1}{r\left(S^{-1}\right)}$ if S is invertible.

3. Remark about the spectrum of perturbed bilateral weighted n-shift

For a strictly positive integer n, we define the bilateral weighted n-shift operator in X by

$$
S_{n} e_{i}=w_{i}^{n} e_{i+n}, \quad i=0, \pm 1, \pm 2, \ldots
$$

The sequence $\left\{w_{i}^{n}\right\}_{i \in \mathbb{Z}} \subset \mathbb{C}$ represents the weights of the operator S_{n}. It is clear that the weighted 1 -shift coincide with weighted shift (in the usual sense, see [26]).

Remark 3.1. Let $T_{n} \in \mathscr{B}(X)$ be a diagonal perturbation of bilateral weighted n-shift S_{n} on X. That is

$$
\begin{equation*}
T_{n}:=S_{n}+D \tag{41}
\end{equation*}
$$

where D is a diagonal operator defined in (15). For every $j \in\{0, \ldots, n-1\}$ and $i \in \mathbb{Z}$, let that $e_{i}^{j}:=e_{j+i n}, w_{i}^{j}:=w_{j+i n}^{n}$ and $S_{n}^{j} e_{i}^{j}=w_{i}^{j} e_{i+1}^{j}$. Where S_{n}^{j} is the restriction of S_{n} on X_{j}, the S_{n}-invariant closed linear subspace spanned by $\left\{e_{i}^{j}: i \in \mathbb{Z}\right\}$. Note that

$$
X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n-1}
$$

and

$$
S_{n}=S_{n}^{0} \oplus S_{n}^{1} \oplus \cdots \oplus S_{n}^{n-1}
$$

Also, since each S_{n}^{j} is a weighted 1-shift, then the spectra of S_{n} is the union of the spectra of all $S_{n}^{j}, j=0, \ldots, n-1$ (see [14]). In particular,

$$
\sigma\left(S_{n}\right)=\sigma\left(S_{n}^{0}\right) \cup \sigma\left(S_{n}^{1}\right) \cup \cdots \cup \sigma\left(S_{n}^{n-1}\right)
$$

Moreover, if we denote by D^{j} the restriction of D to X_{j}, then

$$
T_{n}=\left(S_{n}^{0}+D^{0}\right) \oplus\left(S_{n}^{1}+D^{1}\right) \oplus \cdots \oplus\left(S_{n}^{n-1}+D^{n-1}\right)
$$

and thus

$$
\sigma\left(T_{n}\right)=\sigma\left(S_{n}^{0}+D^{0}\right) \cup \sigma\left(S_{n}^{1}+D^{1}\right) \cup \cdots \cup \sigma\left(S_{n}^{n-1}+D^{n-1}\right)
$$

Furthermore, for $j \in\{0, \ldots, n-1\}, R_{j}^{+}(\lambda)$ and $R_{j}^{-}(\lambda)$ are given by

$$
\begin{equation*}
R_{j}^{+}(\boldsymbol{\lambda})=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1} w_{j+(i+m) n}^{n}}{\prod_{m=0}^{k}\left(d_{j+(i+m) n}-\lambda\right)}\right|\right]^{\frac{1}{k}} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}^{-}(\boldsymbol{\lambda})=\lim _{k \rightarrow \infty}\left[\sup _{i \in \mathbb{Z}}\left|\frac{\prod_{m=0}^{k-1}\left(d_{j+(i-m) n}-\lambda\right)}{\prod_{m=0}^{k} w_{j+(i-m) n}^{n}}\right|\right]^{\frac{1}{k}} \tag{43}
\end{equation*}
$$

By Theorem 2.4, if S_{n}^{j} is invertible operator, then we have

$$
\sigma\left(S_{n}^{j}+D^{j}\right)=\left\{\lambda \in \mathbb{C}: R_{j}^{+}(\lambda) \geq 1 \text { and } R_{j}^{-}(\lambda) \geq 1\right\}
$$

and if S_{n}^{j} is non-invertible operator then

$$
\sigma\left(S_{n}^{j}+D^{j}\right)=\left\{\lambda \in \mathbb{C}: R_{j}^{+}(\lambda) \geq 1\right\}
$$

Acknowledgements

The authors would like thank the anonymous reviewers for their helpful comments and Prof. H. Sissaoui and Natanael Randriamihamison for their help and valuable suggestions.

REFERENCES

[1] A Antonevich - A Lebedev, Functional and functional-differential equations. (AC ${ }^{*}$) algebraic approach (English transl. in Amer. Math. Soc. Transl. Ser. 2. 1999, pp. 25-116), Trudy Sankt-Peterburgskogo Matematicheskogo Obshchestva 6 (1998), 34-140.
[2] Anatolij Antonevich, Linear functional equations. Operator approach, vol. 83, Birkhäuser, 2012.
[3] Frédéric Bayart - Étienne Matheron, Dynamics of linear operators, vol. 179, Cambridge university press, 2009.
[4] Nilson C Bernardes Jr - Patricia R Cirilo - Udayan B Darji - Ali Messaoudi - Enrique R Pujals, Expansivity and shadowing in linear dynamics, Journal of Mathematical Analysis and Applications 461 no. 1 (2018), 796-816.
[5] Abdellatif Bourhim, Spectrum of bilateral shifts with operator-valued weights, Proceedings of the American Mathematical Society 134 no. 7 (2006), 2131-2137.
[6] John B Conway, A course in functional analysis, vol. 96, Springer Science \& Business Media, 2013.
[7] Henry R Dowson, Spectral theory of linear operators, vol. 12, Academic Pr, 1978.
[8] J Duan - X-C Fu - P-D Liu - A Manning, A Linear Chaotic Quantum Harmonic Oscillator, Applied Mathematics Letters 12 no. 1 (1999), 15-19.
[9] JM Freeman, Perturbations of the shift operator, Transactions of the American Mathematical Society 114 no. 1 (1965), 251-260.
[10] X-C Fu - Jinqiao Duan, Infinite-dimensional linear dynamical systems with chaoticity, Journal of Nonlinear Science 9 no. 2 (1999), 197-211.
[11] Ralph Gellar, Cyclic vectors and parts of the spectrum of a weighted shift, Transactions of the American Mathematical Society 146 (1969), 69-85.
[12] Karl Grosse-Erdmann - Alfred Peris Manguillot, Linear chaos, Springer Science \& Business Media, 2011.
[13] KG Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math 139 no. 1 (2000), 47-68.
[14] Paul Richard Halmos, A Hilbert space problem book, vol. 19, Springer Science \& Business Media, 2012.
[15] Peter D Hislop - Israel Michael Sigal, Introduction to spectral theory: With appli-
cations to Schrödinger operators, vol. 113, Springer Science \& Business Media, 2012.
[16] Bingzhe Hou - Puyu Cui - Yang Cao, Chaos for Cowen-Douglas operators, Proceedings of the American Mathematical Society 138 no. 3 (2010), 929-936.
[17] Bingzhe Hou - Geng Tian - Luoyi Shi - others, Some dynamical properties for linear operators, Illinois Journal of Mathematics 53 no. 3 (2009), 857-864.
[18] Todd Kapitula - Keith Promislow, Spectral and dynamical stability of nonlinear waves, vol. 185, Springer, 2013.
[19] Tosio Kato, Perturbation theory for linear operators, vol. 132, Springer Science \& Business Media, 2013.
[20] Félix Martínez-Giménez - Alfredo Peris, Chaos for backward shift operators, International Journal of Bifurcation and Chaos 12 no. 08 (2002), 1703-1715.
[21] William C Ridge, Approximate point spectrum of a weighted shift, Transactions of the American Mathematical Society 147 no. 2 (1970), 349-356.
[22] Héctor N Salas, Hypercyclic weighted shifts, Transactions of the American Mathematical Society 347 no. 3 (1995), 993-1004.
[23] Björn Sandstede, Stability of travelling waves, Handbook of dynamical systems, vol. 2, Elsevier, 2002, pp. 983-1055.
[24] Joel H Shapiro, Simple connectivity and linear chaos, Rend. Circ. Mat. Palermo (2) Suppl 56 (1998), 27-48.
[25] Allen L Shields, Weighted shift operators and analytic function theory, (1974).
[26] Jan Stochel - FH Szafraniec, Unbounded weighted shifts and subnormality, Integral Equations and Operator Theory 12 no. 1 (1989), 146-153.

> M. L. SAHARI LANOS Laboratory Department of Mathematics Badji Mokhtar-Annaba University P. O. Box 12, 23000 Annaba, Algeria e-mail: mohamed-lamine.sahari@univ-annaba.dz; mlsahari@yahoo.fr A. K. TAHA 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France e-mail: taha@insa-toulouse.fr
L. RANDRIAMIHAMISON

Institut National Polytechnique de Toulouse
University of Toulouse
118, route de Narbonne, 31062 Toulouse Cedex 9, France e-mail: louis.randriamihamison@ipst.fr

[^0]: Submission received : 6 March 2018
 AMS 2010 Subject Classification: Primary 47B37; Secondary 47A10, 47A55.
 Keywords: Spectrum, perturbed operator, weighted shift operator.

