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MULTIPARTITE GRAPH DECOMPOSITION:

CYCLES AND CLOSED TRAILS

ELIZABETH J. BILLINGTON

This paper surveys results on cycle decompositions of complete multi-
partite graphs (where the parts are not all of size 1, so the graph is not Kn ),
in the case that the cycle lengths are “small”. Cycles up to length n are con-
sidered, when the complete multipartite graph has n parts, but not hamilton
cycles. Properties which the decompositions may have, such as being gregar-
ious, are also mentioned.

1. Introduction and definitions.

A great deal of work has been done on edge-disjoint decompositions of
complete graphs and of complete multipartite graphs, where the decomposition
is into isomorphic copies of some “small” graph G . This graph G may be itself
a complete graph Kk —in which case the decompositions of complete graphs or
of complete multipartite graphs are, respectively, a balanced incomplete block
design (of index 1), or a group divisible design with block size k. A vast amount
of work has also been carried out when the “small” graph G is a cycle — again
in both cases, when the graph being decomposed is either complete, or complete
multipartite. Furthermore, some results also include decompositions into closed
trails rather than cycles.

In this paper I shall concentrate on reviewing the case of a complete
multipartite graph when the decomposition is into copies of a fixed length cycle;
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also certain decompositions into closed trails are considered here. Particular
properties which such a decomposition may have will also be considered.

Let us begin with some basic definitions, which knowledgeable readers
may skip over!

A complete multipartite graph G = K (a1, a2, . . . , an) has its vertices
grouped into n partite sets, of sizes a1, . . . , an . There is an edge between any
two vertices in different partite sets, but no edge between any two vertices in the
same partite set. If ai = m for each i , 1 ≤ i ≤ n, we write Kn(m) and refer to
this graph as the complete equipartitegraph having n parts of size m. Of course
if ai = 1 for all i , then G is the complete graph Kn .

A k-cycle, written (x1, x2, . . . , xk), consists of k distinct vertices x1, . . .

. . . , xk , and k edges {xi , xi+1}, 1 ≤ i ≤ k − 1, and {xk, x1}. A k-cycle system
of a simple graph G is an edge-disjoint decomposition of G into copies of k-
cycles; equivalently, it can be regarded as a partition of the edge set E(G) into
k-cycles.

A k-trail is a closed path of length k, where the vertices of the trail are not
necessarily distinct. Of course for k = 3, 4, 5, a k-trail is also a k-cycle, but
when k ≥ 6 this is not necessarily so; for instance a 6-trail could be a bowtie
(that is, two triangles with a common vertex).

From a design-theoretic perspective, an edge-disjoint decomposition of the
complete multipartite graph K (a1, a2, . . . , an) into k-cycles can be regarded as
a group-divisible k-cycle system or design (a Ck -GDD), with n groups, of sizes
ai , 1 ≤ i ≤ n. And in the case k = 3, when a 3-cycle is also a block or a
triple, we can talk about a 3-GDD of type a1a2 . . . an . Necessary and sufficient
conditions for existence of a 3-GDD of arbitrary type a1a2 . . . an are not known,
although in the uniform case (of type an ) they are, and also in a very few
‘almost’ uniform cases; see Section 2.1.

In the following, Section 2 surveys existence results on complete multi-
partite graph decompositions into cycles (including 3-cycles which are also of
course complete K3 blocks), and into closed trails. In Section 3, three extra
properties are considered: resolvable cycle decompositions, coloured cycle de-
compositions, and so-called gregarious cycle decompositions of complete mul-
tipartite graphs. Section 4 mentions some work which has been done on packing
complete multipartite graphs with cycles, when a complete edge-disjoint de-
composition is not possible, and the final section includes some open problems.
To limit the content, the part sizes in the graph K (a1, . . . , an) will not all be 1,
and so we do not deal here with decompositions of Kn . Moreover, for actual
proofs, the reader is referred to the original papers.
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2. Existence results.

2.1. 3-cycles, many parts

Since a 3-cycle is certainly not bipartite, any complete multipartite graph
K having an edge-disjoint decomposition into 3-cycles must necessarily have
at least three parts. It is well-known that if the graph K has precisely three
parts, then a decomposition into 3-cycles exists if and only if these three parts
are all of the same size. Indeed, it is well-known that such a decomposition of
Kn,n,n into 3-cycles is equivalent to the existence of a latin square L of order
n: index the vertices in the three parts by the rows, the columns and the entries
of L; then each filled cell in L corresponds to one triangle (or 3-cycle) in the
decomposition of Kn,n,n .

In the case of Kn(m) , with n parts of size m, Hanani [28] gave necessary
and sufficient conditions for existence of a decomposition into 3-cycles; he
essentially proved the following.

Theorem 1. (Hanani [28]) There is a 3-cycle decomposition of Kn(m) if and
only if n ≥ 3, the degree m(n − 1) of any vertex is even, and the number of
edges m2

(n
2

)
is divisible by 3.

A more accessible one page proof of this appears as Theorem 3.4 in
Colbourn and Rosa’s “Triple Systems” [21].

When the size of parts in the complete multipartite graph are allowed to
differ, there are a very few papers in the case of block size three; the general
situation of a 3-cycle decomposition of K (a1, a2, . . . , an) remains open. In
1992, Colbourn, Hoffman and Rees [19] showed that the “obvious” necessary
conditions for existence of a 3-cycle decomposition of Kn(a),b , the complete
multipartite graph with n groups of size a and one of size b, are always
sufficient:

Theorem 2. (Colbourn, Hoffman and Rees [19]) Let the edge-set of Kn(a),b be
non-empty. Then there is a 3-cycle decomposition of Kn(a),b if and only if

(i) when n = 2 there are only three parts, and so a = b;
(ii) b ≤ a(n − 1);

(iii) any vertex in a part of size a has even degree, i.e. a(n − 1)+ b is even;
(iv) any vertex in the part of size b has even degree, i.e. an is even;
(v) the number of edges, a2

(n
2

) + anb, is divisible by 3.

Here condition (ii) is necessary because a vertex x in a part of size a must
be in a 3-cycle with each of the vertices in the part of size b, and there are at
most a(n − 1) other vertices to complete this 3-cycle containing vertex x . Of
course the difficult part is showing sufficiency of these conditions!
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The second result on 3-cycle decompositions of complete multipartite
graphs having different sized parts appeared in 1995 (Colbourn, Cusack and
Kreher [18]). This paper [18] deals with two different part sizes, a and 1, so
with the graph Kn(a),t(1), having n parts of size a and t parts of size 1. (From a
design theoretic perspective, this can be regarded as a complete graph on na + t
points, having n holes of size a.) Again, the “obvious” necessary conditions are
shown to be sufficient.

Theorem 3. (Colbourn, Cusack and Kreher [18]) There is a 3-cycle decompo-
sition of Kn(a),t(1) where a, n, t are positive integers, if and only if

(i) a is odd, and n + t is odd;
(ii) if n = 1 then t − 1 ≥ a;

(iii) if n = 2 then t ≥ a;
(iv) the total number of edges,

(t
2

) + nat + (n
2

)
a2, is divisible by 3.

The necessity here is straightforward: (i) follows because every vertex
must have even degree; (ii) follows because each vertex in a part of size 1 must
be in a 3-cycle with a vertex in the part of size a; for (iii), consider a vertex x
in one part of size a — this must appear in a 3-cycles with the a vertices in the
second part of size a, and to complete these 3-cycles we require t ≥ a. Again,
it is sufficiency which proves difficult!

Colbourn [17] gives six necessary conditions for a 3-cycle decomposition
of K (a1, a2, . . . , an), and shows sufficiency for order at most 60. The fourth
condition listed in [17] has the following consequence for the case of four
groups:

Lemma 1. A 3-cycle decomposition of K (a1, a2, a3, a4), with a1 ≥ a2 ≥ a3 ≥
a4, cannot exist unless at least three of the parts have the same size.

A simple direct proof follows from considering the four types of triples
(3-cycles). Let Ai denote the vertices in the part of size ai . If there are α triples
which miss part A4, β triples which miss part A3 , γ triples which miss part A2
and δ triples which miss part A1 , then

α + β = a1a2, γ + δ = a3a4,
α + δ = a1a3, β + γ = a2a4,
α + γ = a2a3, β + δ = a1a4.

These imply that a1a2 + a3a4 = a1a3 + a2a4 = a2a3 + a1a4, and so

(a1 − a4)(a2 − a3) = 0 and (a1 − a3)(a2 − a4) = 0.
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So a1 = a4 or a2 = a3, and also a1 = a3 or a2 = a4. Hence at least three of the
parts have the same size.

Work in the paper [20] by Colbourn et al. includes results (couched in
the language of triple systems with holes) on K (a1, a2, 1, 1, . . . , 1) in certain
cases, and a recent paper [11] by Bryant and Horsley nicely completes the
determination of sufficiency of the conditions for existence of a 3-cycle system
of K (a1, a2, 1, 1, . . . , 1). These are that the degrees are all even, the number
of edges is a multiple of 3, and there are sufficient parts of size 1 to enable
completion of a1 triangles from a point in the part of size a2 joining each of the
points in the part of size a1, where a1 ≥ a2 (that is, there are at least a1 parts of
size 1).

Other general results for 3-cycles (or K3 decompositions) for arbitrary
complete multipartite graphs remain open.

2.2. Even length cycles

An oft-quoted paper of Dominique Sotteau’s [41] deals with complete
bipartite graph decompositions, into cycles of some (necessarily even) fixed
length. She showed:

Theorem 4. (Sotteau [41]) The complete bipartite graph Ka,b can be decom-
posed into cycles of length 2k if and only if a and b are even, a ≥ k, b ≥ k,
and 2k divides ab.

No such general result is known when the complete multipartite graph has
more than two parts, even when the restriction is to cycles of even length. In
[14], Cavenagh and Billington list certain necessary conditions for a 2k-cycle
decomposition of the complete multipartite graph K (a1, a2, . . . , an) to exist,
and show sufficiency for 4-, 6- and 8-cycles. If we let K (a1, a2, . . . , an) satisfy
a1 ≥ a2 ≥ . . . ≥ an , then these conditions are (see [14], p. 50):

(i) 2k must divide the total number of edges;
(ii) the total number of vertices is at least 2k;
(iii) half the degree of a vertex in the smallest sized part, 12

∑n−1
i=1 ai , must be

less than or equal to the total number of cycles (which of course is the total
number of edges divided by 2k); i.e. k

∑n−1
i=1 ai ≤ ∑

1≤i< j≤n ai aj ;
(iv) the number of vertices not in the largest part must be at least k, i.e.∑n

i=2 ai ≥ k;
(v) the degree of each vertex is even;
(vi) the ai are all of the same parity; if this parity is odd, then n is odd.

Condition (iv) above is not independent, but is implied by other conditions,
and (v) and (vi) are in fact equivalent. However (iii) above is independent of the
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other conditions listed. This is illustrated by the complete multipartite graph
K (6, 6, 2) which fails only condition (iii) in the case 2k = 12. (There is no
12-cycle decomposition of K (6, 6, 2).)

Any graph K (a1, a2, . . . , an) satisfying conditions (i)–(vi) above is called
2k-sufficient. It is easy to see that if each ai is odd, then n ≡ 1 (mod 4) if k is
odd and n ≡ 1 (mod 8) if k is even.

A 2k-small graph K (a1, . . . , an) is a 2k-sufficient graph such that for all i ,
1 ≤ i ≤ n, there is no positive integer a′

i with

a′
i < ai , a′

i ≡ ai

{
(mod 2k) if k is odd
(mod k) if k is even

such that K (a1, . . . , ai−1, a′
i, ai+1, . . . , an) is also 2k-sufficient. Existence

of a decomposition of any such 2k-small graph into 2k-cycles would suf-
fice, since if K (a1, . . . , an) has an edge-disjoint decomposition into 2k-cycles,
then so does K (a1, . . . , ai−1, ai + 2k, ai+1, . . . , an), and if k is even, so does
K (a1, . . . , ai−1, ai + 2, ai+1, . . . , an), for any i , 1 ≤ i ≤ n.

However, 2k-small graphs can be quite large! For instance, K (180, 20, 2)
is 40-small (the graph K (160, 20, 2) fails (iii) above).

If one could find 2k-cycle decompositions of all 2k-small graphs, 2k ≥
10, this would show sufficiency of conditions (i)–(vi) above for a 2k-cycle
decomposition of K (a1, . . . , an) to exist.

2.3. Odd length cycles

Very little is known about decompositions of a complete multipartite graph
K (a1, . . . , an) into k-cycles where k is odd. For 3-cycles, see Subsection 2.1
above. For 5-cycles, even the tripartite graph case remains open (see the next
section), although the equipartite case was solved in [8], along with the lambda-
fold equipartite graph case. In two recent preprints [37], [38], decompositions
in the equipartite case Kn(m) for 7-cycles and also for p-cycles, where p ≥ 11
is a prime, are given, when the obvious necessary conditions hold.

Returning to the non-equipartite case, there are some partial results for 5-
cycle decompositions of complete tripartite graphs, which we consider in the
next section.

2.4. Tripartite graph decompositions: cycles

Suppose the three parts of the tripartite graph under consideration have the
same size; so consider the graph Kn,n,n . Cavenagh [12] gave necessary and
sufficient conditions for Kn,n,n to have an edge-disjoint decomposition into k-
cycles. These conditions are the obvious necessary ones: the number of vertices,
3n, must be at least k, and the number of edges, 3n2, must be a multiple of k.
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The proof of sufficiency splits into the cycle length k being a multiple of 3,
or not. The latter case uses a result which enables a closed k-trail decomposition
of Km,m,m in which any vertex occurs at most � times, to yield a k-cycle
decomposition of K�m,�m,�m.

In the case of the tripartite graph Kr,s,t when the three parts have possibly
different arbitrary sizes, necessary and sufficient conditions for a decomposition
into k-cycles is not known in general. As remarked above, for 3-cycles, the three
parts must have the same size. For 2k-cycles, k ≥ 2, an exact decomposition
will only be possible if all three parts have even size (and satisfy (i)–(vi) in
Section 2.2 above). It is still an open problem to verify that the necessary
conditions in Section 2.2 are sufficient for existence of a decomposition into
2k-cycles, 2k ≥ 10, even when there are only three parts.

When the cycle length 2k + 1 is odd and greater than 3, the problem of de-
termining necessary and sufficient conditions for a decomposition of Kr,s,t into
2k +1-cycles remains open. Indeed, even in the case of 5-cycles, determination
of a 5-cycle decomposition of Kr,s,t , whenever the “obvious” necessary condi-
tions hold, is incomplete. This problem was considered by Mahmoodian and
Mirzakhani [36], where the necessary conditions for a decomposition of Kr,s,t

(r ≤ s ≤ t ) into 5-cycles were listed:

(i) r , s and t are all even or all odd;
(ii) rs + rt + st is divisible by 5;
(iii) t ≤ 4rs/(r + s).

It is easy to see that these conditions are necessary: condition (i) ensures
that every vertex has even degree; condition (ii) ensures that the total number of
edges is a multiple of 5; and condition (iii) follows from the fact that the number
of edges between the two smallest parts (of sizes r and s) must be greater than
or equal to the total number of 5-cycles (which is one fifth of the total number
of edges).

Mahmoodian and Mirzakhani [36] deal with the case when r, s, t are all 0
(mod 5) and and they offer a prize of 100 000 Iranian Rials for the proving of the
sufficiency of these three conditions. Cavenagh and Billington [15], [13] deal
with further cases, so the current state of play is that the necessary conditions
(i), (ii), (iii) above are sufficient when two (or more) of the partite sets have
the same size, or when all parts have even size. So the remaining open case is
when all partite sets are odd, and of three different sizes. It is likely that the
method used in [15] will work for this open case, but it will be long and tedious!
This method basically exploits the connection between a tripartite graph and a
kind of latin rectangle. The edges in the graph Kr,s,t , where r ≤ s ≤ t , can
be represented by the entries in the so-called “latin rectangle” shown in Figure
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2.1. The entries in [A B] are row latin in the t symbols; the entries in

[
A

C

]
are

column latin. Each filled cell in A corresponds to a triangle in Kr,s,t ; each entry
in B (and note that B need not be column latin) corresponds to an edge between
parts of sizes r and t , while each entry in C corresponds to an edge between
parts of size r and s .

A B

C

s t−s

r

t−r

a
b

x y
x yr

r

c

2

1

r

r

b

a

y

c

x

1

2

Figure 2.1 Figure 2.2

Figure 2.2 gives an example of how some of the entries in a latin represen-
tation, consisting of two triangles and four further edges, can be “traded” to give
two 5-cycles. The edges are listed explicitly in the table below.

Edges from entries in latin representation Edges reconfigured as 5-cycles
(r1, a, c), (r2, b, c), r1c, r1d, r2c, r2d (r1, c, b, r2, c), (r1, a, c, r2, d)

By judicious partitioning of a suitable latin representation into various
trades like the one illustrated in Figure 2.2 (but often considerably more compli-
cated!), results on decomposition of tripartite graphs Kr,s,t into various cycles
is achieved.

A precurser of this method was used in [2], where Kr,s,t is decomposed
into specified numbers of 3- and 4-cycles; it was fully exploited in the 5-cycle
papers [15], [13].

2.5. Tripartite graph decompositions: closed trails

Some recent work by Billington and Cavenagh [3] has dealt with the
decomposition of a complete tripartite graph with equal sized parts into any
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number of any length closed trails. Balister [1] showed that a complete graph
Kn (when n is odd) or Kn − F (where F is a 1-factor in the case n is even)
can be decomposed into circuits of lengths m1, m2, . . . , mt whenever mi ≥ 3
(1 ≤ i ≤ t ) and

∑t
i=1 mi equals the number of edges in Kn (n odd) or in Kn−F

(n even). The paper [3] does likewise for the graph Kn,n,n . In particular, the
following is proved.

Theorem 5. ([3]) The complete tripartite graph Kn,n,n has an edge-disjoint de-
composition into closed trails of (not necessarily distinct) lengths m1, m2, . . . ,

. . . , mt if and only if mi ≥ 3 for 1 ≤ i ≤ t and
∑t

i=1 mi = 3n2.

The method used to show sufficiency of the obvious necessary conditions
involves a back-circulant latin square of order n, which itself represents the
edges of Kn,n,n as a set of n2 triangles (with row, column, entry being the
index sets of the three parts in Kn,n,n ). By judicious use of “trades”, working,
generally speaking, down pairs of columns (or three columns in one instance
when n is odd), the latin square is partitioned up into closed trails of the required
lengths. On the whole, these trails consist of linked cycles of lengths 3, 4 and
5 (depending upon their length modulo 3), although some cases require further
refinement (see [3] for details).

Two straightforward observations help with the proof. One is that a
collection of 3-cycles in Kn,n,n arising from entries in a latin square of order
n will form a connected circuit provided that the entries can be ordered with
adjacent ones being (i) in the same row, or (ii) in the same column, or (iii) the
same symbol. Another is that any set of integers (being potential circuit lengths),
P = {x1, x2, . . . , xm} satisfying∑m

i=1 xi = 3n2, can be partitioned into subsets
Pj , each containing at most three of the xi , so that the numbers in each Pj sum
to a multiple of 3, and no subset of Pj sums to a multiple of 3.

For example, if P = {4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 7, 8, 9, 10, 10, 17} (these
numbers sum to 3 × 62), in the case of the graph K6,6,6, a possible partition of
P is given by

{4, 4, 4}, {4, 4, 4}, {9}, {4, 4, 10}, {5, 5, 5}, {7, 8}, {10, 17}.

Then a backcirculant latin square of order 6 is appropriately partitioned up so
that connected entries give rise to trails of lengths in Pj , for each set Pj in the
partition of P . For instance, consider {7, 8} above; trails consisting of C3 ∪ C4
and C3 ∪ C5 have lengths 7 and 8, and arise from cells (the five 3-cycles) such
as those in Figure 2.3 below.

There is an obvious corollary to Theorem 5, since a closed trail of length
less than 6 is a cycle:
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c1 c2
r1 1 2
r2 2 3
r3 3

(r1, 1, c1, 2), (r3, 3, c1), which form a 7-trail;
(r1, c1, r2, 2, c2), (r2, 3, c2), which form an 8-trail.

Figure 2.3

Corollary 5.1. Let α, β, γ be non-negative integers such that 3α + 4β + 5γ =
3n2. Then there exists an edge-disjoint decomposition of Kn,n,n into α 3-cycles,
β 4-cycles and γ 5-cycles.

ADCT graphs

If a connected even graph G contains a closed trail of length mi , for 1 ≤
i ≤ t , and

∑t
i=1 mi = |E(G)|, then G is said to be arbitrarily decomposable

into closed trails (ADCT) if G has an edge-disjoint decomposition into closed
trails of lengths mi , 1 ≤ i ≤ t .

Using this terminology, Balister [1] showed that Kn (n odd) and Kn − F
(n even, F a 1-factor) are both ADCT, and Billington and Cavenagh [3] showed
that Kn,n,n is ADCT. In the bipartite case, the graph Kr,s with r and s both
even was shown by Horňák and Woźniak [32] to be ADCT (here, necessarily,
each trail length mi must be even). It can be easily verified that if the general
tripartite graph Kr,s,t is ADCT, then the partite sizes are 1, 1, 3 or 1, 1, 5, or else
r = s = t . Hence [3] completes the determination of ADCT tripartite graphs.

3. Extra properties on the decomposition.

3.1. Resolvable cycle decompositions of complete multipartite graphs

The requirement of resolvability imposed on a cycle decomposition means
that the cycles in the decomposition are able to be partitioned into resolution
classes, where each resolution class contains, once each, all the vertices in the
whole graph. In graph theoretic terms, this means that the cycle decomposition
forms a 2-factorization of the complete multipartite graph, where the 2-factors
consist of a number of k-cycles.

The following example illustrates an extra property which a decomposition
may have, which will be reviewed in Sections 3.3 and 3.4.

Example 3.1. Two resolvable 4-cycle decompositions of K (2, 2, 2, 2).
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Figure 3.1(a) shows a resolvable 4-cycle decomposition of K (2, 2, 2, 2),
with the three parallel classes (or 2-factors), while Figure 3.1(b) shows one
which is not only resolvable but also gregarious, in that each cycle has its
vertices in different parts (see Section 3.3).

(a)

(b)

Figure 3.1

Given Sotteau’s result [41] for bipartite graphs, Example 3.1(a) perhaps
seems more “natural”, and is certainly the easier one to find! We shall meet
Example 3.1(b) in Section 3.4; note that each 4-cycle has all its vertices in
different parts of the equipartite graph K (2, 2, 2, 2).

Thus a cycle decomposition of G = K (a1, . . . , an) is said to be resolvable
if it forms a partition of the edge-set of G into 2-factors, with each 2-factor a
union of cycles. If the cycles are all of the same length k, then this is also called
a Ck -factorization of G . In Liu [34], [35], the problem of finding such a Ck -
factorization is posed as a generalisation of the famous Oberwolfach problem
([27] Guy 1967 — see Liu), and of the spouse-avoiding variant of this ([33]
Huang, Kotzig and Rosa). For the Ck -factorization case, there are n delegations,
with ai people in the i th delegation. These

∑n
i=1 ai people are to be seated at

a number s of round tables seating t1, . . . , ts people (where each table seats k
people for the case of k-cycles), and where

∑s
i=1 ti = ∑n

i=1 ai , for a number
(which can be calculated!) of different meals, so that every person sits next to
every person not in his or her delegation, exactly once.
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This is the same as finding a 2-factorization of K (a1, . . . , an) where each
2-factor consists of s cycles, of lengths t1, t2, . . . , ts .

In 1991, Hoffman and Schellenberg [30] showed that Kn(2) (having n
parts of size 2) has a Ck -factorization whenever the necessary conditions (even
degree, and total number of vertices a multiple of k) hold, except that there is
no C3 -factorization of K3(2) or of K6(2).

Also in 1991, Piotrowski [39] dealt with the bipartite case, and showed that
Km,m has a Ck -factorization if and only if m and k are even and k|2m, except
that K6,6 has no C6 -factorization.

In 1993, Rees [40] proved that Kn(m) has a C3 -factorization if and only if
the degree, m(n − 1), is even, and the total number of vertices, mn, is divisible
by 3, except that K2,2,2, K6,6,6 and K6(2) = K (2, 2, 2, 2, 2, 2) have no C3 -
factorization.

In 2000, and in 2003, Liu [34], [35] showed that for k ≥ 3, n ≥ 3, the
complete equipartite graph Kn(m) has a Ck -factorization if and only if the degree
is even and k|nm, except for the four cases mentioned above: K6,6 has no C6 -
factorization, and K2,2,2, K6,6,6 and K6(2) have no C3 -factorization. Thus for
the equipartite case, completed by Liu [34], [35], the following holds:

Theorem 6. When k ≥ 3 and n ≥ 2, there is a resolvable k-cycle decomposi-
tion of Kn(m) (i.e., a Ck -factorization of the complete equipartite graph having
n parts of size m) if and only if

k|mn, m(n − 1) is even, k is even if n = 2,

and there is no resolvable 3-cycle decomposition of K2,2,2, K6,6,6 or K6(2), nor
any resolvable 6-cycle decomposition of K6,6.

In the case of different cycle lengths, some (partial) results have also
been obtained. Indeed, Liu [35] uses the fact that Kn(4) has a {C3, C5}-
factorization for n ≥ 3 and n �= 7, 10, 11, in order to prove his main
result on Ct -factorizations. However, the generalised Oberwolfach problem,
with delegations of different sizes a1, . . . , an and/or with different sized tables
t1, . . . , ts , is clearly very difficult, and remains open.

Recent work by Hoffman and S.H. Holliday (see [31], [29]) looks at
the equipartite case minus a 1-factor, and gives a resolution into 2k-cycles.
In particular, they prove (using a delightfully named “cracked easter egg”
approach) the following.

Theorem 7. ([31], [29]) There is a resolvable 2k-cycle decomposition of
Kn(m) − F, where F is a 1-factor, if and only if m is odd, n is even, and 2k|mn.
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3.2. Colouring cycle decompositions of complete multipartite graphs

An m-cycle decomposition of a graph G is said to be equitably k-coloured
if the vertices of G are coloured with k colours c1, . . . , ck in such a way that for
each cycle C in the decomposition, the number of vertices coloured ci differs by
at most 1 from the number of vertices coloured cj , for 1 ≤ i, j ≤ k. Most work
on equitable colouring has been done for decompositions of complete graphs, or
of complete graphs minus a 1-factor, butWaterhouse [42] deals with equitable 2-
colourings of complete multipartite graphs into cycles. She shows that a 3-cycle
decomposition of Kn(m) has an equitable 2-colouring if and only if (besides the
usual requirements on the number of edges, even degree, at least three parts)
there are only 3 or 4 parts altogether.

She also shows that a 5-cycle decomposition of Kn(m) exists with an
equitable 2-colouring if and only if the usual conditions (even degree, and
number of edges a multiple of 5) hold.

In the case of a 4-cycle decomposition of K (a1, . . . , an), Waterhouse
shows that one with an equitable 2-colouring exists if and only if each ai is
even; similarly, a 6-cycle decomposition with an equitable 2-colouring exists if
and only if the necessary conditions for a decomposition hold and all the parts
have even size.

3.3. Gregarious cycle decompositions

The first mention of a cycle decomposition in a multipartite graph being
gregarious appeared in [6] in 2003. The word is chosen for its usual meaning of
“outgoing”, or “reaching out”. Basically, a cycle is said to be gregarious if its
vertices occur in as many different parts of the multipartite graph as possible; so
provided there are as many parts as there are vertices in the cycle, every vertex
will appear in a different part of the graph. Figure 3.1 illustrates the difference
between a 4-cycle decomposition of K (2, 2, 2, 2) which is gregarious (in (b))
and which is certainly not gregarious (in (a)). Since no “zig-zagging” to and fro
between a pair of parts is allowed, even the case of a 4-cycle decomposition is
considerably harder, with the condition of being gregarious imposed.

The paper [6] deals with a gregarious 4-cycle decomposition of Kr,s,t , and
gives necessary and sufficient conditions for existence. Since there are only
three parts to this graph, each 4-cycle is required to meet all three parts, and
necessarily will have two of its four vertices lying in the same part.

Theorem 8. ([6]) There exists a gregarious 4-cycle decomposition of Kr,s,t ,
r ≤ s ≤ t , if and only if

(i) r ≡ s ≡ t ≡ 0 (mod 2);
(ii) s(r + t)− rt ≥ 8;
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(iii) r(s + t)− st ≥ 8 or r(s + t)− st = 0.

The necessity of conditions (ii) and (iii) is not immediately obvious. These
follow from counting the three types of possible cycles (see Figure 3.2), which
yields

t ≥ rs

r + s
, s ≥ rt

r + t
, r ≥ st

s + t
.

r s t r rs st t

Type II Type IIIType I

Figure 3.2

Recall that r ≤ s ≤ t . Then if r �= s , we have t bounded above by
rs/(r + s), while if r < s then t is unbounded. Also the number of 4-cycles
of each type is either 0 or at least 2. So (in order to precisely cover all edges
in Kr,s,t ) we have 2 ≤ number of type II ≤ number of type III. The necessity
follows.

When at least two of r, s, t are 0 (mod 4), existence of a gregarious
decomposition follows from existence of a gregarious path decomposition of the
tripartite graph with vertex sets of half the size. Then by doubling the number
of vertices, each gregarious path gives rise to two gregarious 4-cycles in this
tripartite case; see Figure 3.3.
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Figure 3.3

However, when two or more of r, s, t are 2 (mod 4), we still use gregarious
paths, but the method requires a “latin representation” approach again, related to
that described in Section 2.4 above, but with a 3× 3 “hole”; see [6] for details!
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If we now consider the case of gregarious 4-cycle decompositions of
complete multipartite graphs with more than three parts, each vertex of every
4-cycle will lie in a different partite set. For four parts, it is straightforward to
verify that K (a1, a2, a3, a4) has a gregarious 4-cycle decomposition if and only
if a1 = a2 = a3 = a4 and all ai are even.

The present state of knowledge on gregarious 4-cycle decompositions
includes the following for equipartite and almost equipartite graphs.

Theorem 9. ([7]) If conditions are right for a 4-cycle decompositionof Kn(m) or
of Kn(m),t , then a gregarious 4-cycle decomposition of these graphs also exists,
provided t ≤ m(n − 1)/2.

When the number of parts n is 1 (mod 8), then a 4-cycle system of Kn

can be taken, and the points “blown up” m-fold to obtain a gregarious 4-cycle
decomposition of Kn(m) . Otherwise, if n �≡ 1(mod 8), necessarily all parts
must have even size. So the case Kn(2) is dealt with, from which a suitable
gregarious decomposition of Kn(2m) follows. However the non-equipartite case
is less straightforward, and incomplete at the moment, although certain cases
(all but one part the same size) have been dealt with in [7].

It is perhaps worth remarking that any group divisible design with block
size 5 will give rise to a gregarious 5-cycle decomposition, since of course
each block of size 5 will give rise to two 5-cycles with all five vertices in
different parts or groups. (The same also applies to p-cycles for any odd prime
p.) However, there will be gregarious 5-cycle decompositions of complete
multipartite graphs in cases when a K5-decomposition is not possible.

3.4. Resolvable and gregarious cycle decompositions

Since work on cycle decompositions with the extra property of being gre-
garious is relatively new, very little has been done on requiring the decompo-
sition to be both resolvable and gregarious. The paper [9] is a start in this
direction.

In [9], Billington, Hoffman and Rodger investigate n-cycle decomposi-
tions of the complete equipartite graph Kn(m) which are both gregarious and
resolvable. The main result is:

Theorem 10. ([9]) There exists an edge-disjoint decomposition of Kn(m) into
n-cycles which is both gregarious and resolvable if and only if m is not odd
when n is even, and (m, n) �= (2, 3), (6, 3).

A gregarious resolvable decomposition of K3(2) or K3(6) into 3-cycles is
not possible (for these two cases would imply existence of a pair of orthogonal
latin squares of orders 2 and 6!).
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Liu’s [34], [35] resolvable decompositions (or 2-factorizations!) of Kn(m)

are not generally gregarious, so his results did not help in [9].

4. Maximum Packings.

When the necessary conditions for an edge-disjoint decomposition of
K (a1, . . . , an) into k-cycles fail, it is natural to ask for a packing of this com-
pletemultipartite graph with k-cycles. A k-cycle packing of G = K (a1, . . . , an)
is a set of edge-disjoint k-cycles in G . The packing is maximum if its number
of cycles is not less than the number of cycles in any other packing of G with k-
cycles. The edges of G not occurring in any k-cycle are referred to as the leave
of the packing. Obviously a maximum packing will have a minimum leave.

Not much work has been done on packing complete multipartite graphs K
with cycles, in the case that K is “genuine”, that is, when K is not a complete
graph (all parts of size 1).

For 3-cycles, maximum packings in the equipartite case, Kn(m) , for all n
and m, are dealt with in [10].

In [4], the problem of finding a maximum packing of K (a1, . . . , an) with
4-cycles is completely solved, and the minimum leaves are given. (These
minimum leaves can be quite large!) Using this result, a natural generalisation
was to determine a maximum packing of the λ-fold graph λK (a1, . . . , an) with
4-cycles; this appears in [5].

For 6-cycles, the problem of finding a maximum packing in the equipartite
case has recently been completed [23]. In this paper Fu and Huang find a
maximum packing of the complete equipartite graph Km(n) with edge-disjoint 6-
cycles, and they give the minimum leaves. (They also find a minimum covering,
where every edge of Km(n) appears in at least one 6-cycle, and where the
“excess” edges used in more than one 6-cycle — sometimes called the padding
— form a set as small as possible.)

As remarked in Section 2.2 above, necessary and sufficient conditions
are known [14] for the existence of a decomposition (with empty leave) of
K (a1, . . . , an) into 4-cycles, 6-cycles and 8-cycles. As far as I am aware, no
packing results for cycles in multipartite graphs are known other than those
mentioned above for 3-, 4- and 6-cycles.

5. Conclusions and some open problems.

There are several related topics which are not mentioned above, such
as coverings, and hamilton decompositions. Decompositions into cycles of
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different lengths have also been ignored here because of space considerations,
as have λ-fold decompositions. See [22], [16] for examples in the bipartite
case, and [2] in the tripartite case, with cycles of differing lengths within the
one decomposition.

Other papers deal with group divisible designs which allow λ1 edges
between pairs of points in the same group, and λ2 edges between pairs of points
in different groups. Cycles of lengths 3 and 4 have been dealt with in this way;
see papers [24] and [26] by Fu, Rodger and Sarvate for the 3-cycle case, and Fu
and Rodger [25] for the 4-cycle case.

Appended below are some of the open problems mentioned here.

Problem 2.1.
Find necessary and sufficient conditions on K (a1, . . . , an) for it to have an edge-
disjoint decomposition into 3-cycles. (See Colbourn [17] for six conditions
which are shown sufficient for orders up to 60.)

Find further partial results in this direction; see [11], [20], [17], [18], [19].

Problem 2.2.
Show that a graph K (a1, . . . , an) which is 2k-sufficient has a decomposition
into 2k-cycles, for 2k ≥ 10.

Problem 2.3.
Prove that the necessary conditions for a 5-cycle decomposition of Kr,s,t are
sufficient in the remaining case, when r, s, t are all odd and all different.

Problem 2.4.
Find necessary and sufficient conditions for K2r,2s,2t to have a decomposition
into 2k-cycles, for any k ≥ 5. Note that this is really a subset of Problem 2.2
above.

Problem 2.5.
Show that the graph Kr,s − F , where r, s are odd and F is a (smallest possible)
spanning subgraph of odd degree, is ADCT. (See Section 2.5.)

Problem 3.2.
Investigate equitable k-colourings of complete multipartite graph cycle decom-
positions, for k > 2.
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Problem 4.1.
Investigate maximum packings of complete multipartite graphs with small
cycles. In particular:

(1) Investigate packing Kr,s,t with 3- and 4-cycles (see [2] for the case of an
empty leave, and a specified number of 3- and 4-cycles).
(2) Consider packing tripartite graphs with 5-cycles. With methods used in
[14], [13] this could prove no harder than Problem 2.3!
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