COPURE AND 2-ABSORBING COPURE SUBMODULES

F. FARSHADIFAR

Let R be a commutative ring with identity and M be an R-module. In this paper, we will introduce the concept of 2-absorbing copure submodules of M as a generalization of copure submodules and obtain some related results. Also, we investigate some results concerning copure submodules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

A submodule N of an R-module M is said to be pure if $IN = N \cap IM$ for every ideal I of R [3].

In [7], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules) and investigated the first properties of this class of modules. A submodule N of an R-module M is said to be copure if $(N :_M I) = N + (0 :_M I)$ for every ideal I of R [7].

Following the concept of 2-absorbing ideals of commutative rings as in [10], the concept of 2-absorbing pure submodules of an R-module M as a generalization of pure submodules was introduced in [11]. A submodule N of an R-module M is said to be a 2-absorbing pure submodule of M if $IJN = IN \cap JN \cap IJM$ for
every ideals I, J of R. Also, an ideal I of R is said to be a 2-absorbing pure ideal of R if I is a 2-absorbing pure submodule of R.

The main purpose of this paper is to introduce the concepts of 2-absorbing copure submodules of an R-module M as a generalization of copure submodules and investigate some results concerning this notion and copure submodules.

2. Copure submodules

A proper submodule N of an R-module M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [12].

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$ [4]. It is easy to see that M is a comultiplication module if and only if $N = (0 :_M \text{Ann}_R(N))$ for each submodule N of M.

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R, we have $I = \text{Ann}_R((0 :_M I))$. M is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator conditions [7].

Lemma 2.2. let M be a strong comultiplication R-module. Then $(0 :_M I \cap J) = (0 :_M I) + (0 :_M J)$ for all ideals I and J of R.

Proof. This follows from the fact that $I = \text{Ann}_R((0 :_M I))$ for each ideal I of R and [5, 3.3].

A family $\{N_i\}_{i \in I}$ of submodules of an R-module M is said to be an inverse family of submodules of M if the intersection of two of its submodules again contains a module in $\{N_i\}_{i \in I}$. Also M satisfies the property $AB5^*$ if for every submodule K of M and every inverse family $\{N_i\}_{i \in I}$ of submodules of M, $K + \bigcap_{i \in I} N_i = \bigcap_{i \in I} (K + N_i)$ [14]. For example, every strong comultiplication R-module satisfies the property $AB5^*$ by using Lemma 2.2 and [2, 2.9].

Theorem 2.3. Let M be an R-module which satisfies the property $AB5^*$. Then we have the following. If $\{N_\lambda\}_{\lambda \in \Lambda}$ is a chain of copure submodules of M, then $\bigcap_{\lambda \in \Lambda} N_\lambda$ is copure.
Proof. Let I be an ideal of R. Clearly,

$$\bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_{M} I) \subseteq \bigcap_{\lambda \in \Lambda} N_{\lambda} :_{M} I.$$

To see the reverse inclusion, let L be a completely irreducible submodule of M such that $\bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_{M} I) \subseteq L$. Then $\bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_{M} I) + L = L$. Since M satisfies the property $AB5^*$, we have

$$\bigcap_{\lambda \in \Lambda} (N_{\lambda} :_{M} I) = L.$$

Now as L is a completely irreducible submodule of M, there exists $\alpha \in \Lambda$ such that $N_{\alpha} + (0 :_{M} I) + L = L$. It follows that $(N_{\alpha} :_{M} I) + L = L$ since N_{α} is a copure submodule of M. Thus $(N_{\alpha} :_{M} I) \subseteq L$. Hence, $(\bigcap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) \subseteq L$. This implies that

$$(\bigcap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) \subseteq \bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_{M} I),$$

by Remark 2.1. \hfill \Box

Theorem 2.4. Let M be an R-module which satisfies the property $AB5^*$ and N be a submodule of M. Then there is a submodule K of M minimal with respect to $N \subseteq K$ and K is a copure submodule of M.

Proof. Let

$$\Sigma = \{N \leq H | H \text{ is a copure submodule of } M\}.$$

Then $M \in \Sigma \neq \emptyset$. Let $\{N_{\lambda}\}_{\lambda \in \Lambda}$ be a totally ordered subset of Σ. Then $N \leq \bigcap_{\lambda \in \Lambda} N_{\lambda}$ and by Theorem 2.3 (a), $\bigcap_{\lambda \in \Lambda} N_{\lambda}$ is a copure submodule of M. Thus by using Zorn’s Lemma, one can see that Σ has a minimal element, K say as needed. \hfill \Box

Proposition 2.5. Let R be a PID, N a submodule of an R-module M, and p_{i} ($i \in \mathbb{N}$) be a prime element in R. Then $(N :_{M} p_{1}^{i_{1}} \ldots p_{t}^{i_{t}}) = \Sigma_{i=1}^{t} (N :_{M} p_{i}^{i_{i}})$.

Proof. Let p and q be two prime elements in R and $k,s \in \mathbb{N}$. Clearly, $(N :_{M} p^{s}) + (N :_{M} q^{s}) \subseteq (N :_{M} p^{k} q^{k})$. Now let $x p^{k} q^{k} \in N$. Since R is a PID, $p^{k} q^{k} = R$. Thus there exist $a,b \in R$ such that $1 = a p^{k} + b q^{k}$. Hence $x = a p^{k} x + b q^{k} x$. This implies that $q^{k} (x - b q^{k} x) \in N$. Since $b q^{k} x \in (N :_{M} p^{k})$, we have $x \in (N :_{M} p^{k}) + (N :_{M} q^{k})$. Therefore, $(N :_{M} p^{k}) + (N :_{M} q^{k}) = (N :_{M} p^{k} q^{k})$. Now the result follows by induction on t. \hfill \Box

Corollary 2.6. Let M be a \mathbb{Z}-module, m,n be square-free integers such that $(m,n) = 1$. Then for each submodule N of M we have

$$(N :_{M} (n\mathbb{Z}))(m\mathbb{Z})) = (N :_{M} (n\mathbb{Z})) + (N :_{M} (m\mathbb{Z})).$$
Proof. This follows from Proposition 2.5. □

Definition 2.7. We say that a copure submodule \(N \) of an \(R \)-module \(M \) is a minimal copure submodule of a submodule \(K \) of \(M \), if \(K \subseteq N \) and there does not exist a copure submodule \(H \) of \(M \) such that \(K \subset H \subset N \).

An \(R \)-module \(M \) is called fully cocancellation module if for each non-zero ideal \(I \) of \(R \) and for each submodules \(N_1, N_2 \) of \(M \) such that \((N_1 :_M I) = (N_2 :_M I)\) implies \(N_1 = N_2 \) [9].

Theorem 2.8. Every Noetherian fully cocancellation \(R \)-module \(M \) has only a finite number of minimal copure submodules.

Proof. Suppose that the result is false. Let \(\Sigma \) denote the collection of proper submodules \(N \) of \(M \) such that \(M/N \) has an infinite number of minimal copure submodules. The collection \(\Sigma \) is non-empty because 0 \(\in \Sigma \) and hence has a maximal member, \(S \) say. Then \(S \) is not copure submodule. Thus there exists an ideal \(I \) of \(R \) such that \((S :_M I) \neq S + (0 :_M I)\). Let \(V \) be a minimal copure submodule of \(M \) that contains \(S \). If \((S :_M I) \cap V = S\), then \((S :_M I) \cap V + (0 :_M I) = S + (0 :_M I)\). Hence by the modular law, \((S :_M I) \cap (V + (0 :_M I)) = S + (0 :_M I)\). Now as \(V \) is a copure submodule of \(M \), \((S :_M I) \cap (V :_M I) = S + (0 :_M I)\). It follows that \(S + (0 :_M I) = (S :_M I) \), a contradiction. If \((S :_M I) \cap V = V\), then \(V \subseteq (S :_M I) \) and so

\[
(V :_M I) = V + (0 :_M I) \subseteq (S :_M I) + (0 :_M I) = (S :_M I).
\]

Thus \((V :_M I) = (S :_M I)\). Since \(M \) is a fully cocancellation \(R \)-module, \(V = S\), a contradiction. Therefore, \(S \subset (S :_M I) \cap V \subset V \). Now by the choice of \(S \), the module \((S :_M I) \cap V \) has only finitely many minimal copure submodules. Therefore, there is only a finite number of possibilities for the module \(S \) which is a contradiction. □

3. 2-absorbing copure submodules

Definition 3.1. We say that a submodule \(N \) of an \(R \)-module \(M \) is a 2-absorbing copure submodule of \(M \) if \((N :_M IJ) = (N :_M I) + (N :_M J) + (0 :_M IJ)\) for every ideals \(I, J \) of \(R \). This can be regarded as a dual notion of the 2-absorbing pure submodule of \(M \).

Remark 3.2. Let \(M \) be an \(R \)-module. Clearly every copure submodule of \(M \) is a 2-absorbing copure submodule of \(M \). But we see in the Example 3.3 that the converse is not true in general.
Example 3.3. The submodule $2\mathbb{Z}_4$ of the \mathbb{Z}_4-module \mathbb{Z}_4 is a 2-absorbing copure submodule of \mathbb{Z}_4 but it is not a copure submodule of \mathbb{Z}_4.

Example 3.4. Since $1/4 \in (\mathbb{Z}_4 : \mathbb{Z}(2\mathbb{Z}))(2\mathbb{Z}))$ but

$$1/4 \not\in (\mathbb{Z}_4 : \mathbb{Z}2\mathbb{Z}) + (\mathbb{Z}_4 : \mathbb{Z}2\mathbb{Z}) + (0 : \mathbb{Z}(2\mathbb{Z}))(2\mathbb{Z}))$$.

The submodule \mathbb{Z} of the \mathbb{Z}-module \mathbb{Q} is not 2-absorbing copure.

Proposition 3.5. Let M be an R-module. Then we have the following.

(a) If N is a submodule of M such that $(N :_M IJ) = (N :_M I) + (N :_M J)$ for every ideals I, J of R, then N is a 2-absorbing copure submodule of M.

(b) If N is a submodule of M such that for each ideal I of R, $(N :_M I) =$ a copure submodule of M, then N is a 2-absorbing copure submodule of M.

(c) If R is a Noetherian ring and N is a 2-absorbing copure submodule of M, then for each prime ideal P of R, N_P is a 2-absorbing copure submodule of M_P as an R_P-module.

(d) If R is a Noetherian ring and N_P is a 2-absorbing copure submodule of an R_P-module M_P for each maximal ideal P of R, then N is a 2-absorbing copure submodule of M.

Proof. (a) Let I and J be ideals of R. Then $(N :_M IJ) = (N :_M I) + (N :_M J)$ by assumption. Thus $(0 :_M IJ) \subseteq (N :_M IJ) = (N :_M I) + (N :_M J)$. This implies that

$$(0 :_M IJ) + (N :_M I) + (N :_M J) = (N :_M I) + (N :_M J).$$

Therefore, $(0 :_M IJ) + (N :_M I) + (N :_M J) = (N :_M IJ)$ as required.

(b) Let I and J be two ideals of R. Then by assumption,

$$(N :_M IJ) = ((N :_M I) :_M J)$$

$$= (N :_M I) + (0 :_M J)$$

$$\subseteq (N :_M I) + (N :_M J) + (0 :_M IJ).$$

It follows that N is a 2-absorbing copure submodule of M since the reverse inclusion is clear.

(c) This follows from the fact that by [13, 9.13], if I is a finitely generated ideal of R, then $((N :_M I))_P = (N_P :_{M_P} I_P)$.

(d) Suppose that I and J are two ideals of R. Since R is Noetherian, I and J are finitely generated. Hence by [13, 9.13], for each maximal ideal P of R, $(N :_M IJ)_P = (N_P :_{M_P} I_P J_P)$. Thus by assumption,

$$(N :_M IJ)_P = (N :_M I)_P + (N :_M J)_P + (0 :_M IJ)_P$$

$$= ((N :_M I) + (N :_M J) + (0 :_M IJ))_P.$$
Therefore
\[(N :_{M} IJ) = (N :_{M} I) + (N :_{M} J) + (0 :_{M} IJ),\]
as desired.

Recall that an \(R\)-module \(M\) is said to be fully copure if every submodule of \(M\) is copure [8].

Definition 3.6. We say that an \(R\)-module \(M\) is fully 2-absorbing copure if every submodule of \(M\) is 2-absorbing copure.

Remark 3.7. Clearly, every fully copure \(R\)-module is a fully 2-absorbing copure \(R\)-module. But the converse is not true in general. For example, the \(\mathbb{Z}_4\)-module \(\mathbb{Z}_4\) is a fully 2-absorbing copure module but it is not a fully copure \(\mathbb{Z}_4\)-module.

Let \(N\) and \(K\) be two submodules of \(M\). The coproduct of \(N\) and \(K\) is defined by \((0 :_{M} \text{Ann}_R(N)\text{Ann}_R(K))\) and denoted by \(C(NK)\) [6].

Theorem 3.8. Let \(M\) be a comultiplication \(R\)-module. Then the following statements are equivalent.

(a) For each submodules \(N, K, H\) of \(M\), we have
\[C(NHK) = C(NK) + C(NH) + C(KH).\]

(b) \(M\) is a fully 2-absorbing copure \(R\)-module.

Proof. (a) ⇒ (b) Let \(N\) be a submodule of \(M\) and \(I, J\) be two ideals of \(R\). Then as \(M\) is a comultiplication \(R\)-module,
\[C(N(0 :_{M} I)) = (0 :_{M} \text{Ann}_R(N)\text{Ann}_R((0 :_{M} I)))\]
\[= ((0 :_{M} \text{Ann}_R((0 :_{M} I))) :_{M} \text{Ann}_R(N))\]
\[= ((0 :_{M} I) :_{M} \text{Ann}_R(N)) = (N :_{M} I).\]

Similarly, \(C(N(0 :_{M} J)) = (N :_{M} J)\). Now by part (a) and the fact that \(M\) is a comultiplication \(R\)-module,
\[(N :_{M} I) + (N :_{M} J) + (0 :_{M} IJ)\]
\[= C(N(0 :_{M} I)) + C(N(0 :_{M} J)) + C((0 :_{M} I)(0 :_{M} J))\]
\[= C(N(0 :_{M} I)(0 :_{M} J)))\]
\[= (N :_{R} IJ).\]
(b) \Rightarrow (a). As M is a comultiplication R-module, we have $C(NH) = (H :_M \text{Ann}_R(N))$ and $C(KH) = (H :_M \text{Ann}_R(K))$. Now since by part (b), H is a 2-absorbing copure submodule of M,

$$C(NK) + C(NH) + C(KH)$$

$$= (0 :_M \text{Ann}_R(N)\text{Ann}_R(K)) + (H :_M \text{Ann}_R(N)) + (H :_M \text{Ann}_R(K))$$

$$= (H :_M \text{Ann}_R(N)\text{Ann}_R(K)).$$

But since M is a comultiplication R-module,

$$C(NHK) = C(NK) + C(NH) + C(KH).$$

Therefore, $C(NHK) = C(NK) + C(NH) + C(KH)$. \square

Let R be a be a principal ideal domain and M be an R-module. By [7, 2.12], every submodule of M is pure if and only if it is copure. But the following examples shows that it is not true for 2-absorbing pure and 2-absorbing copure submodules.

Example 3.9. Consider the submodule $G_1 := \langle 1/p + \mathbb{Z} \rangle$ of the \mathbb{Z}-module \mathbb{Z}_p^{∞}. Let m, n be two positive integers. If p not divided m, n, then

$$G_1 = mnG_1 = mG_1 \cap nG_1 \cap mn\mathbb{Z}_p^{\infty} = G_1.$$

If p divided m or n, then

$$0 = mnG_1 = mG_1 \cap nG_1 \cap mn\mathbb{Z}_p^{\infty} = 0.$$

Moreover,

$$G_3 = (G_1 :_{\mathbb{Z}_p^{\infty}} p^2) \neq (G_1 :_{\mathbb{Z}_p^{\infty}} p) + (G_1 :_{\mathbb{Z}_p^{\infty}} p) + (0 :_{\mathbb{Z}_p^{\infty}} p^2) = G_2.$$

Hence, the submodule $G_1 := \langle 1/p + \mathbb{Z} \rangle$ of the \mathbb{Z}-module \mathbb{Z}_p^{∞} is a 2-absorbing pure submodule but it is not 2-absorbing copure.

Example 3.10. Let m, n be two positive integers. If m, n are odd, then we have

$$2\mathbb{Z} = (2\mathbb{Z} :_{\mathbb{Z}} mn) = (2\mathbb{Z} :_{\mathbb{Z}} n) + (2\mathbb{Z} :_{\mathbb{Z}} m) + (0 :_{\mathbb{Z}} mn) = 2\mathbb{Z}.$$

If m, n are even, then we have

$$\mathbb{Z} = (2\mathbb{Z} :_{\mathbb{Z}} mn) = (2\mathbb{Z} :_{\mathbb{Z}} n) + (2\mathbb{Z} :_{\mathbb{Z}} m) + (0 :_{\mathbb{Z}} mn) = \mathbb{Z}.$$

Moreover, $8\mathbb{Z} = (2)(2)(2\mathbb{Z}) \neq (2)(2\mathbb{Z}) \cap (2)(2\mathbb{Z}) \cap (2)(2)(\mathbb{Z}) = 4\mathbb{Z}$. Thus the submodule $2\mathbb{Z}$ of the \mathbb{Z}-module \mathbb{Z} is a 2-absorbing copure submodule but it is not 2-absorbing pure.
Theorem 3.11. Let M be an R-module which satisfies the property $AB5^*$.

(a) If $\{N_{\lambda}\}_{\lambda \in \Lambda}$ is a chain of 2-absorbing copure submodules of M, then
\[
\bigcap_{\lambda \in \Lambda}N_{\lambda} \text{ is a 2-absorbing copure submodule of } M.
\]

(b) If $\{N_{\lambda}\}_{\lambda \in \Lambda}$ is a chain of submodules of M and K is a 2-absorbing copure submodule of N_{λ} for each $\lambda \in \Lambda$, then K is a 2-absorbing copure submodule of $\bigcap_{\lambda \in \Lambda}N_{\lambda}$.

Proof. (a) Let I and J be two ideals of R. Clearly,
\[
(\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ) \subseteq (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} IJ).
\]

Let L be a completely irreducible submodule of M such that
\[
(\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ) \subseteq L.
\]

Then
\[
\bigcap_{\lambda \in \Lambda}(N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L = L.
\]

Since M satisfies the property $AB5^*$, we have
\[
\bigcap_{\lambda \in \Lambda}((N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L) = L.
\]

Now as L is a completely irreducible submodule of M, there exists $\alpha \in \Lambda$ such that $(N_{\alpha} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L = L$. Since M satisfies the property $AB5^*$, $\bigcap_{\lambda \in \Lambda}((N_{\alpha} :_{M} I) + (N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L) = L$. Now again as L is a completely irreducible submodule of M, there exists $\beta \in \Lambda$ such that $(N_{\alpha} :_{M} I) + (N_{\beta} :_{M} J) + (0 :_{M} IJ) + L = L$. We can assume that $N_{\alpha} \subseteq N_{\beta}$. Therefore, $(N_{\alpha} :_{M} I) + (N_{\alpha} :_{M} J) + (0 :_{M} IJ) \subseteq L$. It follows that $(N_{\alpha} :_{M} IJ) \subseteq L$ since N_{α} is a 2-absorbing copure submodule of M. Hence, $(\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} IJ) \subseteq L$. This implies that
\[
(\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} IJ) \subseteq (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda}N_{\lambda} :_{M} J) + (0 :_{M} IJ),
\]

by Remark 2.1.

(b) Let I and J be two ideals of R. Clearly,
\[
(K :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} I) + (K :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} J) + (0 :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} IJ) \subseteq (K :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} IJ).
\]

To see the reverse inclusion, let L be a completely irreducible submodule of M such that
\[
(K :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} I) + (K :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} J) + (0 :_{\bigcap_{\lambda \in \Lambda}N_{\lambda}} IJ) \subseteq L.
\]
Then
\[\cap_{\lambda \in \Lambda} (K : N_\lambda I) + (K : \cap_{\lambda \in \Lambda} N_\lambda J) + (0 : \cap_{\lambda \in \Lambda} N_\lambda IJ) + L = L. \]

Since \(M \) satisfies the property \(AB5^* \), we have
\[\cap_{\lambda \in \Lambda} ((K : N_\lambda I) + (K : \cap_{\lambda \in \Lambda} N_\lambda J) + (0 : \cap_{\lambda \in \Lambda} N_\lambda IJ) + L) = L. \]

Now as \(L \) is a completely irreducible submodule of \(M \), there exists \(\alpha \in \Lambda \) such that
\[(K : N_\alpha I) + (K : \cap_{\lambda \in \Lambda} N_\lambda J) + (0 : \cap_{\lambda \in \Lambda} N_\lambda IJ) + L = L. \]

By similar argument, since \(M \) satisfies the property \(AB5^* \) and \(L \) is a completely irreducible submodule of \(M \), there exist \(\beta \in \Lambda \) and \(\gamma \in \Lambda \) such that,
\[(K : N_\alpha I) + (K : N_\beta J) + (0 : N_\gamma IJ) + L = L. \]

Since \(\{N_\lambda\}_{\lambda \in \Lambda} \) is a chain, we can assume that \(N_\alpha \subseteq N_\beta \subseteq N_\gamma \). Therefore, \((K : N_\alpha I) + (K : N_\alpha J) + (0 : N_\alpha IJ) \subseteq L \). It follows that \((K : N_\alpha IJ) \subseteq L \) since \(K \) is a 2-absorbing copure submodule of \(N_\alpha \). Therefore, \((K : \cap_{\lambda \in \Lambda} N_\lambda IJ) \subseteq L \). This implies that
\[(K : \cap_{\lambda \in \Lambda} N_\lambda IJ) \subseteq (K : \cap_{\lambda \in \Lambda} N_\lambda I) + (K : \cap_{\lambda \in \Lambda} N_\lambda J) + (0 : \cap_{\lambda \in \Lambda} N_\lambda IJ), \]
by Remark 2.1.

Theorem 3.12. Let \(M \) be an \(R \)-module which satisfies the property \(AB5^* \) and \(N \) be a submodule of \(M \). Then there is a submodule \(K \) of \(M \) minimal with respect to \(N \subseteq K \) and \(K \) is a 2-absorbing copure submodule of \(M \).

Proof. Let
\[\Sigma = \{N \leq H \mid H \text{ is a } 2\text{-absorbing copure submodule of } M\}. \]

Then \(M \in \Sigma \neq 0 \). Let \(\{N_\lambda\}_{\lambda \in \Lambda} \) be a totally ordered subset of \(\Sigma \). Then \(N \leq \cap_{\lambda \in \Lambda} N_\lambda \) and by Theorem 3.11 (a), \(\cap_{\lambda \in \Lambda} N_\lambda \) is a 2-absorbing copure submodule of \(M \). Therefore by using Zorn’s Lemma, one can see that \(\Sigma \) has a minimal element, \(K \) say as desired.

Theorem 3.13. Let \(M \) be a strong comultiplication \(R \)-module and \(N \) be a submodule of \(M \). Then \(N \) is a 2-absorbing copure submodule of \(M \) if and only if \(\text{Ann}_R(N) \) is a 2-absorbing pure ideal of \(R \).
Proof. Since M is a comultiplication R-module, $N = (0 :_M \text{Ann}_R(N))$. Let N be a 2-absorbing copure submodule of M and let I and J be any two ideals of R. Then

$$
(N :_M IJ) = (N :_M I) + (N :_M J) + (0 :_M IJ) \Rightarrow ((0 :_M \text{Ann}_R(N)) :_M IJ)
= ((0 :_M \text{Ann}_R(N)) :_M I) + ((0 :_M \text{Ann}_R(N)) :_M J) + (0 :_M IJ).
$$

It follows that

$$(0 :_M \text{Ann}_R(N)IJ) = (0 :_M \text{Ann}_R(N)I) + (0 :_M \text{Ann}_R(N)J) + (0 :_M IJ).$$

Thus by Lemma 2.2,

$$(0 :_M \text{Ann}_R(N)IJ) = (0 :_M \text{Ann}_R(N)I \cap \text{Ann}_R(N)J \cap IJ).$$

This implies that $\text{Ann}_R(N)IJ = \text{Ann}_R(N)I \cap \text{Ann}_R(N)J \cap IJ$ since M is a strong comultiplication R-module. Hence $\text{Ann}_R(N)$ is a 2-absorbing pure ideal of R. Conversely, let $\text{Ann}_R(N)$ be a 2-absorbing pure ideal of R and let I and J be any two ideals of R. Then

$$\text{Ann}_R(N)IJ = \text{Ann}_R(N)I \cap \text{Ann}_R(N)J \cap IJ.$$

Hence by using Lemma 2.2,

$$(0 :_M \text{Ann}_R(N)IJ) = (0 :_M \text{Ann}_R(N)I) + (0 :_M \text{Ann}_R(N)J) + (0 :_M IJ).$$

Therefore, as M is a comultiplication R-module,

$$(N :_M IJ) = (N :_M I) + (N :_M J) + (0 :_M IJ),$$

as desired. \qed

Acknowledgments. The author would like to thank Professor Habibollah Ansari-Toroghy for his helpful suggestions and useful comments.

REFERENCES

COPURE AND 2-ABSORBING COPURE SUBMODULES

F. FARSHADIFAR
Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.
e-mail: f.farshadifar@cfu.ac.ir