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CONTROLLABILITY OF IMPULSIVE NEUTRAL
STOCHASTIC INTEGRO-DIFFERENTIAL SYSTEMS
DRIVEN BY FBM WITH UNBOUNDED DELAY

EL HASSAN LAKHEL

This paper studies the controllability of an impulsive neutral stochas-
tic integro-differential systems with infinite delay driven by fractional
Brownian motion in separable Hilbert space. The controllability result
is obtained by using stochastic analysis and a fixed-point strategy. Illus-
trating the obtained abstract results, an example is considered at the end
of the paper.

1. Introduction

One of the basic qualitative behaviours of a dynamical system is the controlla-
bility. Many fundamental problems of control theory such as pole-assignment,
stabilizability and optimal control my be solved under the assumption that the
system is controllable. The problem of controllability is to show the existence
of control function, which steers the solution of the system from its initial state
to final state, where the initial and final states may vary over the entire space.
Conceived by Kalman, the controllability concept has been studied extensively
in the fields of finite-dimensional systems, infinite-dimensional systems, hybrid
systems, and behavioural systems. If a system cannot be controlled completely
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then different types of controllability can be defined such as approximate, null,
local null and local approximate null controllability. For more details the reader
may refer to [10, 11, 23, 26, 28, 29] and references therein.

On the other hand, the properties of long/short-range dependence are widely
used in describing many phenomena in fields like hydrology and geophysics as
well as economics and telecommunications. As extension of Brownian motion,
fractional Brownian motion (fBm) is a self-similar Gaussian process which has
the properties of long/short-range dependence. However, fractional Brownian
motion is neither a semimartingale nor a Markov process (except for the case
H = % when it reduces to a standard Brownian motion). A general theory for
the infinite-dimensional stochastic differential equations driven by a fBm has
begun to receive attention by various researchers, (see e.g. [4, 5, 14, 17] and
references therein).

The theory of neutral integro-differential equation with infinite delay has
been used for modelling the evolution of physical systems, in which the re-
sponse of the system depends not only on the current state, but also on the
past history of the system, for instance, for the description of heat conduction
in materials with fading memory, we refer the reader to the papers of Gurtin
and Pipkin [9], Nunziato [21], and the references therein related to this mat-
ter. Besides, noise or stochastic perturbation is unavoidable and omnipresent
in nature as well as in man-made systems. Therefore, it is of great signifi-
cance to import the stochastic effects into the investigation of impulsive neutral
differential equations. As the generalization of the classic impulsive neutral dif-
ferential equations, impulsive neutral stochastic integro-differential differential
equations with infinite delays has become an important area of investigation in
recent years stimulated by their numerous applications to problems arising in
mechanics, medicine and biology, economics, electronics and telecommunica-
tion etc., in which sudden and abrupt changes occur ingenuously, in the form of
impulses. On the existence and the controllability for these equations, we refer
the reader to [3, 15, 28].

Recently, Park et al. [20] investigated the controllability of impulsive neu-
tral integro-differential systems with infinite delay in Banach spaces using
Schauder-type fixed point theorem. Arthi et al. [3] established the existence and
exponential stability for impulsive neutral stochastic integro-differential equa-
tions driven by a fractional Brownian motion with finite delays. Very recently,
Diop et al. [7] proved sufficient conditions for the existence, uniqueness and
asymptotic behaviours of mild solutions to a class of neutral stochastic integro-
differential equations driven by a fractional Brownian motion with impulsive
effects and time-varying delays. Ren et al. [25] studied a class of impulsive
neutral stochastic functional integro-differential equations with infinite delay
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driven by fBm.

Moreover, in recent years, there has been an increasing interest in studying
the control problem for stochastic systems. Controllability for stochastic sys-
tems driven by Brownian motion are well investigated, we refer to [12, 24] and
references therein. By contrast, there has not been very much research on the
controllability of stochastic systems driven by fBm, more precisely, Chen [6]
concerned the approximate controllability for semilinear stochastic equations
with fBm, Ahmed [2] investigated the approximate controllability of impulsive
neutral stochastic equations driven by fBm, Lakhel [13] concerned the control-
lability of neutral stochastic functional integro-differential equations driven by
fbm. Very recently, Lakhel and Mckibben [15, 16] have discussed the control-
lability for a class of neutral stochastic evolution integro-differential equations
driven by a fBm with finite delay by using the Weiner integral. Moreover, the
controllability of neutral impulsive stochastic integro-differential systems with
infinite delay driven by a fBm is an untreated topic in the literature so far. Thus,
we will make the first attempt to study such problem in this paper.

Inspired by the previously mentioned works, this paper establishes the con-
trollability of impulsive neutral stochastic integro-differential equations of the
form

dlx(t) — gt 3, /O i (t,5,x,)ds)] = [Ax(e) + F(t.3, /0 a(t,5,x0)ds) + Bu(t))de
+0(t)dB (t),t €1:=1[0,T], t # 1,
Ax|—y = x(tyr) —x(tp ) = L(x(t)), k=1,....m,meN
x(t) = @(t) € LY(Q,By), fora.e.t € (—o,0].
(1.1)

Here, A is the infinitesimal generator of an analytic semigroup of bounded linear
operators, (S(¢)),>0, in a Hilbert space X; B is a fractional Brownian motion
with Hurst parameter H > % on a real and separable Hilbert space Y; and the
control function u(-) takes values in L?([0,7],U), the Hilbert space of admissi-
ble control functions for a separable Hilbert space U; and B is a bounded linear
operator from U into X.

The history x; : (—o0,0] — X, x,(0) = x(t + 6), belongs to an abstract phase
space By, defined axiomatically, and f,g: [0,T] x By x X — X, ri,r2: D x By, —
X, 0:[0,T] — L3(Y,X), are appropriate functions and will be specified later,
where ES(Y,X ) denotes the space of all Q-Hilbert-Schmidt operators from Y
into X (see section 2 below) and D = {(s,7) € I x I : s < t}. Moreover, the fixed
moments of time # satisfy 0 <#; <1, < ... <t,, <T; x(t; ) and x(t]j) represent
the left and right limits of x() at time #;, respectively. Ax(f;) denotes the jump
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in the state x at time #; with I(.) : X — X determining the size of the jump.

The outline of this paper is as follows: In Section 2 we introduce some
notations, concepts, and basic results about fractional Brownian motion, the
Weiner integral defined in general Hilbert spaces, phase spaces and properties
of analytic semigroups and the fractional powers associated to its generator. In
Section 3, we derive the controllability of impulsive neutral stochastic integro-
differential systems driven by a fractional Brownian motion. Finally, in Section
4, we conclude with an example to illustrate the applicability of the general
theory.

2. Preliminaries

For details of the topics addressed in this section, we refer the reader to [19, 22]
and the references therein.

Let (Q,F,P) be a complete probability space. A standard fractional Brow-
nian motion (fBm) {B%(t),t € R} with Hurst parameter H € (0,1) is a zero
mean Gaussian process with continuous sample paths such that
1

— (P 52— — M), s,t €R.(2.1)

Ru(t,5) = E[B"(1)B" ()] =

Remark 2.1. In the case H > %, it follows from [19]that the second partial
derivative of the covariance function

where ay = H(2H —2), is integrable, and we can write

1 S
Ry(t,s) = oy / / lu—v[*2dudy. (2.2)
JO JO

Let X and Y be two real, separable Hilbert spaces and let £(Y,X) be the
space of bounded linear operator from Y to X. For the sake of convenience, we
shall use the same notation to denote the norms in X,Y and £(Y,X). Let Q €
L(Y,Y) be an operator defined by Qe, = A, e, with finite trace rrQ =Y, | A, <
co. where A, > 0 (n = 1,2...) are non-negative real numbers and {e,} (n =
1,2...) is a complete orthonormal basis in Y.

We define the infinite dimensional fBm on Y with covariance Q as

BY (1) = Bl 1) = i VnenBE (1),
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where B! are real, independent fBm’s. This process is Gaussian, it starts from
0, has zero mean and covariance:

E(B"(t),x)(B" (s),y) = R(s5,1)(Q(x),y) forallx,y €Y andt,s € [0,T]

In order to define Weiner integrals with respect to the O-fBm, we introduce the
space L9 := Eg(Y ,X) of all Q-Hilbert-Schmidt operators y : Y — X. We recall
that y € L£(Y,X) is called a Q-Hilbert-Schmidt operator, if

lWliZg = Y IV Anyenl® < e,
n=1

and that the space L'g equipped with the inner product

oo

(9, ‘l/>£g = Z (pen, yey)

n=1

is a separable Hilbert space.
Let ¢(s); s € [0,T] be a function with values in £3(Y,X), such that

Y IK*$Qzen|l7y < oo.
n=1 2
The Weiner integral of ¢ with respect to B is defined by

[ owass)= X [ Vroendp ) e
0 = Jo

We conclude this subsection by stating the following result which is critical in
the proof of our result, see for example [5]

Lemma 2.1. If y: [0,T] — £(Y,X) satisfies [, Hl;/(s)||iods < oo, then (2.3) is
2
well-defined as an X -valued random variable and

t t
|| [ w(s)dB" ()| <28 [ y(s) gds.

It is known that the study of theory of differential equation with infinite
delays depends on a choice of the abstract phase space. We assume that the
phase space B, is a linear space of functions mapping (—eo,0] into X, endowed
with a norm ||.||3,. We shall introduce some basic definitions, notations and
lemma which are used in this paper. First, we present the abstract phase space
By. Assume that & : (—o0,0] — [0,4o0) is a continuous function with [ =
[ h(s)ds < +oo.
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We define the abstract phase space B, by

B,= {y:(—,0] — X forany 7 >0, (EHI//HZ)% is bounded and measurable
function on [—7,0] and [°_ A(r) sup,SsSO(EHl//(s)||2)%dt < +oo}.

If we equip this space with the norm

0 1
1wlis, == [ ko) sup (B|lyP)3dr,
then it is clear that (B, ||.||5,) is a Banach space.
We now consider the space Bp; (D and [ stand for delay and impulse, re-
spectively ) given by

sup
1<s<0

Bpr ={x:(—,T] = X : x|y € C(It,X) and x(t;" ), x(t;) exist with
x(t, ) =x(t),k=1,2,...,m,xo = ¢ € Bj, and SUPg</<T ]E(||x(t)||2) < oo},

where x|} is the restriction of x to the interval I = (t,#+1], k= 1,2,...,m. The
function ||.||3,, to be a semi-norm in Bpy, it is defined by

1
xll55 = llxolls, + sup (E([lx(2)[I))z.
0<t<T

The following lemma is a common property of phase spaces.

Lemma 2.2. [18] Suppose x € Bpy, then forallt € [0,T], x, € By, and

1 1
HEx()?)2 < llxells, <1 sup (Ellx(s)[*)2 + |xoll5,,

o 0<s<t
where | = [°_h(s)ds < co.

Next, we introduce some notations and basic facts about the theory of semi-
groups and fractional power operators. Let A : D(A) — X be the infinitesimal
generator of an analytic semigroup, (S(¢));>0, of bounded linear operators on
X. The theory of strongly continuous is thoroughly discussed in [22] and [8].
It is well-known that there exist M > 1 and A € R such that ||S(r)|| < Me? for
every t > 0. If (S(¢));>0 is a uniformly bounded, analytic semigroup such that
0 € p(A), where p(A) is the resolvent set of A, then it is possible to define the
fractional power (—A)% for 0 < o < 1, as a closed linear operator on its domain
D(—A)“. Furthermore, the subspace D(—A)% is dense in X, and the expression

1Allec = [I(=A)*Al|

defines a norm in D(—A)%. If X, represents the space D(—A)% endowed with
the norm ||.||, then the following properties hold (see [22], p. 74).
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Lemma 2.3. Suppose that A, Xy, and (—A)% are as described above.
(i) For 0 < a <1, Xy is a Banach space.
(ii) If 0 < B < «, then the injection Xo — Xp is continuous.
(iii) For every 0 < o < 1, there exists My > 0 such that

[(—A)*S(t)|| < Mgt~ %™, t>0, A>0.

3. Controllability Result

Before stating and proving the main result, we give the definition of mild solu-
tions for equation (1.1).

Definition 3.1. An X-valued process {x(¢) : t € (—oo,T|} is a mild solution of
(1.1)if

1. x(t) is measurable for each t > 0, x(¢) = ¢(¢) on (—eo,0],
Ax|i—, = I (x(t, ), k=1,2,...,m, the restriction of x(.) to
[0,T]—{t1,12,...,1,s } is continuous,

2. for every 0 < s < 1 the function AS(r — 5)g(s,xs, [ r1(s, T,X¢)d7) is inte-
grable such that the following integral equation is satisfied

x(t) = S(t)(9(0) — £(0,9,0)) +g(t,x, [yr1(,5,x5)ds)
+ Jo AS(t — 5)g(s, x5, J5 71 (s, T,x0)dT)ds + [5 S(t — s)Bu(s)ds
+ fo St =) f(8,%s, [5 72(5,T,xc)dT)ds + [3 S(t — s)o(s)dB (s)

X0y <SE — i) Ik(x(t, ), P—as.
(3.1

Definition 3.2. The impulsive neutral stochastic functional integro-differential
equation (1.1) is said to be controllable on the interval (—oo, T] if for every
initial stochastic process ¢ defined on (—eo, 0], there exists a stochastic control
u € L*([0,T],U) such that the mild solution x(-) of (1.1) satisfies x(T) = x1,
where x| and T are the preassigned terminal state and time, respectively.

In order to establish the controllability of (1.1), we impose the following
conditions on the data of the problem:



326 EL HASSAN LAKHEL

(H.1) A is the infinitesimal generator of an analytic semigroup, (S(f));>0, of
bounded linear operators on X. Further, 0 € p(A), and there exist con-
stants M, M,_g such that

M_
ISOI><M and ||(—A)'Ps(r)|| < tll_ﬁﬁ,forallte[O,T]
(see Lemma 2.3).

(H.2) The mapping g : I x B, x X — X satisfies the following conditions

(1) The function r; : D x B, — X satisfies the following condition.
There exists a constant k; > 0, for x;,x, € B}, such that

t
IE||/0 [ri(t,s,x1) —r (t,s,xz)]dst < ky||xy —széh, (t,s) €D,

and k; = SUP(;,s)eD | f(; r (t,S,O)dsHZ.

(ii) There exist constants 0 < B < 1, k» > 0 such that the function g
is Xpg-valued and for x;,x; € B, y1,y2 € X and satisfies for all ¢ €
[0, 7]

E[|(=A)Pg(t,x1,31) — (AP g(t,x2,y2) ||

< ka[llxr = 22, +Ellyr — 2],

lim,  E[|(=A)Pg(t,x1,y1) — (—A)P g(5,x2,72)||> =0,
and ky = sup,c o7y [|(=4) P ¢(2,0,0)|*.

(H.3) The mapping f : I x B, x X — X satisfies the following Lipschitz condi-
tions

(i) There exist positive constants k3, k3 for ¢ € [0,T], x1,x2 € By, y1y2 €
X such that

EHf(taxlayl) _f(t7x27y2)‘|2 < k3[HX1 _x2”123h +EHy1 —Y2”2]=

and k3 = sup,c(o 71 |1/ (2,0,0)||.
(ii) The function r; : D x BB, — X satisfies the following condition.
There exists a constant k4 > 0, for x;,x, € B}, such that

t
IEH/O [ra(t,s,x1) —rz(t,s,xz)]dst < ka|x; —xgH%h, (t,5) € D,

and kg = sup, ;cp || Jora(t,s,0)ds]|?.
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(H.4) The impulses functions [; for k = 1,2, ..., m, satisfies the following con-
dition. There exist positive constants My, M. such that || 7 (x) — I(y) I? <
M ||x —y||? and ||I(x)||> < My for all x,y € By,

(H.5) The function o : [0,00) — L(Y,X) satisfies
’ 2
/0 16(5) 2gds < oo, ¥T > 0.

(H.6) The linear operator W from U into X defined by
T
Wu = / S(T — s)Bu(s)ds
0

has an inverse operator W~! that takes values in L?([0,T],U) \ kerW,
where

kerW = {x € L*([0,T],U): Wx=0}

(see [10]), and there exists finite positive constants M, M,, such that
|B||> < Mj and |W~!||> < M,,.

(H.7) There exists a constant @ > 0 such that

B2
©=1002(1+4MMM,T2)[(} + Y Vo (14 20)

+MT?k3(1 +ka) +mM Y M) < 1,
and c; = ||(—A)7P|.

The main result of this chapter is the following.

Theorem 3.3. Suppose that (#£.1) — (H.7) hold. Then, the system (1.1) is
controllable on (—oo, T'| provide that

(leﬁTﬁ)z

712(14+-8MM,M,, T*){8(c + B

Vo (142k1 ) +8MT?k3(1+2ks)} < 1. (3.2)

Proof. Transform the problem(1.1) into a fixed-point problem. To do this, using
the hypothesis (#.6) for an arbitrary function x(-), define the control u, by
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w(t) = W Hx =S(T)(9(0) —£(0,x0,0)) = g(Tx7, fy r1(T.s,%5)ds))
- fOTAS(T_s)g(s7x5afgrl(svnvxﬂ)dn)ds
- fo S(T —5)f (s, x5, o r2(s, 1,0 )dn )ds

- Iy )0 ($)dB™ (5)}(1) — To<r<r ST — i)l (x(1 ) }1).

To formulate the controllability problem in the form suitable for application
of the Banach fixed point theorem, put the control «(.) into the stochastic control
system (3.1) and obtain a non linear operator I1 on Bp; given by

@(t), if 1€ (=0,

S(1)(9(0) — g(0,9,0)) +g(t.x:, Jyr1(z,5,%)ds)

T(x)(¢) = + JoAS(t —5)8(s,%5, Jo r1(s,1,xq )dn)ds

+ Jo S(t = 8)Bux(s)ds + o S(t =) f(s,x5, Jg r2 (5,1, xq )dn)ds

+ JoS(t = 5)0(s)dBH () + Loy oS(t — i) Ik (x(1)), if £ € [0,T7].

Then it is clear that to prove the existence of mild solutions to equation (1.1)
is equivalent to find a fixed point for the operator I1. Clearly, I1x(T') = x;, which
means that the control u steers the system from the initial state ¢ to x; in time
T, provided we can obtain a fixed point of the operator IT which implies that the
system in controllable.

Lety: (—oo,T] — X be the function defined by

o(1), if 1 € (—eo,0],
y(f)—{ S e(0), if r€0,T],

then, yo = ¢@. For each function z € Bpy, set
x(t) = z(t) +y(1).

It is obvious that x satisfies the stochastic control system (3.1) if and only if
z satisfies zg = 0 and
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2(t)= gtz Jr)’nf(; ri(t,s,25 +ys)ds) — S(t)g(0,¢,0)
+f(§AS(t—s)g(s,zs + Y55 Jo r1(s,M,2n +yn)dn)ds
+ Jo S(t — $)Buzyy(s)ds+ 3 S(t — ) f (5,25 +¥s, Jo 2(5, 1,20 +yn )dn)ds

+ o S(t =)0 (5)dB" (s) + oy < S(t — )k (2(57) + (1)), if 1 €[0,T),
(3.3)

where

Uey(1) =W {x1 = S(T)(9(0) —£(0,20 +0,0))
—&(T,zr+yr, Jo 11(T,s,25+y5)ds)
— Jo AS(T —5)g(5,25 +ys, Jo 71 (5,1, 20 +yn )dn)ds
— Jo S(T =) £ (5,25 + s, Jo r2(5,1, 20 + yy )d1 )ds

—Jo S(T = 5)0()dB" (5)}(1) = Loy <7 S(T — 1)l (2(t) + (8 )} (o).

Set
By, ={z€ Bp;:z0=0};

for any z € BY,;, we have

1 1
Il g, = llz0ll5, + sup (Ellz(1)[*)2 = sup (E[|z(1)[|*)2.

1€[0,T] t€[0,7]

Then, (BY,,]|. H3?>1> is a Banach space. Define the operator @ : BY, — BY, by

0 if ¢ € (—e,0],

g(t7Z[ +)’z7f6 ri (I7S7ZS "‘)’s)ds) _S(t)g(()v(p70)

+ [oAS(t — $)8(s,25 + s, Jo 1 (s, 1,2 +yn )dn)ds

(@2) (1) = t (3.4)
+f0 S(t _S>f(s7ZS +)’Saf372(5777a1n +yr,)dT])dS

+ Jo.S(t = $)Buziy(s)ds+ [o S(t —s)o(s)dB (s)

+ZO<tk<tS(t_tk)Ik(Z(t/:) +Y(t/;))7 if re [OaT]a
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Set
By = {ZEBgI:HZ”é%I <k}, for some k > 0,

then B, C B%, is a bounded closed convex set, and for z € By, we have

lze +yello < 2001z, + [1yell,,)

I

4(12sup0§sg,E||Z(S) +HZOH%/,

+H2 supg< <, Elly(s)1|> + [lyoll3,)

< 4P (k+ME|[|9(0)[1%) + 4]y,

=rt.

From our assumptions, using the fact that (Y, a;)> <nY"_, a for any positive
real numbers a;, i = 1,2, ...,n, we have

Elluzy > < 8Mu{|lxl* +ME[@(0)[* +2Mci k2 [Iy, + k2]

+2(3 + (M;B”Tl P oo (14 2k1 )7 + 2Ry + o] + 2MT2 s (1 4+ 2ke)r*

+2k3ky +E3]+2MT2H71IOT||G( )||20ds—|—mM Mk} =g
(3.5)
Noting that

MIBT)

o ke (1+2ky) + MT ks (1+2ks)

El[tzy — vy < 4My{(c +
+mM YL MiE||z — vy ||B
(3.6)
It is clear that the operator IT has a fixed point if and only if & has one, so
it turns to prove that ® has a fixed point. Since all functions involved in the
operator are continuous therefore & is continuous. The proof will be given in
following steps.

Step 1: We claim that there exists a positive number k, such that ®(x) € By
whenever x € 3. If it is not true, then for each positive number k, there is a
function z¥(.) € By, but ®(zX) ¢ By, that is E||® (%) (¢)]|? > k for some ¢ € [0, T].
However, on the other hand, we have
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ko <E|e@) 0]

- M T
< T2MS (kalyI3, +Fo) +2(3+ Pl OB T0 o (14 2k )+ 2oy 1)

+MM,T?G +2MT? (ks (14 2ka)r* + 2ksks +k3) +2MTH =1 [T |5 (s) ]|y ds
2

MY M}

(M, _ BT )2

< T7(1+8MMuM,, T*){2Mct (ko |l 3, +k2) +2(cT + T

[ka (1 + 2k )r*
+2koky + ko] + MMpT?G +2MT? k3 (1 + 2kg)r* + 2kzks + k3]
F2MTHL [0 (5) [ Ggds + ML, Mick+8MMpMy T2 ([lx1[|* + ME 9(0)[)

< K+7(1+8MMuM, T?){2(c + %1@(1 2k )

+2MT? (k3 (14 2k4)r*},

where

(M

K =7(1+8MM,M,T*){2Mci (k2 ||, +k2) +2(cT + o 1> (2kak1 +k2))

+2MT?(2ksky + k3) +2MT2H=1 [T 6 (s) ||2£gds +mMY™ | M}

+8MMM,T?(||x1 || + ME| 9(0)]*)}

is independent of k. Dividing both sides by k and taking the limit as k — oo,
we get

(M,_pTP)?
281

This contradicts (3.2). Hence for some positive k,

71(1 + 8MMyM, T?){8(c? + Vo (14 2ky) +8MT? k3 (14 2k4)} > 1.

(P)(Bk) C B

Step 2: @ is a contraction. Let t € [0,T] and 7', 7> € BY,, we have

t
E[[0z' (1) = ®22()|> < SEllg(r.z! +31. [ ri(t,5,2} +3ds)
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t
~5(0,2 430, [ 10,52 +30ds)|
t N
+5E| [ A8 —9)lg(o.2 +yes [ ra(sn.zh+n)an)
2 y 2 2
—g(s.22 -+ [ 1., yn)dn)lds|
t
+SE| [ 50— 5)Blutr(5) =tz 5)]as P
t s
+5B| [ (= 5)1f (5.2 [ ralsn,2h -+ yo)dn)
—f(S7Zf+ys,/0‘ ra(s, 1,25 +yn)dn)]ds

+SE[| Y, S(T =)= (6) + () — (2 () +y(t)]|P?

0<y <T
On the other hand from (H.1) — (H.7) combined with (3.6), we obtain

E[[ 02! (1) — ®22(1) |2 < (1 + MMM, T2)[(c} + Pt (1421

+MT?ks(1+ka) +mM Y3 Milllz) — 27 |13,

< 10(1+4MMM, T2)[(F + 2T o (1424

+MT?k3 (14 ks) +mM ¥ My]
x{1*supy <, Elz' (s) =22 (s)[I* + lzp — %5113, }
< Osupy, < Bl (5) = 2()[2)  (since zh =23 =0)
Taking supremum over z,
1 2 12
@2~ @2 g < @'~
where

0= 1012(1+4MMM, T2)[(3 + U0 o (14 241

+MT?k3(1+kg) +mM Y0 My).
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By condition (H.7), we have @ < 1, hence @ is a contraction mapping on Bgl
and therefore has a unique fixed point, which is a mild solution of equation
(1.1) on (—oo, T]. Clearly, (®x)(T) = x; which implies that the system (1.1) is
controllable on (—oo, T'|. This completes the proof.

O

Remark 3.4. When the impulses disappear, that is My = My =0, k=1,...,m
then the system (1.1) reduces to the following neutral stochastic integrodiffer-
ential equation:

dx(t) —g(t,xt,/ot ri(t,s,x5)ds)] = [Ax(r) —l—f(t,x,,/ot ra(t,s,xs)ds) + Bu(t)|dt
+o(t)dB (1)t €1,

x(t)=0(t) € Lg(Q,Bh), fora.e.t € (—e0,0],
(3.7)

where the operators A, g, f,r1,7» and ¢ are defined as same as before. Here
C ={x:(—oo,T] = X : x(t) is continuous }, the Banach space of all stochastic
processes x(t) from (—oo, T| into X, equipped with the supremum norm ||¢||2 =
SUPe (—oo, 7] EI[ @ (5) 2, for ¢ € C. By using the same technique in Theorem 3.3,
we can easily deduce the following corollary.

Corollary 3.1. Suppose that (H.1) — (H.3) and (H.5) — (H.7) hold. Then,
the system (3.7) is controllable on (—oo,T| provide that the condition (3.2) is
satisfied.

Remark 3.5. The concept of nonlocal initial condition, in many cases, more
accurately describes initial behaviour of system than does a classical fixed ini-
tial condition, so differential equations with nonlocal problem have been studied
extensively in the literatures [1, 29]. However, to the best of our knowledge, no
result yet exist on the controllability of impulsive stochastic functional integro-
differential equations driven by fBm with non local conditions. Upon making
some appropriate assumptions, by employing the ideas and techniques same as
in this paper, one can establish the controllability of impulsive stochastic func-
tional integro-differential equations driven by fBm with non local conditions.

Remark 3.6. In this paper, we only consider the additive noise. In the future,
we will further study existence, uniqueness and qualitative properties of mild
solutions for impulsive neutral stochastic partial inegro-differential equations
driven by multiplicative noise, for example when the term o (t)dB (t) is re-
placed by o(t,x,)dB" (¢) term, it may be one of our interesting directions of the
future work.
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4. Example

To illustrate the previous result, we consider the following impulsive neutral
stochastic partial inegro-differential equation with infinite delays, driven by a
fBm of the form

%[Z(Zaé) —Gl(t7z(t—k,é),jgg1(t,s7z(s—k,€))ds)]

= %Z(tvé) +F1(t,z(t—k,é),féfl(t,s,z(s—k,é))ds)

+e(@u(n) + oL, 0<1<T,i44,0<E<n
Az(tkvé) :Z(t]:rvé) —Z(l‘;,é) = fikw ak(t]: _S)Z(Saé)dsa k=1,2,...m;

2(¢,0) =z(t,m) =0, 0<t<T,

As,6) = @(s,8), s5—e0<s<0 0<E<T,

4.1
where 0 < 1] <1 < ... <ty, <T are fixed numbers, and ¢ : (—e,0] x [0,7] — R
is a given continuous stochastic process such that H(p||25h <o Wetake X =Y =U =

L*([0,x]) with norm ||.|| and inner product < .,. >. Define the operator A : D(A) C
X — X givenby A = % with

D(A) = {y € X : y/ is absolutely continuous,y” € X, y(0) =y(n) =0},

then we get

Ax = an <x,ep>xe,, x€D(A),

n=1
where ¢, := \/%sin nx, n=1,2,.... is an orthogonal set of eigenvector of —A.

The bounded linear operator (fA)% is given by
(_A)%x = Z l’l% <X,ep >x ey,
n=1

with domain

=

3

D((-A))) =X; = {xeX, ), ni < x,en>xen € X}, and [|(—A)3 = 1.

n=1

It is well known that A is the infinitesimal generator of an analytic semigroup {S(¢) }+>o0
in X, and is given by (see [22])

Sx=Y e < x e > e,
n=1

for x € X and ¢ > 0. Since the semigroup {S()},>0 is analytic, there exists a constant
M > 0 such that ||S(2)||*> < M for every t > 0. In other words, the condition (7.1) holds.



CONTROLLABILITY RESULTS 335

We choose the phase function h(s) = ¥, s < 0, then [ = [°_h(s)ds = 1 <o, and
the abstract phase space By, is Banach space with the norm

1
I9lls, = [ Ats) sup (lo(0)1?)2as.

0¢€[s,0]

To rewrite the initial-boundary value problem (4.1) in the abstract form we assume
the following:

For (t,9) € [0,T] x By, where ¢(0)(E) = 9(0,&), (0,£) € (—,0] x [0, 7], we put
z2(t)(&) = z(t,&). The functions g: [0,7] x By x X — X and f: [0,T] x B, x X — X are
defined by

g(t,¢,/0tr1(t,s,xs)ds) :Gl(t7¢(6aé)ﬂ/otgl(lvsa¢(97§))ds)
_/ Vi(0)9(0,¢) d6+// UL (1)Us(1)9(0,E)deds,
f(t7¢a/0tr2(t=s>x5)ds) :Fl(tﬂ¢(67é)v/()ffl(t7s7¢(97é))ds>
0
:lmbl(tvsaéa¢(svg))ds

[ [ om0t sas

where

1. The function V;(6) > 0 is continuous in (—eo, 0] and satisfying

1
0 -0 V(s)2 2
V2(0)d6 < oo LI:/ 1), .
[ vieuo<e L (_mh(s) o) <
2. The functions U;,U; : R — R are continuous, and
1
0 U2(5)2 2
L2:/ d oo
g <-m n(s) > -

3. The function b, is continuous and b; : R — R, i = 1,3 are continuous and there
exist continuous functions p; j = 1,2,3,4 such that

by (t,5,0,9)| < pr()p2(s)yl,  (t,5,x,y) €RY,

|b3(t,5,%,9)| < p3(t)pa(s)lyl,  (t,s,x,y) ERY,
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1 1

with L} = ( 0 ”i((i))zds) * < oo and b= ( 0 p;‘lg;z ds) * < o, Moreover, g

and f are bounded linear operators with E||g||% < L., E||f||% < Ly, where
- 2 s 2
Ly = [Ly+T|U1llLg] " and Ly = [[|p1]l«cL? + || b2l | 3]l L5] -

)2
4. The functions @; : R — R are continuous functions and L; = 900 a,};((z; ds

where k = 1,...,m are finite.

The above system (4.1) can be written in the abstract form (1.1).
Further, we assume that the following conditions hold:

(5) B:U — X is a bounded linear operator defined by
Bu()(§) = c(§)u(t), 0 < & < m,u e L*([0,T],U).

(6) The linear operator W : L*>([0,T],U) — X given by

T
Wu(E) = / S(T = )e(&)u(t)ds, 0< & <,
0
W is a bounded linear operator but not necessarily one-to-one. Let
KerW = {x € L*([0,T],U), Wx = 0}

be the null space of W and [Ker W]+ be its orthogonal complement in
L*([0,T],U). Let W : [Ker W] — Range(W) be the restriction of W to
[KerW]*, W is necessarily one-to-one operator. The inverse mapping theorem

says that W ! is bounded since [Ker W]+ and Range(W) are Banach spaces. So
that W~ is bounded and takes values in L*([0,T],U) \ Ker W, hypothesis (#.6)
is satisfied.

(7) Inorder to define the operator Q : Y := L?([0, ], R) — Y, we choose a sequence
{ X }neny C R, set Qe,, = A€, and assume that

Q)= Y VA <.

n—=

Define the fractional Brownian motion in ¥ by
B (1) = Y VAuB" (1)en,
n=1

where H € (4,1) and {B}/},en is a sequence of one-dimensional fractional
Brownian motions mutually independent. Let us assume the function
0 :[0,+e0) — L3(L2([0,7]),L%([0,x])) satisfies

T
/0 () gds < oo, ¥T >0.

Then the condition (7{.5) is satisfied.

Thus, it is easy to verify that all the assumptions on Theorem 3.3 are fulfilled and
hence, the system (4.1) is controllable on (—eo, 7.
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5. Conclusion and future work

In this paper, a class of neutral impulsive stochastic functional integro-differential equa-
tions with infinite delay driven by fractional Brownian motion has been studied. First,
we establishes a set of sufficient conditions for the controllability of impulsive neu-
tral stochastic functional integro-differential equations by using stochastic analysis and
a fixed-point strategy. Further, an illustrative example is provided to demonstrate the
effectiveness of the theoretical result.

There are other issues which require further study. First, one can consider the qual-
itative behaviour of neutral stochastic integro-differential equations with infinite delay
driven by fBm , for example, the transportation inequalities for the law of the mild so-
lution, and invariant measures. Second, we will investigate the optimal control problem
for impulsive stochastic partial integro-differential equations with infinite delay driven
by fBm.

We conclude this paper with an open question: As we stated in the Introduction,
the properties and theories of retarded stochastic differential equations driven by fBm
are in the first stage of studying and few literatures study the qualitative properties.
Moreover, basically all the works are based on Hurst parameter H € (%, 1) of fBms, one
problem is that how to investigate the existence and uniqueness and stability behaviour
of mild solutions for neutral impulsive stochastic integro-differential equations with
infinite delay driven by fBms with Hurst parameter H € (0, %)
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