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FLOCKS, OVOIDS AND GENERALIZED QUADRANGLES

MATTHEW R. BROWN

Let (∞, π∞) be an incident point-plane pair of PG(3, q). A tetrad with
respect to (∞, π∞) is a set {X,Y, Z ,W } of points of PG(3, q)\π∞ such that
{∞, X,Y, Z ,W } is a cap of PG(3, q), ∞ ∈ 〈X, Y, Z〉 and W /∈ 〈X,Y, Z〉. A
set � of ovoids of PG(3, q) is tetradic with respect to (∞,π∞) if each ovoid
contains ∞, has tangent plane π∞ and is such that each tetrad with respect
to (∞, π∞) is contained in a unique ovoid of �. From this definition we are
able to prove that such a set � has a rich and constrained structure, related to
flocks and Laguerre planes.

In fact, we shall see that a tetradic set of ovoids always gives rise to
a generalized quadrangle (GQ) of order (q, q2) satisfying Property (G) at a
flag, and conversely, suggested by a construction of J. A. Thas from 1999.

In the case where each element of the tetradic set � is an elliptic
quadric, the existence of the set � is equivalent to the existence of a flock
of a quadratic cone and the corresponding flock GQ. Using these connections
Barwick, Brown and Penttila showed that a GQ satisfying Property (G) at a
pair of points and whose associated ovoids are all elliptic quadric must be a
dual flock GQ.

In the more general ovoid case, when q is even, Brown showed that
a tetradic set with the property that the set of dual ovoids arising from the
tangent planes to ovoids of the set, is also a tetradic set, comprises elliptic
quadrics. Hence a GQ satisfying Property (G) at a line must be the dual of
flock GQ (as conjectured by J. A. Thas at Combinatorics ’98).

We shall discuss all of the above results.
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1. Introduction.

In this paper we will discuss some of the connections between flocks of
quadratic cones, ovoids of PG(3, q) and generalized quadrangles.

In the mid 1980’s Kantor and Payne independently gave coset geometry
constructions methods for new generalized quadrangles of order (q2, q) (Payne
in [16] for q even and Kantor [14] for q odd). These constructionmethods have
subsequently led to many new constructions of GQs. In the q even case Payne
also showed that there were ovals of PG(2, q) associated with his construction
method. This has led to constructions of new families of ovals ([16], [7], [6]).

In 1987 J. A. Thas [21] showed that these constructions were equivalent to
the existence (in both the q odd and even cases) of a flock of a quadratic cone
of PG(3, q). It is now known that flocks form the connection for a nexus of
geometrical objects and constructions (see, [13], [19]).

In [15] Knarr gave a geometrical construction of flock quadrangles in the
q odd case. Later J. A. Thas [25] gave a geometrical reconstruction of the
dual flock quadrangle using ovoids of PG(3, q) (and also another geometrical
model for the GQ in [26]). In this paper, motivated by the Thas construction, we
take the opposite tack and start with a simple condition defining a set of ovoids
in PG(3, q) from which we can construct a GQ of order (q, q2). Examples
of this construction method are the dual flock quadrangles and the Tits GQ
T3(�) for � an ovoid of PG(3, q). This construction also allows us to prove
new characterisation results for GQs, including a proof that a dual flock GQ
is characterised by having Property (G) at a line (see Section 3 for details on
Property (G)), as conjectured by J. A. Thas in [24].

We now give the definitions and results required to fill in the details of the
above discussion.

An oval of PG(2, q) is a set of q + 1 points of PG(2, q) no three of which
are collinear. Let � be a line of PG(2, q), then � is incident with zero, one or
two points of an oval and is accordingly called an external line, a tangent or a
secant to the oval.

A cap of PG(3, q) is a set of points of PG(3, q) no three of which are
collinear. A line of PG(3, q) will be called external, tangent or secant to a cap
according to whether it contains zero, one or two points of the cap. An ovoid of
PG(3, q) is a cap of size q2 + 1 such that the tangents at a point form a plane,
called the tangent plane at the point. Every plane not tangent to an ovoid meets
the ovoid in an oval. If q > 2, then a cap of PG(3, q) of maximal size is an
ovoid. Every ovoid of PG(3, q), q odd, is a non-degenerate elliptic quadric of
PG(3, q). For q even, q = 2h , the two known isomorphism classes of ovoids
are the non-degenerate elliptic quadrics, which exist for all h ≥ 1, and the
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Tits ovoids which exist for h odd, h ≥ 3. (See [10], [11], [12] for details and
references for the above.)

Let (∞, π∞) be an incident point-plane pair of PG(3, q). If X, Y, Z ,W are
four distinct points of PG(3, q) \ π∞ , then we say that {X, Y, Z ,W } is a tetrad
with respect to (∞, π∞) if {∞, X, Y, Z ,W } is a cap of PG(3, q) such that there
exists a plane of PG(3, q) containing∞ and exactly three of X, Y, Z ,W . If ∞
and π∞ are understood, then we will refer to {X, Y, Z ,W } as a tetrad.

A tetradic set of ovoids with respect to (∞, π∞) is a set of ovoids of
PG(3, q) each element of which contains ∞, has tangent plane π∞ at ∞ and
such that every tetrad with respect to (∞, π∞) is contained in a unique ovoid of
the set.

Tetradic sets of ovoids are the fundamental objects in this paper and we
shall them and their connection to generalized quadrangles of order (q, q2). In
particular, we will show that a tetradic set of ovoids of PG(3, q) gives rise to a
generalized quadrangle of order (q, q2).

2. Laguerre geometries and flocks.

A Laguerre plane is an incidence structure of points, lines and circles with
the following properties.

1. Every point lies on a unique line.
2. Any three pairwise non-collinear points lie on a unique circle.
3. For any two non-collinear points P and Q with P on C and Q not on C ,
there is a unique circle D on Q which meets C in exactly P .

Given a finite Laguerre plane, there is an integer n > 1 called the order
of the plane such that there are n2 + n points, n + 1 lines and n3 circles, every
line is incident with n points, every circle is incident with n + 1 points, every
point is incident with n2 circles, and every pair of non-collinear points lies on n
circles.

Given a Laguerre plane L and a point P of the plane, the derived affine
plane LP is the incidence structure with points the points of L not collinear
with P , lines the circles of L incident with P and the lines of L not on P and
the natural incidence relation. The structure LP is an affine plane. If L has
order n, then LP has order n.

The known models for Laguerre planes of order q arise from oval cones
in PG(3, q). Let K be a cone in PG(3, q) with vertex V over an oval O of
PG(2, q). The incidence structure with points the points of K other than V ,
lines the generators of K, circles the plane sections ofK not containing V and
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the natural incidence relation, is a Laguerre plane of order q . In the case where
O is a conic, these Laguerre planes are characterised amongst all Laguerre
planes by satisfying the configuration of Miquel [27], [8], pp. 245–246, and
hence are calledMiquelian. General references on Laguerre planes are [3], [9],
[8], [20].

A flock F of a Laguerre plane L is a set of circles of L partitioning the
points of L . If L has order n, then F contains n circles. Of particular interest
will be the flocks of the Miqeulian Laguerre plane arising from a quadratic cone
K in PG(3, q). Such a flock will also be called a flock of the quadratic coneK.
For more details on flocks of Laguerre planes see [13].

In the case where the Laguerre plane arises from a quadratic cone in
PG(3, q) we have a useful model for flocks in PG(2, q). Let K be an oval
cone in PG(3, q) with vertex V . Let P ∈ K\ {V }, � = 〈P, V 〉 and let π� be the
plane meeting K in �. Suppose that π is any plane containing neither V nor P .
If we project the points of K \ {V } from P onto π , then we have a one-to-one
correspondence between the points of K \ � and the points of π \ (π� ∩ π ),
while the points � \ {P, V } project onto P ′ = � ∩ π . The q3 − q2 plane
sections of K containing neither P nor V project onto the q3 − q2 conics of
π containing P ′ and with tangent π ∩ π� . A flock {C1, . . . , Cq } of K projects
to a set {C′

1, . . . , C′
q−1,m} where C′

1, . . . , C′
q−1 are conics of π with common

point P ′, common tangent π ∩ π� , m is a line of π not incident with P ′ and
C′
1, . . . , C′

q−1,m partition the points of π \ (π ∩π�). Further, no C′
i is the image

of a C′
j , i, j ∈ {1, . . . , q − 1}, i 	= j , under an elation of π with centre P ′.

Conversely, any such set {C′
1, . . . , C′

q−1,m} with these properties corresponds
to a flock ofK.

If in the definition of a Laguerre plane above we weaken the second axiom
to

2.′ Any three pairwise non-collinear points lie on a constant number of circles.

then we have an incidence structure that we will call a Laguerre geometry.
We will see that there is a strong connection between these so-called

Laguerre geometries and generalized quadrangles of order (s, s2).

3. Generalized Quadrangles with Property (G).

A (finite) generalized quadrangle (GQ) is an incidence structure S =
(P, B, I) in which P and B are disjoint (non-empty) sets of objects called
points and lines, respectively, and for which I ⊆ (P × B) ∪ (B × P) is a
symmetric point-line incidence relation satisfying the following axioms:
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1. Each point is incident with 1 + t lines (t ≥ 1) and two distinct points are
incident with at most one line.

2. Each line is incident with 1 + s points (s ≥ 1) and two distinct lines are
incident with at most one point.

3. If X is a point and � is a line not incident with X , then there is a unique
pair (Y,m)∈ P × B for which X Im I Y I �.

For a comprehensive introduction to GQs see [18]. The integers s and t are
the parameters of the GQ and is said to have order (s, t). If s = t , then is said
to have order s . If has order (s, t), then it follows that |P| = (s+1)(st+1) and
|B| = (t + 1)(st + 1) [18], 1.2.1 . If = (P, B, I) is a GQ of order (s, t), then
the incidence structure S∗ = (B, P, I) is a GQ of order (t, s) called the dual of
S.

Given two (not necessarily distinct) points X , X ′ of S, we write X ∼ X ′
and say that X and X ′ are collinear, provided there is some line � for which
X I � I X ′. For X ∈P put X⊥ = {X ′ ∈P : X ∼ X ′}. If A ⊂ P , then we define
A⊥ = ∩{X⊥ : X ∈ A} and A⊥⊥ = (A⊥)⊥ .

If s2 = t > 1, then by a result of Bose and Shrikhande ([4]) we have
|{X, Y, Z }⊥| = s + 1 for any triple {X, Y, Z } of pairwise non-collinear points
(called a triad). We say that {X, Y, Z } is 3-regular provided |{X, Y, Z }⊥⊥| =
s + 1. The point X is 3-regular if and only if each triad {X, Y, Z } is 3-regular.

Let S = (P, B, I) be a GQ of order (s, s2), s 	= 1. Let X1, Y1 be
distinct collinear points. We say that the pair {X1, Y1} has Property (G), or
that S has Property (G) at {X1, Y1}, if every triad {X1, X2, X3} of points, with
Y1 ∈ {X1, X2, X3}⊥ , is 3-regular. The GQ S has Property (G) at the line �, or the
line � has Property (G), if each pair of points {X, Y }, X 	= Y and X I � I Y , has
Property (G). If (X, �) is a flag, then we say that S has Property (G) at (X, �) or
that (X, �) has Property (G), if every pair (X, Y ), X 	= Y and Y I � has Property
(G).

Suppose that S = (P, B, I) is a GQ of order (q, q2) satisfying Property (G)
at the pair of points {X, Y }. We now review a construction of AG(3, q) from
S, X and Y due to Payne and Thas (see [22]).

We consider the following incidence structure SXY = (PXY , BXY , IXY ):

(i) PXY = X⊥ \ {X, Y }⊥⊥.
(ii) Elements of BXY are of two types: (a) the sets {Y, Z ,U }⊥⊥ \ {Y }, with

{Y, Z ,U } a triad with X ∈ {Y, Z ,U }⊥, and (b) the sets {X,W }⊥ \ {X },
with X ∼ W 	∼ Y .

(iii) IXY is containment.

Then we have the following result.
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Theorem 3.1. (Payne and Thas, see [22]) The incidence structure SXY is the
design of points and lines of the affine space AG(3, q). In particular, q is a
prime power.

The planes of the affine space SXY = AG(3, q) are of two types:

(a) The sets {X, Z }⊥ \ {Y }, with X 	∼ Z and Y ∈ {X, Z }⊥, and
(b) each set which is the union of all elements of type (b) of BXY containing a

point of some line m of type (a) of BXY .

This construction leads us to an equivalent formulation of Property (G) at
a pair of points (see [2]).

Theorem 3.2. Let S = (P, B, I) be a GQ of order (s, s2) and X, Y ∈ P with
X ∼ Y . Then S satisfies Property (G) at {X, Y } if and only if the incidence
structure

Points: X⊥ \ 〈X, Y 〉,
Planes: Y⊥ \ 〈X, Y 〉,
Incidence: Collinearity in S

is the point-plane incidence structure of PG(3, s) with an incident point-plane
pair removed.

Let SXY be the projective completion of SXY with plane at infinity π∞ . In
[25] Thas gives the following interpretation of the GQ S in SXY . The q2 lines
of type (b) of SXY are parallel, so they define a point ∞ of SXY . If we now
consider any Z ∈ P with X 	∼ Z 	∼ Y and U the point of � = 〈X, Y 〉 such
that Z ∼ U , then V = {X, Z }⊥ \ {U } is a set of q2 points. Clearly each line
of SXY on ∞ meets V in exactly one point. Further, if U1,U2,U3 are points of
V collinear in SXY , then it must be that Y ∈ {U1,U2,U3}⊥⊥ and so Z ∼ Y , a
contradiction since X, Y, Z is a triangle. It follows from this that V ∪ {∞} is an
ovoid of SXY with tangent plane π∞ at ∞. We will denote this ovoid by �Z .

Thas also determined the intersections of these ovoids. Consider two dis-
tinct points Z1, Z2 ∈ P with Z1, Z2 collinear with points U1,U2 I �, respec-
tively, with U1,U2 	= X, Y . If Z1 ∼ Z2 and U1 = U2, then �Z1 ∩ �Z2 = {∞},
since any larger intersection yields a triangle in S.

If Z1 ∼ Z2 and U1 	= U2, then �Z1 ∩ �Z2 = {∞, R} where R is the point
of the line 〈Z1, Z2〉 in X⊥. Further the point of 〈Z1, Z2〉 in Y⊥ corresponds, in
SXY to a plane which is tangent at R to both �Z1 and �Z2 .

If Z1 	∼ Z2 and U1 = U2, then �Z1 ∩ �Z2 = ({X, Z1, Z2}⊥ \ {U1})∪ {∞},
an intersection of size q + 1.

For the last case, if Z1 	∼ Z2 and U1 	= U2, then �Z1 ∩ �Z2 =
{X, Z1, Z2}⊥ ∪ {∞}, an intersection of size q + 2.
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If m is a line of S such that m IU I � and U 	= X, Y , then let the set ovoids
of PG(3, q) = SXY corresponding to points of m \ {U } be denoted R. The
set R is a set of q ovoids of PG(3, q) meeting pairwise in a fixed point and
with the same tangent plane at that point. We will call such a set R a rosette
of ovoids, the fixed point of intersection is called the base point of the rosette
and the common tangent plane at the base point is called the base plane of the
rosette. The elements of a rosette partition the points of PG(3, q) not on the
base plane.

If m is a line of S such that m and � are non-concurrent, then let the set of
ovoids of PG(3, q) = SXY corresponding to points of m \ (X⊥ ∪Y⊥) be denoted
T . The set T is a set of q − 1 ovoids of PG(3, q) meeting pairwise in exactly
two fixed points and sharing the tangent planes at those two fixed points. We
will call such a set T a transversal of ovoids. These two common points are
called the base points of the transversal and the two common tangent planes are
called the base planes of the transversal.

Given this geometric interpretation we also have the following connection
between a GQ of order (s, s2) satisfying Property (G) at a pair of points and
Laguerre geometries.

Theorem 3.3. Let S = (P, B, I) be a GQ of order (s, s2) satisfying Property
(G) at the pair of points {X, Y }, X ∼ Y . Then the incidence structure L(X )

Points: X⊥ \ Y⊥ ,
Lines: {� : X I �} \ {〈X, Y 〉},
Circles: {Z⊥ \ {〈X, Y 〉} : Z ∈ P \ X⊥},
Incidence: Natural,

is a Laguerre geometry.

Suppose now that the GQ S = (P, B, I) of order (q, q2), q 	= 1, satisfies
Property (G) at the flag (X, �). Let R be {U,U1,U2}⊥⊥ = {U,U1,U2, . . . ,Uq},
with {U,U1,U2} a triple of pairwise non-collinear pointswith X ∈ {U,U1,U2}⊥
and U I �, and let �i be the line incident with X and the point Ui , i =
1, 2, . . . , q . Further, let PX R be the set of all points, different from X , collinear
with X and a point of R, let BX R = {�, �1, �2, . . . , �q}, and let CX R be the
set having as elements the sets {W,W1,W2}⊥⊥ with W I �, W1 I �1, W2 I �2
and X /∈ {W,W1,W2}. Also, let incidence IX R between elements of PX R

and elements of BX R be induced by the incidence in S, and let incidence IX R
between elements of PX R and elements of CX R be containment. Then Thas
shows that these incidence structures are Laguerre planes.

Theorem 3.4. ([22]) Let S = (P, B, I) be a GQ of order (q, q2) satisfying
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Property (G) at the flag (X, �). The incidence structure

L = (PX R, BX R, CX R, IX R),

with pointset PSR, linesetBX R , circleset CX R and incidence IX R, is a Laguerre
plane of order q . Also, for each points Y I �, Y 	= X , the derived or internal
affine plane LY of L at Y is the affine plane AG(2, q); hence, for q odd L is
the classical Laguerre plane, that is, arises from the quadratic cone in PG(3, q).

If we view PX R as a subset of the pointset of L(X ), then L is induced on
PX R by L(X ).

Suppose that S = (P, B, I) is a dual flock GQ of order (q, q2), arising from
the flock F , satisfying Property (G) at the line [∞] and X, Y I [∞], X 	= Y .
In [25] Thas constructed a set of elliptic quadric ovoids of PG(3, q) from F
which was then verified to be the set of ovoids {OZ : Z ∈ P \ (X⊥ ∪ Y⊥)}
of SXY = PG(3, q). As a result Thas gave a geometric description of the dual
flock GQs valid for both q odd and even (previously Knarr in [15] had given a
description valid for only q odd).

The main theorem of [25] is the following result.

Theorem 3.5. ([25], Main Theorem) Let S = (P, B, I) be a GQ of order
(q, q2), q > 1, and assume that S satisfies Property (G) at the flag (X, �).
If q is odd then S is the dual of a flock GQ. If q is even and all ovoids OZ are
elliptic quadrics, then we have the same conclusion.

In Section 5.1 we will discuss how tetradic sets of ovoids of may be used
to weaken the hypotheses of Theorem 3.5 to assume only Property (G) at a pair
of collinear points.

4. Geometric constructions of flock quadrangles.

In this section we consider geometrical constructions of flock GQs. First
we consider the construction of Knarr [15] (see also [23]). Let F =
{C1, C2, . . . , Cq } be a flock of the quadratic cone K with vertex X0 of PG(3, q),
with q odd. The plane of Ci is denoted by πi , i = 1, 2, . . . , q . Let K be em-
bedded in the non-singular quadric Q of PG(4, q). The polar line of π with
respect to the polarity of Q is denoted by �i and let �i ∩ Q = {X0, Xi}, for
i = 1, 2, . . . , q . Then no point of Q is collinear with all three of X0, Xi, Xj ,
1 ≤ i < j ≤ q . Such a set U = {X0, X1, . . . , Xq} is called a BLT-set and has
the property that no point of Q is collinear with three points of U (see Bader,
Lunardon and Thas [1]). Applying the duality from the GQ Q(4, q) to the GQ
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W (q) we have a BLT-set of lines of W (q), that is, a set V of q+1 lines of W (q)
such that no line of W (q) is concurrent with three distinct lines of V . Knarr [15]
shows that the GQ of order (q2, q) corresponding to the flock F is isomorphic
to the following incidence structure.

Let φ be a symplectic polarity of PG(5, q). Let P ∈ PG(5, q) and let
PG(3, q) be a 3-dimensional subspace of PG(5, q) for which P /∈ PG(3, q) ⊂
Pφ . In PG(3, q) the polarity φ induces a symplectic polarity φ′, and hence a
GQ W (q). Let V be a BLT-set of W (q) and let S = (P, B, I) be defined as
follows.

Points: (i) P ; (ii) lines of PG(5, q) not containing P but contained in one of the
planes πt = 〈P, �t〉, with �t an element of V ; (iii) points of PG(5, q) not in Pφ .

Lines: (a) πt = 〈P, �t〉, with �t ∈ V ; totally isotropic planes of φ not contained
in Pφ and meeting some πt in a line.

The incidence relation I is just the natural incidence inherited from
PG(5, q).

Next we give the construction of Thas which is valid for both q odd and
even ([25], see also [24]). Let ˜F = {C1, C2, . . . , Cq−1, n} be the projection of a
flock of a quadratic cone into the plane ζ ∼= PG(2, q) (see Section 2), with Ci ,
i = 1, 2, . . . , q−1, conics meeting pairwise in the point∞, common tangent t
and with n a line of ζ not incident with∞. Let ζ be embedded in PG(3, q) and
consider planes π∞ 	= ζ and μ 	= ζ of PG(3, q), respectively containing t and
n. Let R be a point of μ \ (ζ ∪ π∞). Let �i be the non-singular quadric which
contains Ci , which is tangent to π∞ at ∞ and which is tangent to μ at R, with
i = 1, 2, . . . , q−1. As Ci∩n = ∅, the quadric is elliptic for i = 1, 2, . . . , q−1.

Let S be the following incidence structure.

Points: (a) The non-singular elliptic quadrics � containing �i ∩ π∞ =
�
(i)∞ ∪ m(i)∞ (over GF(q2)) such that the intersection multiplicity
of �i and � at ∞ is at least three (that are �i , the non-singular
elliptic quadrics � 	= �i containing �

(i)∞ ∪m(i)∞ (over GF(q2)) and
intersecting�i over GF(q) in a non-singular conic containing∞,
and the non-singular elliptic quadrics � 	= �i for which � ∩ �i

over GF(q2) is �
(i)∞ ∪m(i)∞ counted twice), with i = 1, 2, . . . , q−1.

(b) The points of PG(3, q) \ π∞ .
(c) The planes of PG(3, q) not containing∞.
(d) The set ωi consisting of the q3 quadrics corresponding with �i ,

i = 1, 2, . . . , q − 1.
(e) The plane π∞ .
(f) The point∞.
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Lines: (i) Let (w, ζw) be a point-plane flag of PG(3, q), with w /∈ π∞ and
∞ /∈ ζw . Then all quadrics � of type (a) which are tangent to ζw

at w, together with w and ζw , form a line of type (i). Any two
distinct quadrics of such a line have exactly two points (R and
∞) in common.

(ii) Let � be a point of type (a) which corresponds to the quadric �i ,
i ∈ {1, 2, . . . , q − 1}. If � ∩ π∞ = �i ∩ π∞ = �

(i)∞ ∪ m(i)∞ (over
GF(q2)), then all points �′ of type (a) for which �′ ∩ � over
GF(q2) is �

(i)∞ ∪m(i)∞ counted twice, together with � and �i , form
a line of type (ii).

(iii) A set of q parallel planes of AG(3, q) = PG(3, q) \ π∞ , together
with π∞ , is a line of type (iii)

(iv) Lines of type (iv) are the lines of PG(3, q) containing∞.
(v) {∞, π∞, �1, �2, . . . , �q−1} is the unique line of type (v).

Incidence: Incidence is containment.

In the proof of the construction Thas [25] confirms that this structure is
indeed that arising from the corresponding dual flock GQ as in Section 3. In the
following section we will see how it is possible to characterise the set of elliptic
quadrics with a simple axiom that allows us to prove the properties required to
prove the above construction yields a GQ of order (q, q2), without referring to
the dual flock GQ. We will then see how these concepts can be extended to sets
of ovoids (rather than just sets of elliptic quadric ovoids as above) to extend the
Thas construction above.

These concepts will also allow us to prove improved characterisation
results for GQs with Property (G).

5. Tetradic sets of ovoids of PG(3, q) and generalized quadrangles.

First we consider the dual nature of rosettes and transversals of ovoids.

Theorem 5.1. Let R = {�1, . . . , �q} be a rosette of ovoids of PG(3, q) with
base point∞ and base plane π∞ . If �∗

i is the set of tangent planes to the ovoid
�i , then R∗ = {�∗

1, �∗
2, . . . , �∗

q} is a rosette in the dual space PG(3, q)∗ with
base point π∗∞ and base plane ∞∗ .

Proof. Consider a plane π of PG(3, q), not π∞ and not incident with ∞.
The elements of R partition the q2 points of π \ π∞ into q sets of size 1 or
q + 1. Consequently, π is tangent to exactly one element of R. So in the dual
space R∗ = {�∗

1, �∗
2, . . . , �∗

q} is a set of q ovoids containing the point π∗∞
with common tangent plane ∞∗ at π∗∞ . Further each point of PG(3, q)∗ \ ∞∗
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is contained in exactly one element of R∗ . Hence the elements of R∗ must
intersect pairwise in π∗∞ and R∗ a rosette in PG(3, q)∗ . �

Recall a transversal T of ovoids of PG(3, q) is a set of q − 1 ovoids of
PG(3, q) meeting pairwise in exactly two fixed points and sharing the tangent
planes at those two fixed points. These two common points are called the base
points of the transversal and the two common tangent planes are called the base
planes of the transversal. The elements of a transversal partition the points
that are not on the base planes and not on the line spanned by the base points.
Similarly to the rosette case a transversal is a self-dual object.

Theorem 5.2. Let T = {�1, �2, . . . , �q−1} be a transversal of ovoids of
PG(3, q) with base points ∞ and R and corresponding base planes π∞ and
πR, respectively. If �∗

i is the set of tangent planes to the ovoid �i , then the
set T ∗ = {�∗

1, �∗
2, . . . , �∗

q−1} is a transversal in the dual space PG(3, q)∗
with base points π∗∞ and π∗

R, and corresponding base planes ∞∗ and R∗ ,
respectively.

Proof. Let π be a plane of PG(3, q), π 	= π∞, πR and not incident with ∞
nor R. The q2 − q − 1 points of π \ (π∞ ∪ πR ∪ 〈∞, R〉) are partitioned by
the elements of T into q − 1 sets of size 1 or q + 1. Hence it follows that π is
tangent to exactly one element of T and from this that T ∗ is a transversal in the
dual space PG(3, q)∗ . �
5.1. Tetradic sets of elliptic quadrics of PG(3, q).

This section is based on the work of Barwick, Brown and Penttila [2].
Let � be a tetradic set of ovoids of PG(3, q), with respect to the incident

point-plane pair (∞, π∞), consisting entirely of elliptic quadrics.
Let X, Y, Z be three points such that {X, Y, Z , ∞} form a quadrangle in the

plane π = 〈X, Y, Z 〉. If � is an element of � containing X, Y, Z , ∞, then the
conic �∩π also contains X, Y, Z , ∞ and further has tangent π ∩π∞ at∞ and
so is completely determined. Any point W ∈ PG(3, q) \ (π ∪ π∞) when added
to {X, Y, Z } forms a tetrad and since there is unique element of� on any tetrad,
there must be q elliptic quadrics of � on X, Y, Z and partitioning the points of
PG(3, q) \ (π ∪ π∞). Calculations show that this set of q elliptic quadrics must
be acted on regularly by the elations of PG(3, q) with centre ∞ and axis π and
in fact the full group of elations with centre ∞ must act semi-regularly on �.
This group action defines equivalence classes on � which implies that elements
of an equivalence class must intersect in exactly {∞} or in a conic containing
∞.

Now let X, Y, Z be three points spanning a plane not containing∞. In the
plane π = 〈X, Y, ∞〉 there are q − 1 conics in π containing X, Y, ∞ and with
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tangent π ∩ π∞ at ∞, each of which lies in a unique element of � with Z .
Consider the incidence structure with points PG(3, q) \ π∞ , lines the lines

of AG(3, q) in the parallel class defined by ∞, circles the elements of � plus
the planes of PG(3, q) not incident with∞ and natural incidence. By the above,
any three non-collinear points are contained in a constant number q of circles.
In fact, in [2] it was proved that for non-collinear points P and Q with P on
circle C and Q not on C , there is a unique circle D on Q which meets C in
exactly P . So we have a Laguerre geometry as discussed in Section 2. More
particularly, from [2] we have the following results on the structure of �.

Theorem 5.3.

1. |�| = q3(q − 1).
2. � is divided into q − 1 equivalence classes of size q3 . Each equivalence

class is acted on regularly by the elations of PG(3, q) with centre ∞.
3. For each � ∈ � there is a unique rosette of equivalent elliptic quadrics in

� (necessarily with base point∞ and base plane π∞) containing�. This
rosette is acted on regularly by the elations with centre ∞ and axis π∞ .

4. For each incident point-plane pair (P, π ), P /∈ π∞ , ∞ /∈ π there is a
unique transversal of elliptic quadrics in � with base points P, ∞ and
base planes π, π∞ .

With these properties it is possible to prove that the following construction
yields a GQ of order (q, q2). The construction is directly equivalent to that
of Thas presented in Section 4, although in [2] there is a direct proof that the
following incidence structure GQ(�) is a generalized quadrangle.

Points: (a) The elements of �.
(b) The points of PG(3, q) \ π∞ .
(c) The planes of PG(3, q) not containing∞.
(d) The q − 1 equivalence classes of �.
(e) The plane π∞ .
(f) The point∞.

Lines: (i) Triples (P, π, T ) where (P, π ) is an incident point-plane pair of
PG(3, q), with ∞ /∈ π , P /∈ π∞ and T the unique transversal in
� with base points P, ∞ and base planes π, π∞ .

(ii) A rosette of elliptic quadrics in � together with the equivalence
class of the elliptic quadrics is a line of type (ii).

(iii) A set of q parallel planes of AG(3, q) = PG(3, q) \ π∞ , together
with π∞ , is a line of type (iii)

(iv) Lines of type (iv) are the lines of PG(3, q) containing∞.
(v) [∞] = {∞, π∞, �1, �2, . . . , �q−1} is the unique line of type (v).
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Incidence: Incidence is containment.

Interpreting [25] in the context of tetradic sets we have the following con-
nection between the flock of a quadratic cone and the above GQ construc-
tion. Let {C1, C2, . . . , Cq−1,m} be the elements of a flock of a quadratic cone
projected onto a plane π (as in Section 2) with common point ∞ and com-
mon tangent �. Embedding π in PG(3, q) we choose planes π∞ , πR dis-
tinct from π and such that π∞ ∩ π = � and πR ∩ π = m. Choosing any
point R ∈ πR \ (π ∪ π∞) there is a unique transversal of elliptic quadrics
�1, �2, . . . , �q−1 with base points ∞, R, corresponding base planes π∞, πR

and Ci = �i ∩ π for i = 1, 2, . . . , q − 1. Taking images of this set under the
elations of PG(3, q) with centre ∞ yields a tetradic set which constructs a GQ
by the above. In [25] Thas identifies this as the dual of the corresponding flock
GQ.

Let S = (P, B, I) be a GQ of order (q, q2) satisfying Property (G) at a
pair of points. In Section 3 we saw that there is a set of associated ovoids and
that the intersections sizes and other properties of elements of this set have been
determined. If we assume that each ovoid of this set is an elliptic quadric, then
properties of elliptic quadrics force this set to be tetradic and the corresponding
GQ must be that constructed above which is the dual of a flock GQ. Hence we
have the following theorem which strengthens the main result of [25].

Theorem 5.4. ([2]) Let S = (P, B, I) be a GQ of order (s, s2) satisfying
Property (G) at a pair of collinear points (X, Y ). If s is odd, then S is the
dual of a flock GQ. If s is even and all ovoids OZ of SXY for Z ∈ P \ (X⊥ ∪Y⊥)
are elliptic quadrics, then we have the same conclusion.

5.2. Tetradic sets of ovoids of PG(3, q), q even.

In this section we consider the more general case of� being a tetradic sets
of ovoids of PG(3, q). Since in the q odd case we have only elliptic quadric
ovoids, which was discussed in the previous section, we can assume that q is
even. This section is based on the work in [5].

Let X, Y, Z be three points such that {X, Y, Z , ∞} form a quadrangle in
the plane π = 〈X, Y, Z 〉. For any W ∈ PG(3, q)\ (π ∪π∞) the set {X, Y, Z ,W }
is a tetrad and is contained in a unique element of� and so there are q elements
of � partitioning the points of PG(3, q) \ (π ∪ π∞). These q ovoids intersect
pairwise in the plane π , but it is not clear prima facie that they intersect pairwise
in a fixed oval. Employing combinatorial arguments it is proved that this is the
case, however it does not provide the group action that defines the equivalence
classes of � as in the previous section. For this we need to consider polarities
of PG(3, q) that interchange∞ and π∞ .
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The singular lines of a symplectic polarity form a linear complex of
PG(3, q) which, via the klein correspondence becomes a non-singular hyper-
plane section of the klein quadric Q+(5, q). In particular, if the symplectic po-
larity has as singular lines the lines incident with ∞ and contained in π∞ , then
in Q+(5, q) the corresponding hyperplane contains a line which we will denote
by α. The following lemma defines an equivalence relation on the non-singular
hyperplane sections of Q+(5, q) containing α.

Lemma 5. 5. Let α be a line on the quadric Q = Q+(5, q), q even, and
let L1 and L2 be two non-singular hyperplane sections of Q containing α. If
L1 �� L2 if and only ifL1∩L2 contains a common three-dimensional quadratic
cone section of Q, then �� is an equivalence relation on the set of non-singular
hyperplane sections of Q containing α.

Proof. Clearly �� is reflexive and symmetric, so it only remains to show
transitivity. Now suppose that L1 �� L2 and L2 �� L3 for distinct L1, L2

and L3. Let K12 = L1 ∩ L2 and K23 = L2 ∩ L3. Then K12 and K23 are
distinct quadratic cone sections of Q both containing α. Now if K12 and K23

have the same vertex (necessarily on α) then since they are both contained in
L2 they must conicide and L1 �� L3. So now we suppose that K12 and K23

have distinct vertices. In this case the cones intersect in a single line, and the
two three spaces generated by the cones intersect in a plane π intersecting Q in
just α. Since π ⊂ 〈L1〉 ∩ 〈L3〉 it must be the case that L1 ∩ L3 is a quadratic
cone section of Q and hence L1 �� L3. �

Employing this equivalence relation it is possible to show that it induces an
equivalence relation on � whereby each polarity of PG(3, q), interchanging∞
and π∞ , is induced by exactly q ovoids of � which form a rosette. Hence we
have our q−1 equivalence classes of� each of size q3. Note that if � consists
entirely of elliptic quadrics, then this equivalence relation on � is the same as
described in Section 5.1.

In fact, this equivalence relation allows the proof of the equivalent struc-
tural theorem for a general tetradic set � as was proved for a tetradic set of
elliptic quadrics in Theorem 5.3. (In Theorem 5.3 replace “elliptic quadric” by
“ovoid” and remove references to group actions to obtain the more general theo-
rem.) The construction of the incidence structure GQ(�) from Section 5.1 (with
“elliptic quadric” replaced by “ovoid”) also carries through to give a generalized
quadrangle.

Theorem 5.7. Let� be a tetradic set of ovoids of PG(3, q), q even, with respect
to (∞, π∞). Then the incidence structure GQ(�) is a GQ of order (q, q2)
satisfying Property (G) at the flag (∞, [∞]). Conversely, any GQ of order
(q, q2) satisfying Property (G) at a flag gives rise to tetradic set of ovoids.



FLOCKS, OVOIDS AND GENERALIZED QUADRANGLES 87

The known examples of GQs of order (q, q2) which have Property (G) at a
flag are the dual flock GQs (which have Property (G) at a line) and the Tits GQs
T3(�) for � an ovoid of PG(3, q). The tetradic set associated with a GQ T3(�)
can be characterised in the following ways.

Theorem 5.7. Let � be a tetradic set of ovoids of PG(3, q). Then GQ(�) being
isomorphic to the GQ T3(�) with 3-regular point∞ is equivalent to each of the
following:

1. � ∈ � and the group of collineations of PG(3, q) with centre ∞ acts
regularly on �.

2. � ∈ � and � has the property that if �1, �2 ∈ � are inequivalent, then
�1 ∩ �2 is either ∞ or the union of ∞ and an oval.

If a tetradic set of ovoids � has the property that if, under a duality of
PG(3, q) that interchanges ∞ and π∞ , the elements of � are mapped to the
set of tangent planes to a tetradic set of ovoids, then we say that � is also dual
tetradic. In the construction of GQ(�) interchanging the role of ∞ and π∞
induces a duality of PG(3, q). Hence if� is both tetradic and dual tetradic, then
GQ(�) satisfies Property (G) at the flags (∞, [∞]) and (π∞, [∞]). Conversely,
any GQ of order (q, q2) that satisfies Property (G) at two distinct flags (X, �)
and (Y, �) gives rise to a tetradic set of ovoids that is also dual tetradic.

Suppose that � is both tetradic and dual tetradic. Dualising � preserves
the equivalence classes of �, in the sense that if �1, �2 ∈� are equivalent and
∗ the duality of PG(3, q), then �∗

1, �∗
2 are equivalent ovoids. It follows that if

�1, �2 ∈� are equivalent and intersect in the oval O containing∞, then there
is also a point P such that �1 and �2 share tangent planes incident with P .
This is a strong configurational property possessed by ovoids in an equivalence
class, from which it is possible to prove that the ovoids must, in fact, be elliptic
quadrics. That is, if � is a set of ovoids that is both tetradic and dual tetradic,
then it consists entirely of elliptic quadrics. Hence, by employing Theorem 5.4,
we have the following theorem.

Theorem 5.8. ([5]) Let S = (P, B, I) be a GQ of order (q, q2) and � a line of
S such that S satisfies Property (G) at distinct flags (X, �) and (Y, �). Then S is
the dual of a flock GQ.

As a special case of this we have the answer to a conjecture made by J. A.
Thas in the proceedings of Combinatorics ‘98 [24].

Theorem 5.9. ([5]) Let S = (P, B, I) be a GQ of order (q, q2) and assume that
S satisfies Property (G) at some line �. Then S is the dual of a flock GQ.
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