LE MATEMATICHE Vol. LXXIV (2019) – Issue I, pp. 35–47 doi: 10.4418/2019.74.1.3

A NOTE ON THE SPECTRUM OF DIAGONAL PERTURBATION OF WEIGHTED SHIFT OPERATOR

M. L. SAHARI - A. K. TAHA - L. RANDRIAMIHAMISON

This note provides a complete description of the spectrum of diagonal perturbation of weighted shift operator acting on a separable Hilbert space.

1. Introduction

When working with infinite-dimensional linear dynamical systems, the spectral theory is often helpful in determining of the asymptotic properties, as a stability, cyclicity, hypercyclicity, chaoticity... (see [3, 4, 8, 10, 16–18, 23, 24]). On the other hand the shift operator and his perturbation are a natural and appropriate setting for testing those concepts (see [9, 11, 13, 22]).

Throughout this paper X will denote a separable complex Hilbert space with an orthonormal basis $\{e_i\}_i \subset X$.

Let $\mathscr{B}(X)$ denote the algebra of all bounded linear operators acting on *X*. The norm induced by the inner product on *X* and the associated operator norm on $\mathscr{B}(X)$ are both denoted by $\|\cdot\|$. On the other hand, for $T \in \mathscr{B}(X)$, we denote by $\sigma(T)$, $\rho(T)$ and r(T) the spectrum, the resolvent and the spectral radius of *T* respectively. Recall that $\sigma(T)$ is a non-empty compact subset of

Submission received : 6 March 2018

AMS 2010 Subject Classification: Primary 47B37; Secondary 47A10, 47A55. *Keywords:* Spectrum, perturbed operator, weighted shift operator.

 \mathbb{C} , $r(T) \leq ||T||$ and $r(T) = \lim ||T^k||^{\frac{1}{k}} = \inf ||T^k||^{\frac{1}{k}}$. If T is invertible, the inverse is denoted by T^{-1} and we have $\sigma(T^{-1}) = \left\{\frac{1}{\lambda} : \lambda \in \sigma(T)\right\}$. Moreover, $\frac{1}{r(T^{-1})} = \inf\{|\lambda| : \lambda \in \sigma(T)\} \text{ (see [6, 7, 12, 14, 15, 19, 20]).}$ A bounded linear operator *S* on *X* is called a weighted shift operator with

weight sequence $\{w_i\}_i \subset \mathbb{C}$, if

$$Se_i = w_i e_{i+1}. \tag{1}$$

If the index *i* runs over the set \mathbb{N} of non-negative integers, then S is called a unilateral weighted shift and it is called a bilateral weighted shift when *i* runs over the set \mathbb{Z} of all integers. Such operators have been studied by many authors in relation to various applications (theory of dynamical systems, integro-functional, differential-functional, functional and difference equations, nonlocal boundary value problems, nonclassical boundary value problems for certain partial differential equations, the general theory of operator theory, etc. see [1, 2, 12, 20?]). In [5, 6, 25], it is shown that if S is bounded, then there exists $0 \le r^- \le r^+$ such that the spectrum $\sigma(S)$ of S is given by

$$\sigma(S) = \left\{ \lambda \in \mathbb{C} : r^- \le |\lambda| \le r^+ \right\}.$$

In this work, we propose to extend this type of result to the case of the perturbed operator S + D, where D is a diagonal operator.

2. The spectrum of perturbed weighted shift

Through the following results, we provide a complete description of the spectrum of diagonal perturbation of unilateral and bilateral weighted shift operators.

2.1. The spectrum of perturbed unilateral weighted shift

Let $T \in \mathscr{B}(X)$ be a diagonal perturbation of a unilateral weighted shift S on X. That is

$$T := S + D, \tag{2}$$

where D is a diagonal operator on X with diagonal entries $(d_i)_{i \in \mathbb{N}}$; i.e. $De_i :=$ $d_i e_i$ for all $i \in \mathbb{N}$.

Theorem 2.1. Let $T \in \mathscr{B}(X)$ be the operator given by (2) and set

$$R_{T}(\lambda) = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} (d_{i+m} - \lambda)} \right| \right]^{\frac{1}{k}}, (\lambda \in \mathbb{C}).$$
(3)

Then

$$\sigma(T) = \{\lambda \in \mathbb{C} : R_T(\lambda) \ge 1\}.$$
(4)

Proof. Let $\lambda \notin \sigma(T)$ then $T - \lambda I$ be invertible. For $i \in \mathbb{N}$, set $x_i = \sum_{j \in \mathbb{N}} a_j^i e_j = (T - \lambda I)^{-1} e_i$ we have

$$\begin{cases} w_{i-1}a_{i-1}^{i} + (d_{i} - \lambda)a_{i}^{i} = 1, \\ w_{j-1}a_{j-1}^{i} + d_{j}a_{j}^{i} = 0, & \text{if } j \neq i \end{cases}$$
(5)

and

$$\begin{cases} w_i a_i^{i+1} + (d_i - \lambda) a_i^i = 1, \\ w_i a_j^{i+1} + d_i a_j^i = 0, & \text{if } j \neq i. \end{cases}$$
(6)

The first equation of (5) implies that

$$a_{i}^{i} = \frac{1 - a_{i-1}^{i} w_{i-1}}{d_{i} - \lambda},\tag{7}$$

for all $i \in \mathbb{N}$. Since $d_0 \neq \lambda$ (otherwise $T - \lambda I$ would be non-invertible) and $w_{-1} = 0$, then

$$a_0^0 = \frac{1}{d_0 - \lambda},\tag{8}$$

The first equation of (6) implies that

$$a_{i-1}^{i} = \frac{1 - (d_{i-1} - \lambda)a_{i-1}^{i-1}}{w_{i-1}}.$$
(9)

for all $i \in \mathbb{N}$. From (7)-(9), we have

 $a_i^i d_i = 1$, for every $i \in \mathbb{N}$.

Consequently, for all $i \in \mathbb{N}$ and $k \ge 0$, we have

$$a_{i+k}^{i} = \left\langle (T-\lambda)^{-1} e_{i}, e_{i+k} \right\rangle = (-1)^{k} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} (d_{i+m}-\lambda)},$$

with the assumption that $\prod_{m=0}^{-1} w_{i+m} = 1$. Cauchy-Schwarz inequality provides the inequality

$$\left|\frac{\prod\limits_{m=0}^{k-1} w_{i+m}}{\prod\limits_{m=0}^{k} (d_{i+m} - \lambda)}\right| \le \left\| (T - \lambda I)^{-1} \right\|, \text{ for every } i \in \mathbb{N} \text{ and } k \ge 0.$$

By passing to the supremum over $i \in \mathbb{N}$, we get

$$\sup_{i\in\mathbb{N}} \left| \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} (d_{i+m} - \lambda)} \right| \le \left\| (T - \lambda I)^{-1} \right\|, \text{ for every } k \ge 0.$$
(10)

Taking the *k*th root and letting $k \to \infty$ in (10), we get $R_T(\lambda) \le 1$. But the equality is excluded by the spectrum compactness. So we have

$$R_T(\lambda) < 1. \tag{11}$$

So, $\lambda \notin \{\lambda \in \mathbb{C} : R_T(\lambda) \ge 1\}$ and then

$$\{\lambda \in \mathbb{C} : R_T(\lambda) \geq 1\} \subset \sigma(T).$$

Conversely, in order to show that

$$\sigma(T) \subset \{\lambda \in \mathbb{C} : R_T(\lambda) \geq 1\},\$$

we take $\lambda \in \mathbb{C}$, such that (11) is verified and we show that $\lambda \notin \sigma(T)$. Suppose that $R_T(\lambda) < 1$ and let *F* be a linear operator on *X*, defined by

$$F := \sum_{k=0}^{\infty} F_k, \tag{12}$$

such as, for all $k \in \mathbb{N}$, F_k is an operator on X given by

$$F_k e_i = a_{i+k}^i e_{i+k}, \ i = 0, 1, 2, \dots$$
(13)

and

$$a_{i+k}^{i} = (-1)^{n} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} (d_{i+m} - \lambda)},$$
(14)

with the assumption that $\prod_{m=0}^{-1} w_{i+m} = 1$. Since $||F_k|| = \sup_{i \in \mathbb{N}} |a_{i+k}^i|$ then the inequality (11), implies that the operator *F* is well defined, $||F|| < \infty$ and $\lim_{k \to \infty} a_{i+k}^{i+1} = \lim_{k \to \infty} a_{i+k}^i = 0$. From (12)-(14), and for all $i \in \mathbb{N}$, we have $(F \circ (T - \lambda I))e_i = ((T - \lambda I) \circ F)e_i = e_i$, then $\lambda \notin \sigma(T)$. The proof of theorem is now complete.

2.2. The spectrum of perturbed bilateral weighted shift

Let $T \in \mathscr{B}(X)$ be a diagonal perturbation of bilateral weighted shift S on X. That is

$$T := S + D, \tag{15}$$

where *D* is a diagonal operator with diagonals entries $(d_i)_{i \in \mathbb{Z}}$; i.e., $De_i := d_i e_i$ for all $i \in \mathbb{Z}$.

Lemma 2.2. If T is invertible, then at least one of the following two inequalities holds 1

$$R_T^+ = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}} \right| \right]^{\overline{k}} \le 1$$
(16)

or

$$R_T^- = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^k w_{i-m}} \right| \right]^{\frac{1}{k}} \le 1.$$
(17)

Proof. Let *T* be invertible and set $x_i = \sum_{j \in \mathbb{Z}} a_j^i e_j = T^{-1} e_i$. Thus, we have

$$\begin{cases} w_{j-1}a_{j-1}^{i} + d_{j}a_{j}^{i} = 1, \text{ if } j = i, \\ w_{j-1}a_{j-1}^{i} + d_{j}a_{j}^{i} = 0, \text{ otherwise.} \end{cases}$$
(18)

and

$$\begin{cases} w_{i}a_{j}^{i+1} + d_{i}a_{j}^{i} = 1, & \text{if } j = i, \\ w_{i}a_{j}^{i+1} + d_{i}a_{j}^{i} = 0, & \text{otherwise.} \end{cases}$$
(19)

The first equation of (18) and of (19) implies that

$$a_i^i d_i = a_0^0 d_0, (20)$$

for all $i \in \mathbb{Z}$. From (18), we get, for all $i \in \mathbb{Z}$ and k > 0,

$$a_{i-k}^{i} = \left\langle T^{-1}e_{i}, e_{i-k} \right\rangle = (-1)^{k+1} \frac{(1 - d_{i}a_{i}^{i}) \prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}},$$

assuming that $\prod_{m=1}^{0} d_{i-m} = 1$. Cauchy-Schwarz inequality gives us

$$\left| \frac{\left(1 - d_0 a_0^0\right) \prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}} \right| \le \left\| T^{-1} \right\|, \text{ for every } i \in \mathbb{Z} \text{ and } k \ge 0.$$
(21)

Consequently, for all $i \in \mathbb{Z}$ and k > 0, we have

$$a_{i+k}^{i} = \langle T^{-1}e_{i}, e_{i+k} \rangle = (-1)^{k} \frac{d_{i}a_{i}^{i} \prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}},$$

Cauchy-Schwarz inequality provides the inequality

$$\left| d_0 a_0^0 \frac{\prod\limits_{k=0}^{k-1} w_{i+m}}{\prod\limits_{m=0}^{k} d_{i+m}} \right| \le \left\| T^{-1} \right\|, \text{ for every } i \in \mathbb{Z} \text{ and } k > 0.$$

$$(22)$$

From the first equation of (18), for all $i \in \mathbb{Z}$, either $w_{i-1}a_{i-1}^i$ or $d_ia_i^i$ is not zero. Thus, we can distinguish two cases:

1st case: $d_i a_i^i \neq 0$, from (20) and by taking the supremum over *i* in (21), we get

$$\sup_{i\in\mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}} \right| < \infty, \text{ for every } k > 0.$$
(23)

 2^{nd} case: $w_{i-1}a_{i-1}^i \neq 0$, from (20) and by taking the supremum over *i* in (22), we get

$$\sup_{i\in\mathbb{Z}} \left| \frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=1}^{k} w_{i-m}} \right| < \infty, \text{ for every } k > 0.$$
(24)

We conclude, by taking the *k*th root and letting $k \rightarrow \infty$ in (23) and (24).

In the folow, we give a converse of the previous lemma.

Lemma 2.3. If $R_T^+ < 1$ or $R_T^- < 1$ then T is invertible.

Proof. Note that for all k > 0

$$\left[\sup_{i\in\mathbb{Z}}\left|\frac{\prod\limits_{m=0}^{k}d_{i-m}}{\prod\limits_{m=0}^{k}w_{i-m}}\right|\right]^{-1} = \inf_{i\in\mathbb{Z}}\left|\frac{\prod\limits_{m=0}^{k}w_{i-m}}{\prod\limits_{m=0}^{k}d_{i-m}}\right| \le \sup_{i\in\mathbb{Z}}\left|\frac{\prod\limits_{m=0}^{k}w_{i+m}}{\prod\limits_{m=0}^{k}d_{i+m}}\right|,$$
 (25)

then only one of inequality $R_T^+ < 1$ or $R_T^- < 1$ can be satisfied.

Let F be a linear operator on X to X, defined by

$$F := \sum_{k=0}^{\infty} F_k, \tag{26}$$

such as, for all $k \in \mathbb{N}$, F_k is an operator given by

$$F_k e_i = a_{i+k}^i e_{i+k}, \ i = 0, \pm 1, \pm 2, \dots$$
(27)

and

$$a_{i+k}^{i} = (-1)^{k} \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^{k} d_{i+m}}$$
(28)

with the assumptions that $\prod_{m=0}^{-1} w_{i+m} = 1$. If $R_T^+ < 1$ then the operator *F* is well defined, $||F|| < \infty$ and $\lim_{k \to \infty} a_{i+n}^{i+1} = \lim_{k \to \infty} a_{i+k}^i = 0$. From (26)-(28), and for all $i \in \mathbb{Z}$, we have $(F \circ T) e_i = (T \circ F) e_i = e_i$, which lead to

$$T \circ F = F \circ T = I,$$

where I denotes the identity operator.

If $R_T^- < 1$, let F' be an operator on X to X, defined by

$$F' := \sum_{k=1}^{\infty} F'_{-k},$$
(29)

and for all k > 0, F'_{-k} is an operator given by

$$F'_{-k}e_i = a^i_{i-k}e_{i-k}, \ i = 0, \pm 1, \pm 2, \dots$$
(30)

and

$$a_{i-k}^{i} = (-1)^{k+1} \frac{\prod_{m=1}^{k-1} d_{i-m}}{\prod_{m=0}^{k} w_{i-m}},$$
(31)

with assumptions that $\prod_{m=1}^{0} d_{i-m} = 1$. Note that, the condition $R_T^- < 1$ implies that the operator F' is well defined, $||F'|| < \infty$ and $\lim_{k \to \infty} a_{i-k}^i = 0$. From (29)-(31) and for all $i \in \mathbb{Z}$, we have $(T \circ F')e_i = (F' \circ T)e_i = e_i$, which leads to

$$T \circ F' = F' \circ T = I,$$

then the claim is proved.

Theorem 2.4. Let $T \in \mathscr{B}(X)$ be the operator given by (15) and for any $\lambda \in \mathbb{C}$, $R_T^+(\lambda)$, $R_T^-(\lambda)$ are given by

$$R_T^+(\lambda) = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} w_{i+m}}{\prod_{m=0}^k (d_{i+m} - \lambda)} \right| \right]^{\frac{1}{k}}$$
(32)

and

$$R_T^{-}(\lambda) = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} (d_{i-m} - \lambda)}{\prod_{m=0}^{k} w_{i-m}} \right| \right]^{\frac{1}{k}}.$$
(33)

(i) If S is an invertible operator, then

$$\sigma(T) = \left\{ \lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1 \text{ and } R_T^-(\lambda) \ge 1 \right\};$$
(34)

(ii) if S is a non-invertible operator, then

$$\sigma(T) = \left\{ \lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1 \right\},\tag{35}$$

Proof. Let $\lambda \in \rho(T) = \{\lambda \in \mathbb{C} : (T - \lambda I)^{-1} \in \mathscr{B}(X)\}$. If we replace d_j by $d_j - \lambda$ in the Lemma 2.2, then we get either $R_T^+(\lambda) \leq 1$ or $R_T^-(\lambda) \leq 1$. But the equality is excluded by spectrum compactness. So we have at least

$$R_T^+(\lambda) < 1 \tag{36}$$

or

$$R_T^-(\lambda) < 1. \tag{37}$$

If S is invertible, then from (25), only one of inequality (36) and (37) can be satisfied. Thus,

$$\left\{ \lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1 \text{ and } R_T^-(\lambda) \ge 1 \right\} \subset \sigma(T).$$

Therefore, if *S* is non invertible, $\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=1}^{k-1} (d_{i-m} - \lambda)}{\prod_{m=1}^{k} w_{i-m}} \right|$ is not bounded and we

have only $R_T^+(\lambda) < 1$. So,

$$\left\{\lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1\right\} \subset \sigma(T).$$

Conversely, in order to show that

$$\sigma(T) \subset \left\{ \lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1 \text{ and } R_T^-(\lambda) \ge 1 \right\},$$

we take $\lambda \in \mathbb{C}$, such that

$$R_T^+(\lambda) < 1 \tag{38}$$

or

$$R_T^-(\lambda) < 1 \tag{39}$$

and we show that $\lambda \notin \sigma(T)$. From Lemma 2.3, $T - \lambda I$ is invertible and there will exist an operator $(T - \lambda I)^{-1} \in \mathscr{B}(X)$ such that

$$I = (T - \lambda I)^{-1} (T - \lambda I) = (T - \lambda I) (T - \lambda I)^{-1}.$$
 (40)

Therefore, $\lambda \notin \sigma(T)$. Similarly one can show that if *S* is not invertible, then

$$\sigma(T) \subset \left\{ \lambda \in \mathbb{C} : R_T^+(\lambda) \ge 1 \right\}.$$

The proof of theorem is now complete.

Remark 2.5. In the previous theorem, if we take $d_i = 0$ for all $i \in \mathbb{Z}$, then we obtain a result already shown in [5, 6, 21, 25] about the spectrum of the operator *S*. That is

$$\sigma(S) = \left\{ \lambda \in \mathbb{C} : q(S) \le |\lambda| \le r(S) \right\}.$$

where q(S) = 0 if *S* is not invertible and $q(S) = \frac{1}{r(S^{-1})}$ if *S* is invertible.

3. Remark about the spectrum of perturbed bilateral weighted *n*-shift

For a strictly positive integer n, we define the bilateral weighted n-shift operator in X by

$$S_n e_i = w_i^n e_{i+n}, \ i = 0, \pm 1, \pm 2, \dots$$

The sequence $\{w_i^n\}_{i\in\mathbb{Z}} \subset \mathbb{C}$ represents the weights of the operator S_n . It is clear that the weighted 1-shift coincide with weighted shift (in the usual sense, see [26]).

Remark 3.1. Let $T_n \in \mathscr{B}(X)$ be a diagonal perturbation of bilateral weighted *n*-shift S_n on X. That is

$$T_n := S_n + D, \tag{41}$$

where *D* is a diagonal operator defined in (15). For every $j \in \{0, ..., n-1\}$ and $i \in \mathbb{Z}$, let that $e_i^j := e_{j+in}$, $w_i^j := w_{j+in}^n$ and $S_n^j e_i^j = w_i^j e_{i+1}^j$. Where S_n^j is the restriction of S_n on X_j , the S_n -invariant closed linear subspace spanned by $\{e_i^j : i \in \mathbb{Z}\}$. Note that

$$X = X_0 \oplus X_1 \oplus \cdots \oplus X_{n-1}$$

and

$$S_n = S_n^0 \oplus S_n^1 \oplus \cdots \oplus S_n^{n-1}$$

Also, since each S_n^j is a weighted 1-shift, then the spectra of S_n is the union of the spectra of all S_n^j , j = 0, ..., n - 1 (see [14]). In particular,

$$\sigma(S_n) = \sigma(S_n^0) \cup \sigma(S_n^1) \cup \cdots \cup \sigma(S_n^{n-1}).$$

Moreover, if we denote by D^{j} the restriction of D to X_{j} , then

$$T_n = \left(S_n^0 + D^0\right) \oplus \left(S_n^1 + D^1\right) \oplus \cdots \oplus \left(S_n^{n-1} + D^{n-1}\right)$$

and thus

$$\sigma(T_n) = \sigma(S_n^0 + D^0) \cup \sigma(S_n^1 + D^1) \cup \dots \cup \sigma(S_n^{n-1} + D^{n-1})$$

Furthermore, for $j \in \{0, ..., n-1\}$, $R_j^+(\lambda)$ and $R_j^-(\lambda)$ are given by

$$R_{j}^{+}(\lambda) = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} w_{j+(i+m)n}^{n}}{\prod_{m=0}^{k} (d_{j+(i+m)n} - \lambda)} \right| \right]^{\frac{1}{k}}$$
(42)

and

$$R_{j}^{-}(\lambda) = \lim_{k \to \infty} \left[\sup_{i \in \mathbb{Z}} \left| \frac{\prod_{m=0}^{k-1} (d_{j+(i-m)n} - \lambda)}{\prod_{m=0}^{k} w_{j+(i-m)n}^{n}} \right| \right]^{\frac{1}{k}}.$$
(43)

By Theorem 2.4, if S_n^j is invertible operator, then we have

$$\sigma(S_n^j + D^j) = \left\{ \lambda \in \mathbb{C} : R_j^+(\lambda) \ge 1 \text{ and } R_j^-(\lambda) \ge 1 \right\},\$$

and if S_n^j is non-invertible operator then

$$\sigma(S_n^j+D^j)=\left\{\lambda\in\mathbb{C}:R_j^+(\lambda)\geq 1\right\}.$$

Acknowledgements

The authors would like thank the anonymous reviewers for their helpful comments and Prof. H. Sissaoui and Natanael Randriamihamison for their help and valuable suggestions.

REFERENCES

- A Antonevich A Lebedev, Functional and functional-differential equations. (AC*-) algebraic approach (English transl. in Amer. Math. Soc. Transl. Ser. 2. 1999, pp. 25–116), Trudy Sankt-Peterburgskogo Matematicheskogo Obshchestva 6 (1998), 34–140.
- [2] Anatolij Antonevich, *Linear functional equations. Operator approach*, vol. 83, Birkhäuser, 2012.
- [3] Frédéric Bayart Étienne Matheron, *Dynamics of linear operators*, vol. 179, Cambridge university press, 2009.
- [4] Nilson C Bernardes Jr Patricia R Cirilo Udayan B Darji Ali Messaoudi Enrique R Pujals, *Expansivity and shadowing in linear dynamics*, Journal of Mathematical Analysis and Applications 461 no. 1 (2018), 796–816.
- [5] Abdellatif Bourhim, *Spectrum of bilateral shifts with operator-valued weights*, Proceedings of the American Mathematical Society 134 no. 7 (2006), 2131–2137.
- [6] John B Conway, A course in functional analysis, vol. 96, Springer Science & Business Media, 2013.
- [7] Henry R Dowson, Spectral theory of linear operators, vol. 12, Academic Pr, 1978.
- [8] J Duan X-C Fu P-D Liu A Manning, *A Linear Chaotic Quantum Harmonic Oscillator*, Applied Mathematics Letters 12 no. 1 (1999), 15–19.
- [9] JM Freeman, *Perturbations of the shift operator*, Transactions of the American Mathematical Society 114 no. 1 (1965), 251–260.
- [10] X-C Fu Jinqiao Duan, *Infinite-dimensional linear dynamical systems with chaoticity*, Journal of Nonlinear Science 9 no. 2 (1999), 197–211.
- [11] Ralph Gellar, *Cyclic vectors and parts of the spectrum of a weighted shift*, Transactions of the American Mathematical Society 146 (1969), 69–85.
- [12] Karl Grosse-Erdmann Alfred Peris Manguillot, *Linear chaos*, Springer Science & Business Media, 2011.
- [13] KG Grosse-Erdmann, *Hypercyclic and chaotic weighted shifts*, Studia Math 139 no. 1 (2000), 47–68.
- [14] Paul Richard Halmos, A Hilbert space problem book, vol. 19, Springer Science & Business Media, 2012.
- [15] Peter D Hislop Israel Michael Sigal, Introduction to spectral theory: With appli-

cations to Schrödinger operators, vol. 113, Springer Science & Business Media, 2012.

- [16] Bingzhe Hou Puyu Cui Yang Cao, *Chaos for Cowen-Douglas operators*, Proceedings of the American Mathematical Society 138 no. 3 (2010), 929–936.
- [17] Bingzhe Hou Geng Tian Luoyi Shi others, *Some dynamical properties for linear operators*, Illinois Journal of Mathematics 53 no. 3 (2009), 857–864.
- [18] Todd Kapitula Keith Promislow, *Spectral and dynamical stability of nonlinear waves*, vol. 185, Springer, 2013.
- [19] Tosio Kato, *Perturbation theory for linear operators*, vol. 132, Springer Science & Business Media, 2013.
- [20] Félix Martínez-Giménez Alfredo Peris, *Chaos for backward shift operators*, International Journal of Bifurcation and Chaos 12 no. 08 (2002), 1703–1715.
- [21] William C Ridge, *Approximate point spectrum of a weighted shift*, Transactions of the American Mathematical Society 147 no. 2 (1970), 349–356.
- [22] Héctor N Salas, *Hypercyclic weighted shifts*, Transactions of the American Mathematical Society 347 no. 3 (1995), 993–1004.
- [23] Björn Sandstede, *Stability of travelling waves*, Handbook of dynamical systems, vol. 2, Elsevier, 2002, pp. 983–1055.
- [24] Joel H Shapiro, *Simple connectivity and linear chaos*, Rend. Circ. Mat. Palermo (2) Suppl 56 (1998), 27–48.
- [25] Allen L Shields, Weighted shift operators and analytic function theory, (1974).
- [26] Jan Stochel FH Szafraniec, Unbounded weighted shifts and subnormality, Integral Equations and Operator Theory 12 no. 1 (1989), 146–153.

M. L. SAHARI LANOS Laboratory Department of Mathematics Badji Mokhtar-Annaba University P. O. Box 12, 23000 Annaba, Algeria e-mail: mohamed-lamine.sahari@univ-annaba.dz; mlsahari@yahoo.fr

A. K. TAHA Federal University of Toulouse Midi-Pyrénées 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France e-mail: taha@insa-toulouse.fr L. RANDRIAMIHAMISON Institut National Polytechnique de Toulouse University of Toulouse 118, route de Narbonne, 31062 Toulouse Cedex 9, France e-mail: louis.randriamihamison@ipst.fr