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COPURE AND 2-ABSORBING COPURE SUBMODULES

F. FARSHADIFAR

Let R be a commutative ring with identity and M be an R-module.
In this paper, we will introduce the concept of 2-absorbing copure sub-
modules of M as a generalization of copure submodules and obtain some
related results. Also, we investigate some results concerning copure sub-
modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z
will denote the ring of integers.

A submodule N of an R-module M is said to be pure if IN = NNIM for
every ideal I of R [3].

In [7], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of
pure submodules (that is copure submodules) and investigated the first proper-
ties of this class of modules. A submodule N of an R-module M is said to be
copure if (N :p I) = N+ (0 :p I) for every ideal I of R [7].

Following the concept of 2-absorbing ideals of commutative rings as in [10],
the concept of 2-absorbing pure submodules of an R-module M as a generaliza-
tion of pure submodules was introduced in [11]. A submodule N of an R-module
M is said to be a 2-absorbing pure submodule of M it IJN = IN NJN NIJM for
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every ideals I,J of R. Also, an ideal I of R is said to be a 2-absorbing pure ideal
of R if I is a 2-absorbing pure submodule of R.

The main purpose of this paper is to introduce the concepts of 2-absorbing
copure submodules of an R-module M as a generalization of copure submodules
and investigate some results concerning this notion and copure submodules.

2. Copure submodules

A proper submodule N of an R-module M is said to be completely irreducible if
N = ie; Ni, where {N;}ics is a family of submodules of M, implies that N = N;
for some i € I. It is easy to see that every submodule of M is an intersection of
completely irreducible submodules of M [12].

Remark 2.1. Let N and K be two submodules of an R-module M. To prove
N C K, it is enough to show that if L is a completely irreducible submodule of
M such that K C L, then N C L.

An R-module M is said to be a comultiplication module if for every sub-
module N of M there exists an ideal I of R such that N = (0 :y, I) [4]. It is easy
to see that M is a comultiplication module if and only if N = (0 :3y Anng(N))
for each submodule N of M.

An R-module M satisfies the double annihilator conditions (DAC for short)
if for each ideal I of R, we have I = Anng((0:p I)). M is said to be a strong
comultiplication module if M is a comultiplication R-module which satisfies the
double annihilator conditions [7].

Lemma 2.2. let M be a strong comultiplication R-module. Then (0 :py INJ) =
(0:p 1)+ (0:p1 J) for all ideals I and J of R.

Proof. This follows from the fact that / = Anng((0 :p I)) far each ideal I of R
and [5, 3.3]. L]

A family {N;};e; of submodules of an R-module M is said to be an inverse
family of submodules of M if the intersection of two of its submodules again
contains a module in {N;}ic;. Also M satisfies the property AB5* if for ev-
ery submodule K of M and every inverse family {N;}ic; of submodules of M,
K + NiefN; = Nier(K + N;) [14]. For example, every strong comultiplication
R-module satisfies the property AB5* by using Lemma 2.2 and [2, 2.9].

Theorem 2.3. Let M be an R-module which satisfies the property ABS*. Then
we have the following. If {Nj },.cn is a chain of copure submodules of M, then
My ealNy, is copure.
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Proof. Let I be an ideal of R. Clearly,
MaeaNy + (0 1) € (MaealNy m ).

To see the reverse inclusion, let L be a completely irreducible submodule of M
such that Ny ANy + (0 :p7 I) € L. Then NyeaNy, + (0 :4 1) +L = L. Since M
satisfies the property AB5*, we have

Mrea(Ny+ (0 1) +L) = L.

Now as L is a completely irreducible submodule of M, there exists & € A such
that Ny + (0 :p ) + L = L. Tt follows that (N :pr I) + L = L since Ny, is a copure
submodule of M. Thus (N :ar I) C L. Hence, (N3 caAN, :m I) C L. This implies
that

(MaeaNy i I) SNpealNy + (0 1),

by Remark 2.1. 0

Theorem 2.4. Let M be an R-module which satisfies the property AB5* and N
be a submodule of M. Then there is a submodule K of M minimal with respect
to N C K and K is a copure submodule of M.

Proof. Let
Y. ={N < H|H is a copure submodule of M}.

Then M € £ # 0. Let {N) },ca be a totally ordered subset of £. Then N <
NaealN, and by Theorem 2.3 (a), Ny caN, is a copure submodule of M. Thus
by using Zorn’s Lemma, one can see that ¥ has a minimal element, K say as
needed. OJ

Proposition 2.5. Let R be a PID, N a submodule of an R-module M, and p;
(i € N) be a prime element in R. Then (N :y pi'...p;") = Yo 1 (N 1 pj').

Proof. Let p and g be two prime elements in R and k,s € N. Clearly, (N :y
P+ (N q®) C (N:y phq’). Now let xpfq® € N. Since Ris a PID, p*R+¢*R =
R. Thus there exist a,b € R such that 1 = ap* + bg*. Hence x = ap*x+ bg'x.
This implies that ¢°(x — bg’x) € N. Since bg*x € (N :3; p*), we have x € (N 1
P')+ (N :p ¢°). Therefore, (N iy p') + (N m ¢°) = (N i p*q®). Now the result
follows by induction on . OJ

Corollary 2.6. Let M be a Z-module, m,n be square-free integers such that
(m,n) = 1. Then for each submodule N of M we have

(N (nZ)(mZ)) = (N 2y (nZ)) + (N 2y (mZ)).
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Proof. This follows from Proposition 2.5. O

Definition 2.7. We say that a copure submodule N of an R-module M is a min-
imal copure submodule of a submodule K of M, if K C N and there does not
exist a copure submodule H of M such that K C H C N.

An R-module M is called fully cocancellation module if for each non-zero
ideal I of R and for each submodules N, N, of M such that (N :p I) = (N2 iy 1)
implies N; = N, [9].

Theorem 2.8. Every Noetherian fully cocancellation R-module M has only a
finite number of minimal copure submodules.

Proof. Suppose that the result is false. Let ¥ denote the collection of proper
submodules N of M such that M /N has an infinite number of minimal copure
submodules. The collection X is non-empty because 0 € ¥ and hence has a
maximal member, S say. Then S is not copure submodule. Thus there exists
an ideal I of R such that (S :py 1) # S+ (0:y I). Let V be a minimal copure
submodule of M that contains S. If (S:y I) NV =, then ((S:p 1) NV )+ (01
I) =S+ (0:)I). Hence by the modular law, (S:p I)N(V4+(0: 1)) =S+ (0
I). Now as V is a copure submodule of M, (S:p )N (V ips 1) =S+ (0:p ). Tt
follows that S+ (0 :py I) = (S :x I), a contradiction. If (S:y [)NV =V, then
V C (S:m 1) and so

(VZMI)=V+(OZMI)Q(S:MI)—F(OZMI):(S:MI).

Thus (V iy 1) = (S I). Since M is a fully cocancellation R-module, V = S,
a contradiction. Therefore, S C (S: I)NV C V. Now by the choice of S,
the module (S :p I) NV has only finitely many minimal copure submodules.
Therefore, there is only a finite number of possibilities for the module S which
is a contradiction. O

3. 2-absorbing copure submodules

Definition 3.1. We say that a submodule N of an R-module M is a 2-absorbing
copure submodule of M if (N :p 1J) = (N iy I) + (N 2y J) + (0 11 1J) for every
ideals 1,J of R. This can be regarded as a dual notion of the 2-absorbing pure
submodule of M.

Remark 3.2. Let M be an R-module. Clearly every copure submodule of M is
a 2-absorbing copure submodule of M. But we see in the Example 3.3 that the
converse is not true in general.
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Example 3.3. The submodule 2Z4 of the Z4-module Z4 is a 2-absorbing copure
submodule of Z4 but it is not a copure submodule of Z,.

Example 3.4. Since 1/4 € (Z :q (27)(2Z)) but
1/4¢(Z:92Z)+(Z 9 2Z) + (0:q (2Z)(2Z)).
The submodule Z of the Z-module Q is not 2-absorbing copure.

Proposition 3.5. Let M be an R-module. Then we have the following.

(a) If N is a submodule of M such that (N :pr 1J) = (N :m 1)+ (N iy J) for
every ideals I,J of R, then N is a 2-absorbing copure submodule of M.

(a) If N is a submodule of M such that for each ideal I of R, (N i I) is a
copure submodule of M, then N is a 2-absorbing copure submodule of M.

(c) If R is a Noetherian ring and N is a 2-absorbing copure submodule of M,
then for each prime ideal P of R, Np is a 2-absorbing copure submodule
of Mp as an Rp-module.

(d) If R is a Noetherian ring and Np is a 2-absorbing copure submodule of
an Rp-module Mp for each maximal ideal P of R, then N is a 2-absorbing
copure submodule of M.

Proof. (a) Let I and J be ideals of R. Then (N :y 1J) = (N iy I) + (N 2y J) by
assumption. Thus (0:y IJ) C (N :p 1J) = (N :pe I) + (N :pr J). This implies that
(0 ZMIJ)+(NZMI)+(N2MJ) = (NZMI)+(NZMJ).

Therefore, (0:p IJ)+ (N :p 1)+ (N :pp J) = (N 2y 1J) as required.
(b) Let I and J be two ideals of R. Then by assumption,
(N ‘M IJ) = ((N ‘M 1) ‘M J)
= (NZMI)+(0 ZMJ)
C (N ‘M I) +(N IMJ)+ (0 ZMIJ).
It follows that N is a 2-absorbing copure submodule of M since the reverse
inclusion is clear.
(c) This follows from the fact that by [13, 9.13], if / is a finitely generated
ideal of R, then ((N :pr I))p = (Np :m, Ip).
(d) Suppose that I/ and J are two ideals of R. Since R is Noetherian, / and
J are finitely generated. Hence by [13, 9.13], for each maximal ideal P of R,
(N :pr 1J)p = (Np :m, IpJp). Thus by assumption,
(N ‘M IJ)p = (N ‘M I)P+ (N ‘M J)P+ (O ‘M Ij)p
= ((N M I) + (N M .]) + (0 M ]J))p.
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Therefore
(N ZMIJ) = (N 2MI)+(N MJ)+(0 lMIJ),

as desired. O

Recall that an R-module M is said to be fully copure if every submodule of
M is copure [8].

Definition 3.6. We say that an R-module M is fully 2-absorbing copure if every
submodule of M is 2-absorbing copure.

Remark 3.7. Clearly, every fully copure R-module is a fully 2-absorbing copure
R-module. But the converse is not true in general. For example, the Z4-module
Z4 is a fully 2-absorbing copure module but it is not a fully copure Z4-module.

Let N and K be two submodules of M. The coproduct of N and K is defined
by (0 :ps Anng(N)Anng(K)) and denoted by C(NK) [6].

Theorem 3.8. Let M be a comultiplication R-module. Then the following state-
ments are equivalent.

(a) For each submodules N,K,H of M, we have

C(NHK) = C(NK) +C(NH) +C(KH).

(b) M is a fully 2-absorbing copure R-module.

Proof. (a) = (b) Let N be a submodule of M and I, J be two ideals of R. Then
as M is a comultiplication R-module,

C(N(0:p 1)) = (0:p Anng(N)Anng((0:p 1))
= ((O ‘M AnnR((O ‘M I))) ‘M AnnR(N))
=((0:y1I):Anng(N)) = (N:m I).

Similarly, C(N(0 :ps J)) = (N :pm J). Now by part (a) and the fact that M is a
comultiplication R-module,

(NIMI)+(N2MJ)+(OZMIJ)
= C(N(0 1 1)(0 231 1))
:(NZRIJ).
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(b) = (a). As M is a comultiplication R-module, we have C(NH) = (H :i
Anng(N)) and C(KH) = (H :p Anng(K)). Now since by part (b), H is a 2-
absorbing copure submodule of M,

C(NK)+C(NH) +C(KH)
= (0:p Anng(N)Anng(K)) + (H :py Anng(N)) + (H :p Anng(K))
= (H :p Anng(N)Anng(K)).

But since M is a comultiplication R-module,
(H :pr Anng(N)Anng(K)) = (0 :py Anng(N)Anng(K)Anng(H)).
Therefore, C(NHK) = C(NK)+C(NH)+C(KH). O

Let R be a be a principal ideal domain and M be an R-module. By [7, 2.12],
every submodule of M is pure if and only if it is copure. But the following
examples shows that it is not true for 2-absorbing pure and 2-absorbing copure
submodules.

Example 3.9. Consider the submodule G := (1/p + Z) of the Z-module Z .
Let m, n be two positive integers. If p not divided m, n, then

G| = mnG) = mG, N\nGy NmnZy- = Gj.
If p divided m or n, then
0 =mnG; =mG NnG| NmnZy- = 0.
Moreover,
Gy = (Gi1 2, P°) # (G 7, P)+(G1 iz, p) + (012, p*) = Ga.

Hence, the submodule G; := (1/p+ Z) of the Z-module Z,~ is a 2-absorbing
pure submodule but it is not 2-absorbing copure.

Example 3.10. Let m,n be two positive integers. If m,n are odd, then we have
22 = (2Z :zmn) = 2Z :z n)+ (2Z :z m) + (0 :z mn) = 2Z.
If m,n are even, then we have
L= (2Z:zmn) = 2Z:zn)+ (2Z :z,m)+ (0 :z mn) = Z.

Moreover, 8Z = (2)(2)(2Z) # (2)(2Z) N (2)(2Z) N (2)(2)(Z) = 4Z. Thus the
submodule 27 of the Z-module Z is a 2-absorbing copure submodule but it is
not 2-absorbing pure.
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Theorem 3.11. Let M be an R-module which satisfies the property ABS*. Then
we have the following.

(a) If {Nj),}ren is a chain of 2-absorbing copure submodules of M, then
NaealNy is a 2-absorbing copure submodule of M.

(b) If {Nj}scn is a chain of submodules of M and K is a 2-absorbing cop-
ure submodule of N) for each A € A, then K is a 2-absorbing copure
submodule of My caAN,,.

Proof. (a) Let I and J be two ideals of R. Clearly,
(MaeaNy, m D)+ (MpeaNy i J) 4+ (0:a 1T) € (NpeaNy im 1T).
Let L be a completely irreducible submodule of M such that
(MpeaNy s D)+ (NMpeaNy m J)+ (0 1) C L.

Then
MpeaNa D)+ (NpealNy imJ)+ 0y IJ)+L=L.

Since M satisfies the property AB5*, we have
ﬂAeA((NA M 1) + (NyealNa M J) + (0 M IJ) +L) =L

Now as L is a completely irreducible submodule of M, there exists & € A such
that (N :m I) + (MpeaNy, i J) + (024 IJ) + L = L. Since M satisfies the prop-
erty ABS5*, Mpea((No i 1) + (Ny :m J) + (020 1J) + L) = L. Now again as
L is a completely irreducible submodule of M, there exists B € A such that
(Noo :p 1)+ (Np iy J) + (0 :ag 1J) + L = L. We can assume that No € Ng. There-
fore, (Ng :m I) + (Ng :pp J) + (027 1) C L. Tt follows that (Ng @ 1J) C L since
Ny is a 2-absorbing copure submodule of M. Hence, (NycaNy :m 1J) C L. This
implies that

(MaealNa i 17) C© (NaeaNa i 1) + (MaealNa i J) + (0 1),

by Remark 2.1.
(b) Let I and J be two ideals of R. Clearly,

(K “NiealNy I) + (K “MaealNy ‘I) + (0 “MiealNy IJ) c (K “MiealNy IJ)'

To see the reverse inclusion, let L be a completely irreducible submodule of M
such that

<K “Naeay I) + (K ‘NaeaNy J) + (0 Mieas ]J) C L.
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Then
Npea(K N, I)+ (K Niealy J)+(0 Maealy IJ)+L=L.

Since M satisfies the property AB5*, we have
mleA((K Ny, 1) + (K ‘NaeaNa J) + (O ‘NpealNy IJ) +L) =L

Now as L is a completely irreducible submodule of M, there exists & € A such
that

(K Ny I)+ (K iy Ny J) + (02, v, 1T)+L=L.

By similar argument, since M satisfies the property AB5* and L is a completely
irreducible submodule of M, there exist B € A and y € A such that,

(K Ny I)TL(K:Nﬁ J)+(O INYIJ)JFL:L.

Since {N) },.ca is a chain, we can assume that Ng C Ng C Ny. Therefore, (K :y,
I+ (K :n, J)+(0:y, IJ) C L. 1t follows that (K :y, IJ) C L since K is a 2-
absorbing copure submodule of Ny. Therefore, (K :n,_,~, 1J) € L. This implies
that

(K "NaealNy IJ) c (K "NiealNy I) + (K “Niealy J) + (O “‘NiealNy IJ)7

by Remark 2.1. 0

Theorem 3.12. Let M be an R-module which satisfies the property AB5* and N
be a submodule of M. Then there is a submodule K of M minimal with respect
to N C K and K is a 2-absorbing copure submodule of M.

Proof. Let
Y ={N < H|H is a 2 — absorbing copure submodule of M}.

Then M € £ # 0. Let {N, },ca be a totally ordered subset of £. Then N <
NaealN, and by Theorem 3.11 (a), Ny caNy, is a 2-absorbing copure submodule
of M. Therefore by using Zorn’s Lemma, one can see that ¥ has a minimal
element, K say as desired. O

Theorem 3.13. Let M be a strong comultiplication R-module and N be a sub-
module of M. Then N is a 2-absorbing copure submodule of M if and only if
Anng(N) is a 2-absorbing pure ideal of R.
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Proof. Since M is a comultiplication R-module, N = (0 :3 Anng(N)). Let N be
a 2-absorbing copure submodule of M and let / and J be any two ideals of R.
Then

(N ZMIJ) = (N ZMI)—I—(N 2MJ)+(0 ZMIJ) = ((0 ZMAI’lI’lR(N)) M IJ)
= ((0 :MAnnR(N)) M 1)+ ((0 :MAnnR(N)) ‘M J) —I—(O M IJ).

It follows that
(0:pr Anng(N)1J) = (0 :p Anng(N)I) + (0 :p Anng(N)J ) + (0 s 1J).
Thus by Lemma 2.2,
(0:p1 Anng(N)1J) = (0 :p Anng(N)INAnng(N)J N 1J).

This implies that Anng(N)IJ = Anng(N)INAnng(N)J N1J since M is a strong
comultiplication R-module. Hence Anng(N) is a 2-absorbing pure ideal of R.
Conversely, let Anng(N) be a 2-absorbing pure ideal of R and let I and J be any
two ideals of R. Then

Anng(N)IJ = Anng(N)INAnng(N)J N 1J.
Hence by using Lemma 2.2,
(0:pr Anng(N)1J) = (0 :p Anng(N)I) + (0 :p Anng(N)J) + (0 s 1J).
Therefore, as M is a comultiplication R-module,
(NeylJ) =Ny I)+ (N J)+(0:p 1),
as desired. O
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