COPURE AND 2-ABSORBING COPURE SUBMODULES

F. FARSHADIFAR

Let R be a commutative ring with identity and M be an R-module. In this paper, we will introduce the concept of 2-absorbing copure submodules of M as a generalization of copure submodules and obtain some related results. Also, we investigate some results concerning copure submodules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

A submodule N of an R-module M is said to be *pure* if $IN = N \cap IM$ for every ideal I of R [3].

In [7], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules) and investigated the first properties of this class of modules. A submodule N of an R-module M is said to be *copure* if $(N :_M I) = N + (0 :_M I)$ for every ideal I of R [7].

Following the concept of 2-absorbing ideals of commutative rings as in [10], the concept of 2-absorbing pure submodules of an R-module M as a generalization of pure submodules was introduced in [11]. A submodule N of an R-module M is said to be a 2-absorbing pure submodule of M if $IJN = IN \cap JN \cap IJM$ for

Entrato in redazione: 5 settembre 2018

AMS 2010 Subject Classification: 13C13, 13C99

Keywords: Copure submodule, 2-absorbing pure submodule, 2-absorbing copure submodule, strong comultiplication module

every ideals I, J of R. Also, an ideal I of R is said to be a 2-absorbing pure ideal of R if I is a 2-absorbing pure submodule of R.

The main purpose of this paper is to introduce the concepts of 2-absorbing copure submodules of an R-module M as a generalization of copure submodules and investigate some results concerning this notion and copure submodules.

2. Copure submodules

A proper submodule N of an R-module M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [12].

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

An R-module M is said to be a *comultiplication module* if for every submodule N of M there exists an ideal I of R such that $N = (0:_M I)$ [4]. It is easy to see that M is a comultiplication module if and only if $N = (0:_M Ann_R(N))$ for each submodule N of M.

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R, we have $I = Ann_R((0:_M I))$. M is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator conditions [7].

Lemma 2.2. *let* M *be a strong comultiplication* R*-module. Then* $(0:_M I \cap J) = (0:_M I) + (0:_M J)$ *for all ideals* I *and* J *of* R.

Proof. This follows from the fact that $I = Ann_R((0:_M I))$ far each ideal I of R and [5, 3.3].

A family $\{N_i\}_{i\in I}$ of submodules of an R-module M is said to be an *inverse family of submodules of* M if the intersection of two of its submodules again contains a module in $\{N_i\}_{i\in I}$. Also M satisfies the property $AB5^*$ if for every submodule K of M and every inverse family $\{N_i\}_{i\in I}$ of submodules of M, $K+\cap_{i\in I}N_i=\cap_{i\in I}(K+N_i)$ [14]. For example, every strong comultiplication R-module satisfies the property $AB5^*$ by using Lemma 2.2 and [2, 2.9].

Theorem 2.3. Let M be an R-module which satisfies the property $AB5^*$. Then we have the following. If $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ is a chain of copure submodules of M, then $\cap_{{\lambda}\in\Lambda}N_{\lambda}$ is copure.

Proof. Let *I* be an ideal of *R*. Clearly,

$$\cap_{\lambda \in \Lambda} N_{\lambda} + (0:_{M} I) \subseteq (\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I).$$

To see the reverse inclusion, let L be a completely irreducible submodule of M such that $\bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_M I) \subseteq L$. Then $\bigcap_{\lambda \in \Lambda} N_{\lambda} + (0 :_M I) + L = L$. Since M satisfies the property $AB5^*$, we have

$$\cap_{\lambda \in \Lambda} (N_{\lambda} + (0:_{M} I) + L) = L.$$

Now as L is a completely irreducible submodule of M, there exists $\alpha \in \Lambda$ such that $N_{\alpha} + (0:_M I) + L = L$. It follows that $(N_{\alpha}:_M I) + L = L$ since N_{α} is a copure submodule of M. Thus $(N_{\alpha}:_M I) \subseteq L$. Hence, $(\cap_{\lambda \in \Lambda} N_{\lambda}:_M I) \subseteq L$. This implies that

$$(\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) \subseteq \cap_{\lambda \in \Lambda} N_{\lambda} + (0 :_{M} I),$$

by Remark 2.1.

Theorem 2.4. Let M be an R-module which satisfies the property $AB5^*$ and N be a submodule of M. Then there is a submodule K of M minimal with respect to $N \subseteq K$ and K is a copure submodule of M.

Proof. Let

$$\Sigma = \{ N \leq H | H \text{ is a copure submodule of } M \}.$$

Then $M \in \Sigma \neq \emptyset$. Let $\{N_{\lambda}\}_{{\lambda} \in \Lambda}$ be a totally ordered subset of Σ . Then $N \leq \bigcap_{{\lambda} \in \Lambda} N_{\lambda}$ and by Theorem 2.3 (a), $\bigcap_{{\lambda} \in \Lambda} N_{\lambda}$ is a copure submodule of M. Thus by using Zorn's Lemma, one can see that Σ has a minimal element, K say as needed.

Proposition 2.5. Let R be a PID, N a submodule of an R-module M, and p_i $(i \in \mathbb{N})$ be a prime element in R. Then $(N :_M p_1^{s_1} ... p_t^{s_t}) = \sum_{i=1}^t (N :_M p_i^{s_i})$.

Proof. Let *p* and *q* be two prime elements in *R* and $k,s \in \mathbb{N}$. Clearly, $(N:_M p^t) + (N:_M q^s) \subseteq (N:_M p^k q^s)$. Now let $xp^kq^s \in N$. Since *R* is a *PID*, $p^kR + q^sR = R$. Thus there exist $a,b \in R$ such that $1 = ap^k + bq^s$. Hence $x = ap^kx + bq^sx$. This implies that $q^s(x - bq^sx) \in N$. Since $bq^sx \in (N:_M p^k)$, we have $x \in (N:_M p^t) + (N:_M q^s)$. Therefore, $(N:_M p^t) + (N:_M q^s) = (N:_M p^kq^s)$. Now the result follows by induction on *t*. □

Corollary 2.6. Let M be a \mathbb{Z} -module, m,n be square-free integers such that (m,n)=1. Then for each submodule N of M we have

$$(N:_{M}(n\mathbb{Z})(m\mathbb{Z})) = (N:_{M}(n\mathbb{Z})) + (N:_{M}(m\mathbb{Z})).$$

Proof. This follows from Proposition 2.5.

Definition 2.7. We say that a copure submodule N of an R-module M is a *minimal copure submodule* of a submodule K of M, if $K \subseteq N$ and there does not exist a copure submodule H of M such that $K \subset H \subset N$.

An *R*-module *M* is called *fully cocancellation module* if for each non-zero ideal *I* of *R* and for each submodules N_1, N_2 of *M* such that $(N_1 :_M I) = (N_2 :_M I)$ implies $N_1 = N_2$ [9].

Theorem 2.8. Every Noetherian fully cocancellation R-module M has only a finite number of minimal copure submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of proper submodules N of M such that M/N has an infinite number of minimal copure submodules. The collection Σ is non-empty because $0 \in \Sigma$ and hence has a maximal member, S say. Then S is not copure submodule. Thus there exists an ideal I of R such that $(S:_M I) \neq S + (0:_M I)$. Let V be a minimal copure submodule of M that contains S. If $(S:_M I) \cap V = S$, then $((S:_M I) \cap V) + (0:_M I) = S + (0:_M I)$. Hence by the modular law, $(S:_M I) \cap (V + (0:_M I)) = S + (0:_M I)$. Now as V is a copure submodule of M, $(S:_M I) \cap (V:_M I) = S + (0:_M I)$. It follows that $S + (0:_M I) = (S:_M I)$, a contradiction. If $(S:_M I) \cap V = V$, then $V \subseteq (S:_M I)$ and so

$$(V:_M I) = V + (0:_M I) \subseteq (S:_M I) + (0:_M I) = (S:_M I).$$

Thus $(V :_M I) = (S :_M I)$. Since M is a fully cocancellation R-module, V = S, a contradiction. Therefore, $S \subset (S :_M I) \cap V \subset V$. Now by the choice of S, the module $(S :_M I) \cap V$ has only finitely many minimal copure submodules. Therefore, there is only a finite number of possibilities for the module S which is a contradiction.

3. 2-absorbing copure submodules

Definition 3.1. We say that a submodule N of an R-module M is a 2-absorbing copure submodule of M if $(N:_M IJ) = (N:_M I) + (N:_M J) + (0:_M IJ)$ for every ideals I,J of R. This can be regarded as a dual notion of the 2-absorbing pure submodule of M.

Remark 3.2. Let M be an R-module. Clearly every copure submodule of M is a 2-absorbing copure submodule of M. But we see in the Example 3.3 that the converse is not true in general.

Example 3.3. The submodule $\bar{2}\mathbb{Z}_4$ of the \mathbb{Z}_4 -module \mathbb{Z}_4 is a 2-absorbing copure submodule of \mathbb{Z}_4 but it is not a copure submodule of \mathbb{Z}_4 .

Example 3.4. Since $1/4 \in (\mathbb{Z} :_{\mathbb{Q}} (2\mathbb{Z})(2\mathbb{Z}))$ but

$$1/4 \not\in (\mathbb{Z}:_{\mathbb{O}} 2\mathbb{Z}) + (\mathbb{Z}:_{\mathbb{O}} 2\mathbb{Z}) + (0:_{\mathbb{O}} (2\mathbb{Z})(2\mathbb{Z})).$$

The submodule \mathbb{Z} of the \mathbb{Z} -module \mathbb{Q} is not 2-absorbing copure.

Proposition 3.5. *Let M be an R-module. Then we have the following.*

- (a) If N is a submodule of M such that $(N :_M IJ) = (N :_M I) + (N :_M J)$ for every ideals I, J of R, then N is a 2-absorbing copure submodule of M.
- (a) If N is a submodule of M such that for each ideal I of R, $(N :_M I)$ is a copure submodule of M, then N is a 2-absorbing copure submodule of M.
- (c) If R is a Noetherian ring and N is a 2-absorbing copure submodule of M, then for each prime ideal P of R, N_P is a 2-absorbing copure submodule of M_P as an R_P -module.
- (d) If R is a Noetherian ring and N_P is a 2-absorbing copure submodule of an R_P -module M_P for each maximal ideal P of R, then N is a 2-absorbing copure submodule of M.

Proof. (a) Let *I* and *J* be ideals of *R*. Then $(N :_M IJ) = (N :_M I) + (N :_M J)$ by assumption. Thus $(0 :_M IJ) \subseteq (N :_M IJ) = (N :_M I) + (N :_M J)$. This implies that

$$(0:_M IJ) + (N:_M I) + (N:_M J) = (N:_M I) + (N:_M J).$$

Therefore, $(0:_M IJ) + (N:_M I) + (N:_M J) = (N:_M IJ)$ as required.

(b) Let *I* and *J* be two ideals of *R*. Then by assumption,

$$(N:_{M}IJ) = ((N:_{M}I):_{M}J)$$

$$= (N:_{M}I) + (0:_{M}J)$$

$$\subseteq (N:_{M}I) + (N:_{M}J) + (0:_{M}IJ).$$

It follows that N is a 2-absorbing copure submodule of M since the reverse inclusion is clear.

- (c) This follows from the fact that by [13, 9.13], if I is a finitely generated ideal of R, then $((N:_M I))_P = (N_P :_{M_P} I_P)$.
- (d) Suppose that I and J are two ideals of R. Since R is Noetherian, I and J are finitely generated. Hence by [13, 9.13], for each maximal ideal P of R, $(N:_M IJ)_P = (N_P:_{M_P} I_P J_P)$. Thus by assumption,

$$(N:_{M}IJ)_{P} = (N:_{M}I)_{P} + (N:_{M}J)_{P} + (0:_{M}IJ)_{P}$$
$$= ((N:_{M}I) + (N:_{M}J) + (0:_{M}IJ))_{P}.$$

Therefore

$$(N:_M IJ) = (N:_M I) + (N:_M J) + (0:_M IJ),$$

as desired. \Box

Recall that an R-module M is said to be *fully copure* if every submodule of M is copure [8].

Definition 3.6. We say that an *R*-module *M* is *fully 2-absorbing copure* if every submodule of *M* is 2-absorbing copure.

Remark 3.7. Clearly, every fully copure R-module is a fully 2-absorbing copure R-module. But the converse is not true in general. For example, the \mathbb{Z}_4 -module \mathbb{Z}_4 is a fully 2-absorbing copure module but it is not a fully copure \mathbb{Z}_4 -module.

Let N and K be two submodules of M. The *coproduct* of N and K is defined by $(0:_M Ann_R(N)Ann_R(K))$ and denoted by C(NK) [6].

Theorem 3.8. Let M be a comultiplication R-module. Then the following statements are equivalent.

(a) For each submodules N, K, H of M, we have

$$C(NHK) = C(NK) + C(NH) + C(KH).$$

(b) M is a fully 2-absorbing copure R-module.

Proof. $(a) \Rightarrow (b)$ Let N be a submodule of M and I, J be two ideals of R. Then as M is a comultiplication R-module,

$$\begin{split} C(N(0:_MI)) &= (0:_M Ann_R(N) Ann_R((0:_MI))) \\ &= ((0:_M Ann_R((0:_MI))):_M Ann_R(N)) \\ &= ((0:_MI):Ann_R(N)) = (N:_MI). \end{split}$$

Similarly, $C(N(0:_M J)) = (N:_M J)$. Now by part (a) and the fact that M is a comultiplication R-module,

$$\begin{split} (N:_M I) + (N:_M J) + (0:_M IJ) \\ &= C(N(0:_M I)) + C(N(0:_M J)) + C((0:_M I)(0:_M J)) \\ &= C(N(0:_M I)(0:_M J))) \\ &= (N:_R IJ). \end{split}$$

 $(b) \Rightarrow (a)$. As M is a comultiplication R-module, we have $C(NH) = (H :_M Ann_R(N))$ and $C(KH) = (H :_M Ann_R(K))$. Now since by part (b), H is a 2-absorbing copure submodule of M,

$$C(NK)+C(NH)+C(KH)$$

$$= (0:_{M}Ann_{R}(N)Ann_{R}(K))+(H:_{M}Ann_{R}(N))+(H:_{M}Ann_{R}(K))$$

$$= (H:_{M}Ann_{R}(N)Ann_{R}(K)).$$

But since *M* is a comultiplication *R*-module,

$$(H:_{M} Ann_{R}(N)Ann_{R}(K)) = (0:_{M} Ann_{R}(N)Ann_{R}(K)Ann_{R}(H)).$$

Therefore,
$$C(NHK) = C(NK) + C(NH) + C(KH)$$
.

Let R be a be a principal ideal domain and M be an R-module. By [7, 2.12], every submodule of M is pure if and only if it is copure. But the following examples shows that it is not true for 2-absorbing pure and 2-absorbing copure submodules.

Example 3.9. Consider the submodule $G_1 := \langle 1/p + \mathbb{Z} \rangle$ of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$. Let m, n be two positive integers. If p not divided m, n, then

$$G_1 = mnG_1 = mG_1 \cap nG_1 \cap mn\mathbb{Z}_{p^{\infty}} = G_1.$$

If p divided m or n, then

$$0 = mnG_1 = mG_1 \cap nG_1 \cap mn\mathbb{Z}_{p^{\infty}} = 0.$$

Moreover,

$$G_3 = (G_1 :_{\mathbb{Z}_{p^{\infty}}} p^2) \neq (G_1 :_{\mathbb{Z}_{p^{\infty}}} p) + (G_1 :_{\mathbb{Z}_{p^{\infty}}} p) + (0 :_{\mathbb{Z}_{p^{\infty}}} p^2) = G_2.$$

Hence, the submodule $G_1 := \langle 1/p + \mathbb{Z} \rangle$ of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is a 2-absorbing pure submodule but it is not 2-absorbing copure.

Example 3.10. Let m, n be two positive integers. If m, n are odd, then we have

$$2\mathbb{Z} = (2\mathbb{Z} :_{\mathbb{Z}} mn) = (2\mathbb{Z} :_{\mathbb{Z}} n) + (2\mathbb{Z} :_{\mathbb{Z}} m) + (0 :_{\mathbb{Z}} mn) = 2\mathbb{Z}.$$

If m, n are even, then we have

$$\mathbb{Z} = (2\mathbb{Z} :_{\mathbb{Z}} mn) = (2\mathbb{Z} :_{\mathbb{Z}} n) + (2\mathbb{Z} :_{\mathbb{Z}} m) + (0 :_{\mathbb{Z}} mn) = \mathbb{Z}.$$

Moreover, $8\mathbb{Z} = (2)(2)(2\mathbb{Z}) \neq (2)(2\mathbb{Z}) \cap (2)(2\mathbb{Z}) \cap (2)(2)(2\mathbb{Z}) = 4\mathbb{Z}$. Thus the submodule $2\mathbb{Z}$ of the \mathbb{Z} -module \mathbb{Z} is a 2-absorbing copure submodule but it is not 2-absorbing pure.

Theorem 3.11. Let M be an R-module which satisfies the property $AB5^*$. Then we have the following.

- (a) If $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ is a chain of 2-absorbing copure submodules of M, then $\cap_{{\lambda}\in\Lambda}N_{\lambda}$ is a 2-absorbing copure submodule of M.
- (b) If $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ is a chain of submodules of M and K is a 2-absorbing copure submodule of N_{λ} for each $\lambda\in\Lambda$, then K is a 2-absorbing copure submodule of $\cap_{{\lambda}\in\Lambda}N_{\lambda}$.

Proof. (a) Let I and J be two ideals of R. Clearly,

$$(\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) + (\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} J) + (0 :_{M} IJ) \subseteq (\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} IJ).$$

Let *L* be a completely irreducible submodule of *M* such that

$$(\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) + (\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} J) + (0 :_{M} IJ) \subseteq L.$$

Then

$$\bigcap_{\lambda \in \Lambda} (N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda} N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L = L.$$

Since M satisfies the property $AB5^*$, we have

$$\bigcap_{\lambda \in \Lambda} ((N_{\lambda} :_{M} I) + (\bigcap_{\lambda \in \Lambda} N_{\lambda} :_{M} J) + (0 :_{M} IJ) + L) = L.$$

Now as L is a completely irreducible submodule of M, there exists $\alpha \in \Lambda$ such that $(N_{\alpha}:_MI)+(\cap_{\lambda\in\Lambda}N_{\lambda}:_MJ)+(0:_MIJ)+L=L$. Since M satisfies the property $AB5^*$, $\cap_{\lambda\in\Lambda}((N_{\alpha}:_MI)+(N_{\lambda}:_MJ)+(0:_MIJ)+L)=L$. Now again as L is a completely irreducible submodule of M, there exists $\beta\in\Lambda$ such that $(N_{\alpha}:_MI)+(N_{\beta}:_MJ)+(0:_MIJ)+L=L$. We can assume that $N_{\alpha}\subseteq N_{\beta}$. Therefore, $(N_{\alpha}:_MI)+(N_{\alpha}:_MJ)+(0:_MIJ)\subseteq L$. It follows that $(N_{\alpha}:_MIJ)\subseteq L$ since N_{α} is a 2-absorbing copure submodule of M. Hence, $(\cap_{\lambda\in\Lambda}N_{\lambda}:_MIJ)\subseteq L$. This implies that

$$(\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} IJ) \subseteq (\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} I) + (\cap_{\lambda \in \Lambda} N_{\lambda} :_{M} J) + (0 :_{M} IJ),$$

by Remark 2.1.

(b) Let *I* and *J* be two ideals of *R*. Clearly,

$$(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}I)+(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}J)+(0:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ)\subseteq (K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ).$$

To see the reverse inclusion, let L be a completely irreducible submodule of M such that

$$(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}I)+(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}J)+(0:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ)\subseteq L.$$

Then

$$\bigcap_{\lambda \in \Lambda} (K:_{N_{\lambda}} I) + (K:_{\bigcap_{\lambda \in \Lambda} N_{\lambda}} J) + (0:_{\bigcap_{\lambda \in \Lambda} N_{\lambda}} IJ) + L = L.$$

Since M satisfies the property $AB5^*$, we have

$$\cap_{\lambda \in \Lambda} ((K:_{N_{\lambda}}I) + (K:_{\cap_{\lambda \in \Lambda}N_{\lambda}}J) + (0:_{\cap_{\lambda \in \Lambda}N_{\lambda}}IJ) + L) = L.$$

Now as *L* is a completely irreducible submodule of *M*, there exists $\alpha \in \Lambda$ such that

$$(K:_{N_{\alpha}}I)+(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}J)+(0:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ)+L=L.$$

By similar argument, since M satisfies the property $AB5^*$ and L is a completely irreducible submodule of M, there exist $\beta \in \Lambda$ and $\gamma \in \Lambda$ such that,

$$(K:_{N_{\alpha}}I) + (K:_{N_{\beta}}J) + (0:_{N_{\gamma}}IJ) + L = L.$$

Since $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ is a chain, we can assume that $N_{\alpha}\subseteq N_{\beta}\subseteq N_{\gamma}$. Therefore, $(K:_{N_{\alpha}}I)+(K:_{N_{\alpha}}J)+(0:_{N_{\alpha}}IJ)\subseteq L$. It follows that $(K:_{N_{\alpha}}IJ)\subseteq L$ since K is a 2-absorbing copure submodule of N_{α} . Therefore, $(K:_{\cap_{{\lambda}\in\Lambda}N_{\lambda}}IJ)\subseteq L$. This implies that

$$(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ)\subseteq (K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}I)+(K:_{\cap_{\lambda\in\Lambda}N_{\lambda}}J)+(0:_{\cap_{\lambda\in\Lambda}N_{\lambda}}IJ),$$

by Remark 2.1.

Theorem 3.12. Let M be an R-module which satisfies the property $AB5^*$ and N be a submodule of M. Then there is a submodule K of M minimal with respect to $N \subseteq K$ and K is a 2-absorbing copure submodule of M.

Proof. Let

$$\Sigma = \{ N \leq H | H \text{ is a } 2-absorbing copure submodule of } M \}.$$

Then $M \in \Sigma \neq \emptyset$. Let $\{N_{\lambda}\}_{{\lambda} \in \Lambda}$ be a totally ordered subset of Σ . Then $N \leq \bigcap_{{\lambda} \in \Lambda} N_{\lambda}$ and by Theorem 3.11 (a), $\bigcap_{{\lambda} \in \Lambda} N_{\lambda}$ is a 2-absorbing copure submodule of M. Therefore by using Zorn's Lemma, one can see that Σ has a minimal element, K say as desired.

Theorem 3.13. Let M be a strong comultiplication R-module and N be a submodule of M. Then N is a 2-absorbing copure submodule of M if and only if $Ann_R(N)$ is a 2-absorbing pure ideal of R.

Proof. Since M is a comultiplication R-module, $N = (0:_M Ann_R(N))$. Let N be a 2-absorbing copure submodule of M and let I and J be any two ideals of R. Then

$$(N:_{M}IJ) = (N:_{M}I) + (N:_{M}J) + (0:_{M}IJ) \Rightarrow ((0:_{M}Ann_{R}(N)):_{M}IJ)$$
$$= ((0:_{M}Ann_{R}(N)):_{M}I) + ((0:_{M}Ann_{R}(N)):_{M}J) + (0:_{M}IJ).$$

It follows that

$$(0:_M Ann_R(N)IJ) = (0:_M Ann_R(N)I) + (0:_M Ann_R(N)J) + (0:_M IJ).$$

Thus by Lemma 2.2,

$$(0:_{M} Ann_{R}(N)IJ) = (0:_{M} Ann_{R}(N)I \cap Ann_{R}(N)J \cap IJ).$$

This implies that $Ann_R(N)IJ = Ann_R(N)I \cap Ann_R(N)J \cap IJ$ since M is a strong comultiplication R-module. Hence $Ann_R(N)$ is a 2-absorbing pure ideal of R. Conversely, let $Ann_R(N)$ be a 2-absorbing pure ideal of R and let I and J be any two ideals of R. Then

$$Ann_R(N)IJ = Ann_R(N)I \cap Ann_R(N)J \cap IJ.$$

Hence by using Lemma 2.2,

$$(0:_{M} Ann_{R}(N)IJ) = (0:_{M} Ann_{R}(N)I) + (0:_{M} Ann_{R}(N)J) + (0:_{M} IJ).$$

Therefore, as *M* is a comultiplication *R*-module,

$$(N:_M IJ) = (N:_M I) + (N:_M J) + (0:_M IJ),$$

as desired.

Acknowledgments. The author would like to thank Professor Habibollah Ansari-Toroghy for his helpful suggestions and useful comments.

REFERENCES

- [1] M.S. Abbass, On fully stable modules, Ph.D. Thesis, University of Baghdad, 1991.
- [2] Y. Al-Shaniafi and P. F. Smith, *Comultiplication modules over commutative rings*, J. Commut. Algebra, **3** (1) (2011), 1-29.
- [3] W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

- [4] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, *Taiwanese J. Math.* **11** (4) (2007) 1189-1201.
- [5] H. Ansari-Toroghy and F. Farshadifar, *Comultiplication modules and related results*, Honam Math. J. **30** (1) (2008), 91–99.
- [6] H. Ansari-Toroghy and F. Farshadifar, *Product and dual product of submodules*, Far East J. Math. Sci., **25** (3) (2007), 447–455.
- [7] H. Ansari-Toroghy and F. Farshadifar, *Strong comultiplication modules*, CMU. J. Nat. Sci. **8** (1) (2009), 105–113.
- [8] H. Ansari-Toroghy and F. Farshadifar, *Fully idempotent and coidempotent modules*, Bull. Iranian Math. Soc. **38** (4) (2012), 987-1005.
- [9] H. Ansari-Toroghy and F. Farshadifar, *The dual notion of fully cancellation mod*ules, submitted.
- [10] A. Badawi, *On 2-absorbing ideals of commutative rings*, Bull. Austral. Math. Soc. **75** (2007), 417-429.
- [11] F. Farshadifar, 2-absorbing pure submodules, submitted.
- [12] L. Fuchs, W. Heinzer, and B. Olberding, *Commutative ideal theory without finite-ness conditions: Irreducibility in the quotient filed*, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. **249** (2006), 121–145.
- [13] R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
- [14] R. Wisbauer, *Foundations of Modules and Rings Theory*, Gordon and Breach, Philadelphia, PA, 1991.

F. FARSHADIFAR

Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.

e-mail: f.farshadifar@cfu.ac.ir