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PARABOLIC PROBLEMS IN NON-STANDARD SOBOLEV
SPACES OF INFINITE ORDER

MOUSSA CHRIF - SAID EL MANOUNI - HASSANE HJIAJ

This paper is devoted to the study of the existence of solutions for the
strongly nonlinear parabolic equation

du

2 At glwt) = fx),

where A is a Leray-Lions operator acted from V“*V(')(aa,QT) into its
dual. The nonlinear term g satisfies growth and sign conditions and the
datum £ is assumed to be in the dual space V" () (aq, O7).

1. Introduction

Let Q be a bounded open subset of RY (N > 2) with a Lipschitz boundary 9Q.
Fixing the final time 7 > 0, we denote by Qr the cylinder Q x (0,7), and by
St the lateral surface dQ x (0,T).

Our aim is to study, in the framework of variable exponent Sobolev Spaces
of infinite order, the following strongly nonlinear parabolic problem of Dirichlet
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type
du :
E+Au+g(xatau):f(x7t) mn QT7
u(x,0) = 0 on Sr, (1)
D"uls, =0 forany |w|=0,1,....

Here A is a nonlinear parabolic operator of infinite order defined by

Au= Y (~1)“D*Ag(x,1,V"W)), |71 < e
|a|=0

where Ag : Q x [0,7] x R* — R is a real function and A, is the number of
multi-indices ¥ such that |y| < |e|. In addition, Ay(x,7,&y) are Carathéodory
functions that have polynomial growth in &, for any multi-indice o, and g is a
nonlinear term satisfying some growth and sign conditions.

In the stationary case of such problems of infinite order, Dubinskii (see [19])
has studied the Cauchy-Dirichlet problem

Lw)= Y (-1)"De(x,Viu)=f inQ,
=0 )
D%lgqo=0 |o|=0,1,...,

in the infinite order Sobolev space

Wy (ag, pa) = {u(x) eCy(Q) = p(u)= i aa||D“u||§Z < 00},
o|=0

where ag > 0 and py > 1 are numerical sequences (with ¢ is a multi-index). He
has proved the existence of solutions for the Dirichlet problem associated with
the equation L(u) = f in the Sobolev spaces of infinite order W;°(aq, pa ), under
some growth and monotonicity conditions with constant exponents (pg )q -
Note that the study of some elliptic and parabolic equations involving p-
Laplace operators, is based on the theory of standard Sobolev spaces. In the
case of p(-)—Laplace equations, the natural setting for this approach is the use
of the variable exponent Lebesgue and Sobolev spaces. Several studies have
been devoted to the investigation of related problems in the framework of stan-
dard variable exponent Sobolev spaces and a lot of papers have appeared in this
direction. Since we are interested in the parabolic case, here we mention the
work of Bendahmane, Wittbold and Zimmermann [8], where the authors have
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studied, the following nonlinear parabolic equation with g(x,z,s) = 0,

?;; —div (|Vu|PW=2Vu) = f in Qr,
u=~0 on Sr, ®)
u(-,0) = up(+) in Q,

with f € LY(Qr),up € L'(Q) and p : Q ~ (1,+o0) is a continuous function.
They proved the existence and uniqueness of renormalized solutions.

Let us mention that the elliptic case for infinite order equations with vari-
able exponents, has been studied by Abdou et al. [1], and the case of constant
exponents of the problem (1) has been also investigated by Abdou et al., [2]. As
for the case of nonlinear anisotropic parabolic problems of constant exponents
(finite order), we refer the reader to the work of Abdou et al. [3].

Variable Sobolev spaces have been used in the last decades to model var-
ious phenomena. A major application which uses non-homogeneous opera-
tors is related to the modelling of electrorheological fluids, due in the first to
Willis Winslow in 1949. For a general account of the underlying physics consult
Halsey [24] and for some technical applications Pfeiffer et al. [29]. Electrorhe-
ological fluids have been used in robotics and space technology, mainly in the
USA, for instance in NASA laboratories. For more information on properties,
modelling and the application of variable exponent spaces to these fluids, we re-
fer to Acerbi and Mingione [4], Alves and Souto [6], Chabrowski and Fu [13],
and Diening [16].

The paper is organized as follows. In section 2 we recall some basic nota-
tions and properties of Sobolev spaces with variable exponents in both finite and
infinite order. We introduce in section 3 some assumptions on Aq(x,7,&y) and
g(x,t,s) essential to assure the existence of weak solutions. The second part will
contain some important lemmas which will be useful to prove our main results.
The last part of section 3 is devoted to prove the existence of weak solutions for
our nonlinear parabolic problem in the framework of Sobolev space of variable
exponents with infinite order.

2. Preliminaries
2.1. Variables exponent Lebesgue and Sobolev spaces.

We say that a real-valued continuous function p(.) is log-Hélder continuous in
Q if
1

Ip(x) —p(y)| < X

<———— VxyeQ suchthat [x—y|<
|loglx =yl
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with possible different constant C. We denote

C+(Q) = {log-Holder continuous functions p(-) : @ — R
suchthat 1 < p_ < p, <N},

where

p-=min{p(x)/x€Q} and p,;=max{p(x)/xeQ}.

We define the variable exponent Lebesgue space for p(-) € C(Q) by
Lp(')(Q) ={u:Q— R measurable / / \u(x)|p(") dx < o},
Q

The space LP() (Q) under the norm

p(x)
lull ) =inf{ A >0, / dx< 1
Q

is a uniformly convex Banach space, then reflexive. We denote by 70 (Q) the

conjugate space of LP(‘)(Q) where ﬁ + ﬁ =1 (see [22], [30]).

Proposition 2.1. (cf. [22], [30]) (Generalized Holder inequality)
(i) For any u € L’V)(Q) and v € L"')(Q), we have

/uvdx
Q

(ii) For all p(-), p2(-) € C+(Q) such that pi(x) < pa(x) in Q, we have

u(x)
A

1 1
< (o + o oty Il

LP0(Q) — LM O(Q)
and the embedding is continuous.

Proposition 2.2. (cf. [22], [30])
If we denote

p(u):/ \u!p(x)dx VueL”(')(Q),
)

then, the following assertions holds

@) |ullpy <l (resp,=1,>1) & pu)<1l (resp,=1,>1),

@) ) > 1= Jullyy < pl) < el and il <1 =y, <
p(u) < [’

(i) |[ul| ) >0 & p(u) =0 and ||ulp.) == & p(u)— oo
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Definition 2.3. (cf. [17]) The function u € L()(Q) belongs to the space
Whr()(Q) where k € IN*, if its weak partial derivatives D%u exist and be-
long to LP1)(Q) for all |a| < k. We define a modular function on W*»()(Q)
by

olely

k
() = D%ulP™W dx with D% = ;
Proo @)= XD it D= sl

which induces a norm by
) u
[l p(y :=inf{A >0 : Pk,p(~)(x) <1}

For k € IN, the space W5P()(Q) is called Sobolev space and its elements are
called Sobolev functions. Clearly Wo7()(Q) = Lr0)(Q).

Definition 2.4. (cf. [17]) Let p(-) € C+(Q) and k € IN*. The Sobolev space
W(f’p(')(Q) is the closure of C(Q) in the space W5P()(Q), where C3(Q) is
the space of all continuous functions with compact support in Q, that have con-
tinuous derivatives for any order.

Theorem 2.5. (cf. [17]) Let p(-) € C,(Q) and k € IN. The spaces W5P1)(Q)
and W(f P (')(Q) are separable and reflexive Banach spaces.

Proposition 2.6. (cf. [22]) In the case of k =1, if q(-) € C(Q) and q(x) <
pr(x) = 1\71’[5)(5)1) for any x € Q, then the embedding Wol’p(')(Q) e LIO(Q) is
continuous and compact.

Remark 2.7. We denote the dual of the Sobolev space Wé{ 20) (Q) by

wkPO(Q).
It is well known (see [17]) that for each F € W‘k'/pl(')(Q) there exists (fy)o C

k
LP'0)(Q) with |a| =0,...,k, such that F = ) (—=1)1*I D% f,,. Moreover, for
|a|=0

any u € Wok’p(x)(Q) we have
k
(Fay= Y, [ faDudx,
|a|=0 Q

and we define a norm on the dual space by

k k
IFI ey =inf{ Y fallyey / F= Y (=1)* D%

l[=0 lo[=0

with fo, € L 0)(Q) for |a|:0,...,k}.
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Now, let ag, > 0 be real numbers for multi-indices ¢. The variable exponent
Sobolev space of infinite order is the functional space defined by

W™ (g, p(2)) () = { C(Q) 10y = Y aallD%ull), }

|a|=0
Since we shall deal with the Dirichlet problem in this paper, we will use the
functional space W;;°(aq, p(+))(Q) defined by

W5 (ag, p(+))(Q) = {u eCy(Q): Gp(_)(u) = li aaHDO‘uHZ(;) < 00}.
o|=0

In contrast with the finite order Sobolev space, the very first question, which
arises in the study of the spaces W;°(aq, p(-))(€), is the question of their non-
triviality (or nonemptiness), i.e. the question of the existence of a function u
such that 6,y (u) < .

Definition 2.8. (Dubinskii [18]) The space W;*(aq, p(x))(Q) is called a non-
trivial space if it contains at least one function which not identically equal to
zero, i.e. there is a function u € C§(Q) such that ,,(.) (u) < eo.

It turns out that the answer of this question depends not only on the given
parameters daq, po Of the spaces W*(aq, p(x))(L2), but also on the domain Q.
The dual space of W;°(aq, p(x)) (L) is defined as follows

oo

W (a0 (@) = {hi = ¥ (-1)“auDhe

|a|=0
Y aallnalll }

|la[=0

where hy € LP'()(Q) and p/(-) is the conjugate of p(-), i.e., p'(-) = pf)()

)
Note that the duality of the space W™ (aq, p'())(Q) and Wy°(aq, p(x))(Q) is
given by the relation

(h,v) = aa/ha ) D%v(

\a\ 0

In the particular case when p(x) = p for any multi-indices &, the Sobolev
space of infinite order is defined as

Wi a0.p)(@) = {ue G51@): 010) = |$ aullD%ul <,
o|=0

where ag > 0, p > 1 are real numbers for all multi-indices ¢ and || - ||, is the
usual norm in the Lebesgue space L”(Q), (see [18], [19]).
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2.2. Non-Standard Sobolev spaces of infinite order involving space
and time.

Let Or = Q x (0,T) with 0 < T < . Extending the definition of variable
exponent p(-): Q+—]1,00) to Qr by setting p(x,t) := p(x) forall (x,t) € Qr,
we define

C+(0r) ={p(-): Or = R suchthat p(x,7) = p(x) € C+(Q)},

and we consider for p(-) € C;(Qr) the generalized Lebesgue space

LPY(Qr) = {u : Qr — IR, measurable, such that |u(x,0)|PY) dxdt < 00},

Oor

endowed with the norm

. := inf
el ry = jut { [

which, of course shares the same properties as L”()(Q).

dxdzgl},

Lemma 2.9. (c¢f. [31]) We have the following continuous dense embedding
LP+(0,T;LPV(Q)) — LPY(Qr) — LP-(0,T; L) (Q)).

We introduce, for any k € IV, the Lebesgue space with variable exponent
involving time LP-(0,T;W*P()(Q)) by

LP-(0,T;Whkrh)(Q)) = {u measurable function /

k T
D%u||P- dt<°°},
azio/o | qu(')
and we define
viri(or) = {u € L (0,T;Whr0(Q)) / / [D%u|?®) dxdr < oo
Or

f0r|o¢|:0,...,k},

equipped with the norm

k
lellyiroopy =} 1Dl o0y

|a[=0
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It is clear that for any u € V5P()(Q7), we have

k P-
e ( y ||D“u||Lp<.><QT))

k

<C Z 1Dl 0, )

<C Z / ID%u|P™) dxdr +1).
|a|=0

We introduce the functional space V}, kp( (QT) defined by

620 o) = {u e L (0,7:We"(@))/

/ ID%u|PY) dxdt < oo for |ot| = o,...,k},
Or

The spaces VAP0 (Qr) and V, kp( (QT) are separable and reflexive Banach
spaces.
The dual space of V" kop( (QT) is defined as follows

k

—’””<'>(QT>={F= Y (=) D%fg, with fo € 170 (Qr)

|a|=0
for]a]—O,...,k},

endowed with the norm

k k
1l iy =inf{ ¥ el / F= X (DD,

lor|=0 |ot|=0
with fo € L”0(0r) for |a|:o,...,k}.

The duality pairing of the space V,,’ kipl: (QT) with its dual is given by the relation

k

(Fv)=Y fo(x)D%v(x) dx

la[=0" €7

forallv eV, kop( (QT)
Now, we define the functional space related to our problem called the Non-
Standard Sobolev space of infinite order involving space and time.
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Let (aq)q be a sequence of nonnegative bounded real numbers for all multi-

index o such that (ay)s > 0 and Z ag < oo.
|at|=0
The space LP-(0,T;W=(aq, p(+))(Q)) is defined by

P (0, W™ (g, (1)) () = {uw) e (@)

aa/ 1D dt<oo}

|ox[=0

and we define

Veort(ag, 0r) = {u € L7 (0,T;W™(aa, p(-))(Q))/

Z ag \Dau|p(x) dxdt < 00},
|a[=0

endowed with the norm

Hu”V“1P(~)(ga7QT = Z aOlHDauHL”(')(QT)‘
)

|ar|=0
We have for any u € V=P()(ay, Or)
||”HVM,,<) (40,07) Z ag < Z aa/ |D%u|P®) dxdt. 5)
|a|=0 |a|=0

We introduce the functional space V" O (aq,Qr), defined by

V(;x”p(')(aa,QT) — {u e L (0,T;Wy (aa, p(+))(R))/

Y aq |D%u|P®) dxdr < oo}.
jaj=0 7O

The spaces V") (aq,Qr) and V; 7 (')(aa,QT) are separable and reflexive
Banach spaces.

The dual space of V, " 0 (aq,Qr) is defined as

for|o¢\:0,...,k},
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and endowed with the norm

HFHV_M”’/(')(amQr) :inf{ Z aOCHfOCHLI’/(')(QT) [ F= Z (_l)m‘Daftx

|et|=0 |ot|=0
with fo C L”O(Qr) for ya|:o,1,...}.

The duality pairing of the space V" (')(aa, Qr) with its dual is given by the
relation

()= ¥ au [ ful0)D()drd
|| =0 r

forall v € Vgo’p(‘)(aa, Or).

3. Main result.

3.1. Essential Assumptions.

Let Or =Q x (0,T) with 0 < T < eo. and p(-) € C; (). The nonlinear op-
erator A acted from V" (')(aa,QT) into its dual V—>"'()(ay,Qr) is defined
by

Au= Y (=DI¥D* Ay (x,1, V"), |7 <ol
|| =0

where Ag : Q x [0, T] x R* — R is a real function and A, is the number of multi-
indices y such that |y| < |e|, and that A(x,1,&,) are Carathéodory’s functions
satisfying

A (.1, &) Na| < coaalal”™ Nl forall || =0,1,...,  (6)
Aa(x,t,éy)éachaa|§a|p(x) forall |a| =0,1,..., (7)
(Aa(x,1,8y) —Aq(x,1,61))(Ea — Ey) >0, forall|a| =0,1,..., (8)

fora.e. (x,¢) € Or, and all &4, &y, §y, &y with &g # & and &, # &),
The space V. P (')(aa, Qr) is nontrivial. 9)

Here (aq)q is a sequence of nonnegative bounded real numbers for all multi-

index o such that ag > 0 and Z aq < o and the constants ¢y, cp > 0.
|ot|=0
The nonlinear term g(x,?,s) is a Carathéeodory function satisfying

lg(x,2,8)] < |s[PW " +b(x,1), (10)
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g(x,1,5)s >0, (11

for a. e (x,#) € Or and any s € R, where the positive function b(x,7) belongs

to LP (QT)
We consider the nonlinear p(x)—parabolic problem

ou +Au+g(x,t,u) = f in  QOr,

o (12)
( f) =0 on ST)

u(x,0) =up(x) >0 in Q

where uo € L?(Q) and f € V’“’pl(')(aaaQT)-

3.2. Some technical Lemmas.

Lemma 3.1. (¢f. [18]) Let By, B and B be Banach spaces, and let
Y={u:uecl0,T;By), u €L(0,T;By)}

where pg, p1 > 1 are real numbers.
If the embedding By C B C B is continuous, and the embedding By C B is
compact, then

Y C L”(0,T;B)

and this embedding is compact.

Lemma 3.2. Let g€ L'")(Qr) and g, € L'V)(Qr) with 18nll 00y < C for
r(-) € CH(Q).
If gn(x,1) — g(x,1) a.e. on Qr, then g, — g in L'V)(Qr).

Proof. The proofis similar to the proof of Lemma 3.3 in [7], by considering
Or instead of Q.

Lemma 3.3.  Assuming that (6) — (8) hold and let (u,), be a sequence in
k+1 P (QT) such that u, — u in VkJrl pC )(QT) and

aa/ / (|ID%u,|PY) 2 D%, — | D*u|P¥)"2D%) (D%u,, — D*u) dx dt

|ot|=k+1
/ / Ag(x,1, V) — Ag (x,2,Vu)) (D% — D%u) dxdt — 0,

\a\ 0
(13)

i
then u, —u in 'V, kLl (QT) for a subsequence.
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Proof. Let

Se(vt) = Y aq(ID%u|P 2 D%, — |D*ul?Y2D%u) (D% u, — D%u)
|ot|=k+1
k

+ Y (Aa(x,t,Viup) — Ag(x,1, V1)) (D% — D%u).
|a|=0

Thanks to (8), we have S, (x,7) is a positive function, and by (13) we have S, — 0 in
LY (Qr) as n— oo

Since u, — u in VkJrl pC (QT) and since S, — 0 a.e in Qr, then, there exists a subset
B C Q with measure zero such that

[D%u(x)] <o forall || =0,...,k+1 and Sy —0,
for all (x,7) € Qr\B. We have

Se(xt)= Y aq(|D%u|P "2 D%, — |D*ul?"2D%) (D% uy, — D%u)
|ot|=k+1

k
+ Y (Aa(x,1,V7un) — Ag(x,2, V1)) (D%t — D%u)
|a|=0
= Y aa(ID%%u["Y +|D%u|P™) — |D%u, PO 2D, D*u — | Du|PD 2D u D%u,,)
\oc| k+1

+ Z a (2,2, VY, ) D%upy + A (3,8, VIU)D%u — A (x,1, Vi1 ) D%u — Ay (x,2, VVu)D%uy
|a|=0
> Y aa(ID%, "W + [D%ulP™) — | D%, [P 2D, D*u — | D%ulPD 2D D%u,,)

|ot|=k+1
k

+ Y aa(c1|D%un|PW + ¢ | D%ulPW — co| D%y [P D% 1| — co| D¥u|PD D)
|a|=0
k+1 k+1 k+1
>c1 Y agD%uy P —Coy (147 Y. aglDun?97 4+ Y aalD%uy)),
|ot|=0 |at|=0 |ot|=0

with ¢; =min(cy,1), ¢o = max(co, 1) and the constant Cy; depends only on
x and ¢ and does not depend on n. By taking

k+1 k+1
Z aq|D* u,,| = Z aq|D* un|p and
|o]=0 |o]=0
k+1
Rn,l - Z aa’Daun‘7
|ot|=0

we obtain

Cx,t CXJ%Rmp(x)—l . Cx,tﬁRn.,l >



PARABOLIC PROBLEMS OF INFINITE ORDER 353

Hence, (D%uy,), is bounded almost everywhere in Qr forall |a|=0,...,k+ 1.
(Indeed, assuming for some 0 < |o| < k+ 1, that [D%u,| — o in a measurable
subset £ C Qr, then

lim [ S,(x,7)dxdt

n—oo or

C CyiCo0R 1 C.,70R
> limsup Ry p(v) <C1 S B €0fap) -1 CxgCo n.,1> dxd
noee JE R"sP(X) Rn,p(x) R

> limsup | |D%u,|P®) (Cl_ Coi CriCORyp(r)-1 _cx7,c0R,1,1>dxdt
T e JE — Rn,p(x) Rn,p(x) Rn,p(x)

n,p(x)

= o
)

which is absurd since S, — 0 in L'(Qr)).
Let @y be an accumulation point of (D%u,), for || =0,...,k+1, we
have || < oo. Thanks to the continuity of Ay, we have

Y au(|0a|Y 2 0q — [D*ulP D) (g — D*u)
|ot|=k+1
k
+ Z (Aa(x,1,0y) —Ag(x,1,V"u))(0g — D%u) = 0.
|a]=0

Thus by (8), we deduce that @, = D%*u, and the uniqueness of the accumulation
point implies that D%u,, — D%u a.e in Qr.

Now, remark that the operator (Aq (x,t,V?uy,)), is bounded in L”)(Q7) and
A (x,1,VTu,) — Ag(x,1,V'u) a.e in Qr. Using Lemma 3.2, we can establish
that

Aa(x,t,VU,) — Aq(x,6,V7) in LFO(Qr)  forall |a|=0,... .k,

and, in view of (8) and (13), we obtain
/ ID%u, [P dxdi —s | |D%|P™) dxdr forall |a| = k+1,  (14)
Or Or

and

Ag(x,t,VTu,)D%u, dxdt — | Ag(x,t,V'u)D* udxdt (15)
Or Or

for all || =0,...,k. Thanks to the coercivity condition, we have

¢1 ag|D%u,|PY) < A (x,1,V7up)D%uy.
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Hence, in view of Fatou’s Lemma, we get for all 0 < |a| <k,

2| Ag(x,t,V'u,)D%u, dxdt< liminf < Aq(x,t,VTu,)D%u, dx dt
Or

QT n—oo
+/ Ag(x,t,V'u)D%udx dt
Or

Cldg
2p+—1

/ |D%u,, — D%ulP™) dxdt> ,
Or

then
0 < —limsup [ |D%u, —D%u|P™ dxd.

n—yoo QT

It follows that

0 <liminf [ |D%u, —D%u|P™) dxdt <limsup | |D%u,—D%u|P™) dxdt <0,

= JQr n—eo  JQOr

which implies that
/ ID%u, — D%u|?™) dxdi —s 0
Or

as n — oo. Thus, we obtain
D%y, — D% in LPY(Qr)  forall |a|=0,..., k.

Finally, thanks to (14), we have D%u, — D% in L’0)(Qy) for |ot| = k+1.
Consequently, we deduce that

u, — u in Vé‘“’p(')(QT).

This completes our proof.

3.3. Main result.
Theorem 3.4. Assuming that (6)-(11) hold, then for any f € V=) (ay, Or),
there exists u € Vy " 0 (aq,Qr) such that

g(xvlau)eLl(QT)7 g(x,t,u)uELl(QT), and

=)

T du T .
/ <§,v>dt+ Z aa/o /QAa(x,t,Vyu)D vdxdt

0 la|=0

T
+/ g(x,t,u)vdxdt:/ (f,v)dtforallveV:’p(')(aa,QT).
Or 0
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Proof of the Theorem 3.4
Step 1: Approximate problems

We consider for all £ > 1, the approximate problems

u .
7;+A2k+2”k+g(xatauk) = fi(x,t) in  Or,
=0 on Sr,
ur(x,0) = up in Q,
where
k+1 ,
fetet)y =Y (=1)%agD® fo (x,1) for fo € L7 (Q),
|| =0

and Ay, is the operator acting from V"' D7) into VE1PO(Qr)
defined by

T
/<A2k+2u,v>dt: Y, aq |D%u|PY)2D% D%y dx dt
0 laj=k+1  7Or
k
+ Y | Ax(x,t,V'u) D%vdxdt.
=007

Using generalized Holder’s type inequality, we have for any u,v € Vok ol )(QT)

‘/ (Appiou,vydt| < Z aa/ |D%u|PW =1 | D%| dx dt
0 o[ =k-+1 T

+ Z/ A (x,1,V7u)| | D] dxdr
|a|=0

< Y aa ]Dau]p =1 \D%| dxdt
|a| k+1

+co Z aa/ |D%u|PW = | D%| dx dt

|ox|=0
k+1
<7 aa/ |D%u|PW) =1 | D%| dx dt
|a[=0 r
k+1
ccp Y, aall D% s o) 1DV 00
|o|=0

1 1
with ¢g = max(1,¢p) and ¢, = <+> Since
( VRO

1 p+

- I
|| |D06u|P(x) IHLIJ/(-)(QT) g (/Q ’Daup(X)d‘th> +1 < ||Dau||l}’() +27
T
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then

k+1 by

< CoCp Z Ao |Dau||Lp() 2)||DavHL,,(.)(QT)
|05| 0

}/OT(Angrzu V) dt

bl i oy + Do g, (16)

or)

We define the operator G : Vé‘“’p(')(QT) s VLI O(0r), by

T
/0 (Gu,v)dt = 0 g(x,t,u)vdxdt Vv e Vé(Jr]’p(‘)(QT).
T

By using Young’s inequality, we have for any u, v € Vé( Fr() (0r)

’/ g(x,t,u)vdxdt

T

g/ (PO 1 b(x, 1)) |v| dxdt
Or

<cp (|l |u’p(x)_l ”Ll"(')(QT) + ”b(xat)HLp’(-)(QT))HVHU(')(QT)
S c,”VH‘/{;“H‘P(')(QT) .
a7

Lemma 3.5. Bk = Apria + G is pseudo-monotone operator from Vé{ +1p() (0r)
into V—k=1r/( (QT) Moreover, By, is coercive in the following sense

fOT <BkV, V> dt

— o0 as V|| k+1.p() — o0
Il 0, Il 7

forall ve Vk+]’p( )(QT).
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Proof of Lemma 3.5

In view of inequalities (16) and (17), the operator By is bounded. For the
coercivity, thanks to (7) and (10), we have for all u € Vk+1’p ¢ )(QT)

T
/ (Bauuydt =) aa/ |D%u|P™) dx dt
0 \a\ k+1

+ Z Aq(x,1,V'u)D*udxdt
=07 Qr

+/ g(x,t,u)udxdt

k+l
>cp Z aa/ |D%u|PY) dx dr
|at|=0
¢l st ki1
> === ull" ), €1 Y, Ga
¢ Yo " |ot|=0

with ¢; = min(1l,c¢;) and 0 < agy) = ‘ r‘mkn 1aa' Then, it follows that
- — o<kt
Jo (Biu,u) dt

—> +o0 as |u| k+1,p() —> oo,
leellye1.00) g, lullysrsog,)

Now it remains to show that By is pseudo-monotone. Let (u;), a sequence
in Vka (Qr) such that

up —u in Vka()(QT)7

By, — x in VRLPC (QT)
T

limsup (Bkuh,uh>dt§/ (x,u)dt.
0 0

h—yoo

(18)

We shall prove that
X =Biu and <Bkuh,uh> — <X,Lt> as h — oo,

First, since aq > 0 for |a| <1, then VkH’p (0r) CV, Ll (QT) Hence
the embedding V,, kL )(Q ) s LPU)(Qr) is compact and there exists a sub-
sequence still denoted by (uy,), such that u, —u in  LPO)(Qr).

Since (uy);, is a bounded sequence in Vé‘“ Pt )(QT), and in view of (6), it
follows that (A (x,z,V?up)), is bounded in LP'0)(Q
a function @y € L” ()(Q) such that

7). Therefore, there exists

Ag(x,1,Vup) = @g in L7 (Qr) for || =0, ...k, (19)
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and
D%, |PY2D%, — | D%u[PW2D% in LF')(Qr) for |a| =k+1. (20)
Since u;, —u in LP0)(Qr) then
glx,t,up) — g(x,t,u) in L"I(')(QT) as h— oo, 21

Thus, for all v € V§+l’p(')(QT) we have

T T
/ (v)di = tim [ (Beup,u) di
0

h—o0 JO
= lim Z aa/ |D%uy, [P =2D%yy, D*v dx dt
h—oo &= Or
|ot|=k+1
k

+1lim ) Aq(x,t,VTu) D*vdxdt
h_>°°|(x|:0 Or

+lim [ g(x,t,uy)vdxdt

h—eo ) Qr

= ) aa/ |D%u|PX)=2D% D%y dx dt
la|=k+1  7Qr

k
+ Y | @uD%dxdi+ | g(xtu)vdxd:r. (22)
la|=0"9r Or

Combining (18) and (22), we obtain

T
limsup [ (Byup,up) dt zlimsup< Z aa/ \D“uh|1’(x)dxdt
T

h—eo /0 h—yoo o) =k+1

k
+ Z / Ag(x,t,VTup) D%up dxdt
ja=0"2r

+ [ glx,t,un)uy dxdt)

Or

< Z ag | |D%ulP® dxdt
ot =k+1 Or

k
+ Z/ (paDaudxdt—i-/ g(x,t,u)udxdt,
lo]=0" @1 Or

and since

/ g(x,t up)updxdt — g(x,t,u)udxdt as h— oo, (23)
Or Or
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then

k
limsup( ) aa/ |D%uy,|PY) dx dt + ) Aa(x,t,V”uh)Dauhdxdt>
h—eo \ |g|=k+1 r la|=0"€9r

k
< Yy aa/ ID%u|P™ dxdt+ Y / @q D udxdt. (24)
laj=k+1  /Qr la|=0"9r
On the other hand, in view of (8), we get
Y aa/ (|ID%uy P92 D%y, — |D*u|PO2D%,) (D%, — D*u) dx dt
la|=k+1  YOr
k

+y / (Ag (.1, VTup) — A (x,1, V700)) (D%, — D) dxdt > 0,

a=0/0r
This implies that
k
Z aa/ ]D“uh|p(x)dxdt—|— Z / Ag(x,t,VTup) D%up dxdt
o) =k+1 Or =07 Qr

> — Z aa/ \D“u\p(x)dxdﬂr Z aa/ ]Dauh|p(x)_2D°‘uhDaudxdt
|ot|=k+1 T ot|=k+1 Or

+ ) aa/ |D%u|P¥)=2D% D%wy, dx dr + Y Aq(x,t,VTu) D*udxdt
laj=k+1 70T |a|=k+1"Or

k
+ Y | Aa(xt,V'u)D%wydxdt— Y Aq(x,1,V"u) D®udxdt.
la|=0" 91 |a|=k+1" 9T

Using (19) and (20), we deduce that

k
liminf< Y aa / ID%up P dxdt + Y Aa(x,t,Vyuh)Dauhdxdt>
h=ee \|aj=k+1 701 la[=07Or

k
> ) aa/ |D%u|PY) dx dr + Z/ Qo D*udxdt. (25)
laj=k+1 QT la|=0"9r

Hence, in view of (24) and (25), we get

k
lim ( Z aa/ \D%up|PY) dxdr + Z Aa(x,t,Vyuh)Dauhdxdt>
h=yeo |ot|=k+1 Or |ot|=0 Or

k
- Y aa/ |D%u|PY) dxdr + Z/ Qo D*udxdr. (26)
laj=k+1 QT la|=0"9r
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Thanks to (23), we conclude that
<Bkuh,uh> — <X,I/t> as h — +oo.

Now, by (26), we obtain

Y aq / (|D%uy|PY9 =2 D%y, — | D*u|P¥)~2D%) (D*uy, — D*u) dxdt — 0
ot =k+1 T
as h — 4oo, and

k

y / (A (5,1, V7u) — A (x,1,V710) ) (D — D%u) dxdi — O as h—> 4-oo.
laj=0”9r
In view of Lemma 3.3, we deduce that

u, —u in VOI(H”’(')(QT).

Then, it follows that

D%, |PY2D%y, — |D%u[PW2D% in LPO(Qr) forall |a|=k+]1,

27
and Ay (x,1,VTup) — Ag(x,t,VTu) a.ein Qr, since (Ag(x,7,V¥uy)) is bounded
in L”)(Q7). Applying Lemma 3.2, we obtain

A (2,1, V) — Ag(x,1,Vu) in LPO)(Q7) forall |a|=0,...,k. (28)

Finally, combining (21), (27) and (28) we conclude that ¥ = B,u, which com-
pletes the proof of Lemma 3.5.

Therefore, by Lemma 3.5, there exists at least one weak solution u; €

V(f +Lp (')(QT) of quasilinear parabolic problem (16), we refer the reader to
([27], Theorem 2.7, page 180).

Step 2: A priori estimates.

Taking uy(x,7) as a test function in (16), we obtain

T Ju T T
/ <87,Mk>dt+/ (A2k+2uk,uk>dt +/ g(x,t,uk)uk dxdt = / <fk,uk> dt.
0 14 0 Or 0 29)



PARABOLIC PROBLEMS OF INFINITE ORDER 361

We have
T
/0 (Agksout, ug)dt

k
=Y aa/Q |D%u|PY) dix dr + Z/QAa(x,t,vmk)D“ukdxdr
T T

|ot|=k+1 |et|=0
k
> Z aa/ |Dauk\p(x)dxdt+cl Z aa/ \Dauk|p(x)dxdt
|ot|=k+1 or |a|=0 Or
k+1
> Z aa/ |D°‘uk\”(")dxa’t, (30)
jal=0 Q"
and
T duy ux(T)[? Juo|?
— dt= | ———dx— | —dx. 31
/o<at’”"> /92 x/QZX S

For the term on the right-hand side of (29), by using Young’s inequality we get

k+1

T
/ (firue)ydt =Y aa/ FfaD%uy dxdt
0 Or

|a|=0
k+1

<c Z aa/Q \fa\pl(') dxdt
T

|a|=0

k+1
Y aq / D% u|P™) dxdt. (32)

laj=0  /Or

c1
2

By combining (29) — (32), we obtain

)2 k+1
/'”k( W & Y aa/ ID“ukV’(x)dde/ 8(x, 1, )uy dx dt
Q 2 2 |ot|=0 T Or

k+1

2
<o Y aa/ o]0 a’xdt+/ Juol® 4. (33)
a0 Jor e 2

Since ug € L*(Qr) and ka‘|V*"*1=1"(‘>(Qr) < CHfHV*W’O(aa,QT)’ then, there exists

a constant c3 that doesn’t depend on k, such that

ux(T)[? e @ |px)
/de—i— Z aa/ |D%uy|? dxa’t—i—/ g(x,t,up)u dxdr < cs.
Q Or

jaj=0 707

(34)
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d )
Step 3: The sequence <ﬂ> is bounded in V") (ay, Or).
ot /ken+

Using v € V(;o’p(')(aa, Or) as a test function in (16), we get

T Juy T T
/ <—,v)dt+/ (A2k+2uk,v>dt+/ g(x,t,uk)vdxdt:/ (fi,v)dt,
0 ot 0 or 0

then, we have

T
< ‘/0 (Aogiouy,v)dt

+ /Q gt ] dxr
T
+'/O (fov)di]. (35)

For the first term on the right-hand side of (35), using generalized Holder’s
type inequality and (6), we obtain

T
’/0 (Agksouy,v)dt

<Y a / D%y [P0~ | D%| dx dr

k
+y / Ag (5,17 | | D] dx dt
Or

|| =0
k+1
<c ) aa/ |D%u [P~ D%y| dxdt
aj=0 707
k+1
< 1 aul P 0010V
al=0
k+1 he
<cp Y aal( / D% P dxdr) ™ 4+ 1)[1D%| 0 o)
jaj=0 O
S c4||v||V:’p(')(aa,Qr)' (36)

Concerning the second term on the right-hand side of (35), thanks to (10) we
get

/|g(x>t,uk)HV|dxdt

Or

S/ \ukyp(x)—lyv\dxdwr/ b(x,t)|v|dxdt
Or or

< ep (Il s o) + 16D s @) IVl ot

<c¢s ”VHV:J’(~> (37)

(atx-,QT) )
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For the last term on the right-hand side of (35), we have

T k+1
’/ <fk,V>dt Z aa/ |foc |DaV|dXd[
0 =0
k+1
S¢p Z aa”focHLp’(-)(QT)HDaVHm-)(QT)
|| =0
< CP%HfHV < ()(ag,0r) HVHV;W(-)(%’QT)- (38)

By combining (35) — (38), we deduce that

’/ %vdt

with ¢7 is a constant that does not depend on k. Then it follows that the sequence

(%;tk)k N is bounded in V*°°=p’(')(aa,QT).
E *

In order to apply Lemma 3.1, let us consider

<c¢7 HVHVS"J)(-) (39)

(aa,0r) ’

By=W*r0(Q), B=w*"(Q) and B; =W "(aq,p'())(Q)

with po = p_ and p; = p’ , where k € IN* is arbitrary. Then, in view of esti-
mates (34) and (39), we deduce that the family (uy)ren+ Of solutions of the
problems (16) is compact in the space V(f »() (Or).

Consequently, by similar argument as in the elliptic case (using the diagonal

process), (see [9] and [18]), one gets that the sequence (uy)ren+ converges
strongly together with all derivatives (D®uy )i+ in the space LP)(Q) to some

function u € Vf’p”(aa,Qr), ie

we—u in Ve (ag,0r). (40)
Step 4: The equi-integrability of g(x,7,uy).
We shall prove that

g(x,t,ux) — g(x,t,u) strongly in Ll(QT).

Indeed, using Vitali’s theorem, it is sufficient to prove that g(x,7,u;) is uni-
formly equi-integrable.
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Let m > 1 and E a be measurable subset of Q7, we have

[ gt t,0)
E

1
<[ gt dedr o (.t u g deds
EN{|u|<m} m JEN{|u|>m}
< (1T (u) "9~ b)) dxdr - [ gt e de
Eﬁ{\uk\gm} m or

<l |+ [ blxn)dxdr+ 2,
E m

where c3 is the constant of (34) which is independent of k. Then, for all € > 0,

3 €
there exists m large enough such that =< > and |E| sufficiently small to
m

€
obtain |m|p+_1|E|+/b(x,t)dxdt <5, we get
E

/ |g(xat’uk)|dde <e.
E

Using Vitali’s theorem, and since g(x,7,ux) — g(x,t,u) a.e. in Qr, we deduce
that

glx,t,u) — glx,t,u)  in L'(Qr). (1)

On the other hand, in view of Fatou’s lemma and (34), we obtain

/ g(x,t,u)udxdt <liminf | g(x,t,up)ux dxdt < c3,
Oor k=teo JOr

which implies that g(x,¢,u)u € L'(Qr).

Step 5: Passage to the limit.
Now, we will prove that
T

T
lim (Aogyo(ug),v)dt = / (A(u),v)dt forall ve V:’p(')(aa, Or).
k—r+o0 /0 JO 42)
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Indeed, let k > 0 large enough and v € V™" (')(aa, Or), we have

/0 " AW) = Agga () v) di

k

= Z/ (Ag(x,2,VVu) — Ag(x,2, V" uy)) D* vdx dt

jaf=0"2r
- Y aq / |D* 1 |PY) =2 D% w, D* v dx dt
|ot|=k+1 Or

oo

+ ) Ag(x,t,VVu)D* vdxdt. (43)
la|=k+17 97

On one hand, since (Aq(x,7,&y))q are Carathéodory functions and thanks to
(40), we obtain

k
Z/ (Ag(x,8, V) — A (x,t, V) ) D* vdxdt — 0 as k— oo. (44)
jal=0"9r

(')(

Now since u; € V(fH’p aq,QOr), then we get

k+1
Z aa/ D% |PW) dxdt < C forall k>0,
=0 7€r

it follows that

k+1
lim Z aa/ |D%u|P™) dxdt < C = lim Z aa/ |D%u.|P™) dxdr = 0.
Or Or

k= a0 k=% =t 1
We deduce, using Young’s inequality, that

Z aa/ |Dauk|p(x>72DaukDavdxdt
a|=k+1 07

< Zaa/

|
laj=k+1  /Or

D% u |PY~1 D% y| dx di

1 1
< Y aa/ D% 1 |PY) dxdr + — ) aa/ |D%v|P@) dxd.
P—oj=k+1  JOr P—aj=k+1  JOr

Hence, we conclude that

Z aa/ |D“uk]p(")’2D“ukD‘xvdxdt—>0 as k — oo, (45)
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On the other hand, using Young inequality, we have

oo

/ Aq(x,t,VVu) D* vdxdt
Or

|ot|=k+1

<co Y aa/ ID* u|PY)=1 D% y| dxdi
la|=k+1 70T

< C*,O ) aa/ |D°‘u|p(x)dxdt+Cf0 Y aa/ ID*v|P™) dxdt,
p- |ot|=k+1 Or p- |ot|=k+1 Or

and since u, v € V(;x”p(') (aq,Qr) then, we have

Y aq |D* u|PW) dxdt < oo and Y ao | |D* V[PW dxdr < oo,
jaj=0 /91 la=0 JOr

which implies that

oo

Agq(x,t,VTu)D*vdxdt — 0 as k — oo. (46)
o[ =k+1791

Finally, by combining (43) — (46), we conclude that
T T wp()
/0 (Aogsn (1), v) dif —» /0 Aw)v)de forall ve V" (ag,0r). (47)

Moreover, it is clear that

T T
/(fk,v>dt—>/ (Fv)di as k- oo (48)
0 0

Consequently, by passing to the limit in (16), we obtain

/OT<‘;‘,v)dt+/0T<A(u),v>dz+ g(x,t,u)vdxdt:/oT<f,v>dt,

Or

forallv € V" (‘)(aa, Qr), which achieves the proof of Theorem 3.4.
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