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APPLICATIONS OF FORMATIVE PROCESSES TO THE

DECISION PROBLEM IN SET THEORY

DOMENICO CANTONE - PIETRO URSINO

As part of a project aimed at the implementation of a proof-checker
based on the set-theoretic formalism, the decision problem in set theory has
been studied very intensively, starting in the late seventies.

Several results have been produced in the first decade of research, giving
rise to the novel field of computable set theory. At that point, it already
was clear that to face the tremendous amount of technicalities involved in the
combination of smaller decidable fragments into larger ones, new techniques
were in order.

Such techniques have recently emerged, by a careful analysis of the for-
mation process of disjoint families of sets. This has led to the characterization
of suitable decidable conditions for the satisfiability of set-theoretic formulae
belonging to specific collections.

In this paper we give an elementary introduction to the formative pro-
cess technique and discuss some open problems.

1. Introduction.

The systematic investigation of the decision problem in set theory can be
traced back to the late seventies, when a full-fledged programming language
based on the set-theoretic formalism—named SETL—began to be used quite

Key words Satisfiability decision problem, satisfaction algorithm, Zermelo-Fraenkel set
theory.
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extensively in prototyping large-scale projects and the urge of program verifica-
tion became more pressing. 1

Plainly, any mature program verification systemmust be based on a power-
ful, general purpose proof checker, i.e., an interactive programmed system into
which one can enter sequences of logical/mathematical formulae, which it will
accept as long as it can perform some computation which guarantees that each
new formula is a logical consequence of preceding formulae. Such a verifier
ensures rigorously against logical error, possibly at the price of requiring its
user to enter a burdensome mass of intermediate detail. On the other hand, the
weight of detail required is inversely proportional to the size of the inferences
which the system is able to make automatically. For this reason, the technol-
ogy of program verification requires considerably powerful automatic theorems
provers, which are ultimately based on systematic proof methods, such as the
very general resolution principle or collections of more particularized decision
procedures.

After the initial enthusiasm, it appeared clear that resolution was a too
general principle to attain efficiency, and that new proof techniques to cover
important specialized classes of statements were needed.

Its expressivity and widespread use in the whole body of mathematics,
motivated the adoption of the formalism of set theory as primitive language for
a proof checker and, in turn, a thorough investigation on automatic deduction
methods in set theory.

The study of the decision problem in set theory progressed at a very fast
pace, yielding in a few years a large body of results which where collected in
the novel field of Computable Set Theory; the reader is referred to [3], [5] for a
very comprehensive account.

Using specialized techniques, several fragments of set theory were shown
to have a solvable decision problem. But soon it appeared clear that in order
to combine such fragments into larger decidable theories, more sofisticated
techniques were needed, for coping with the increasing mass of technicalities
involved.

Such techniques have recently emerged in [6], [8], where a careful analysis
of the formation process of disjoint families of sets has led to the characteriza-
tion of suitable decidable conditions which are necessary and sufficient for the
satisfiability of set-theoretic formulae belonging to specific collections. 2

1 We recall that SETL has been developed at New York University under the
direction of J.T. Schwartz and it has been used to implement the first certified compiler
for the ADA programming language.

2 Some of the ideas where already present in a rudimentary form in [2].
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The paper is organized as follows. After a brief introduction to set theory
and to the decision problem in set theory, respectively in Sections 2 and 3,
in Section 4 we give a concise introduction to the basic concepts of transitive
partitions, P-graphs , and formative processes and then, in Section 5, we show
how formative processes can be used to yield decision procedures in set theory.
Section 6 concludes the paper with some final remarks and hints to future work.

2. Brief introduction to set theory.

We briefly recall here some of the basic set-theoretic concepts and notation
used troughout the paper. In order to give a picture of the subject more familiar
to graph theorists, we shall describe sets using downward growing trees (see
[1]).

The reader is assumed to have some familiarity with the every day set-
theoretic apparatus, as well as with some elementary notions from formal
languages and computation theory.

Our considerations will take place in the standard axiom system ZFC ,
developed by Zermelo, Fraenkel, Skolem, and von Neumann (see [10]). In fact,
for the sake of simplicity they will refer to a very specific model of ZFC —
the von Neumann standard cumulative hierarchy of sets—though they could be
fully formalizable in ZFC .

The definition of the von Neumann standard cumulative hierarchy is based
on the principle of transfinite recursion on ordinals, which is a generalization of
the recursion principle on integers.

Let us give a quick recollection of basic notions on ordinal numbers (for a
more comprehensive presentation, see [10]).

Definition 1. A set T is said to be ���������� if T ⊆ P(T ) or, equivalently,
if

⋃
T ⊆ T . 3

A set μ is said to be an 	�
���� ����� if μ is transitive and is linearly
ordered (and hence well-ordered) by the membership relation ∈ .

As is well known, membership behaves as a well-ordering on the class O of
all ordinals. One reason to be interested in ordinals is the following fundamental
theorem:

Theorem 1. Let � be a well-ordering on the set x . Then there exist, and are
uniquely determined, an ordinal ξ and a function f ∈ x ξ such that f [ξ ] = x

3 We recall that P(T ) denotes the power set of T , wherease
⋃
T denotes the union

of all elements of T .
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holds and, for any pair ν, μ < ξ of ordinals:

f ν �= f μ holds when ν �= μ, and moreover f ν � f μ when ν ≤ μ.

By virtue of the axiom of choice, a well-ordering can be imposed on any
set. Therefore the following definition makes sense:

Definition 2. The ���
������� of a set x , to be denoted |x |, is the least
ordinal ν such that there exists a function f ∈ x ν with f [ν] = x . 4 A ���
����

����� is an ordinal μ such that μ = |μ|.
It is rather easy to see in which sense ordinals are an extension of the

natural numbers. Indeed, natural numbers, defined à la von Neumann by the
rules

0=Def ∅, i + 1=Def i ∪ {i},
constitute the initial segment of the class of ordinals; their set, ω =Def {0, 1, 2, 3,
. . .}, is the first ordinal which exceeds all natural numbers, often denoted ℵ0.

Even for ordinals (such as ω) which are not natural numbers, it is conve-
nient to assign the meaning just indicated to the increment operation ‘+1’: we
will hence have, among ordinals, ω+1, ω+1+1, etc. The ordinals of the form
μ + 1 are called �������	� 	�
�����; all others, save 0, are called ����
	�
�����. The latter comprise ω, ω + ω, ω + . . . + ω︸ ︷︷ ︸

ω times

, etc. (we are making

an appeal to the intuition of the reader).
All elements of ω + 1 are cardinal numbers; but ω + 1 itself is not such a

number.

Definition 3. By a ξ -��������, where ξ is an ordinal, we mean a function
{Yμ}μ∈ξ , usually denoted (Yμ)μ<ξ , whose domain is ξ .

By �������� (without indication of ξ ), one means ω-sequence.

In ZFC one has that a function rk exists that is univocally defined on all
sets by the following recursive rule

rk X =
⋃ {

(rk Y ) + 1 | Y ∈ X
} ;

this function associates an ordinal to each set X , and is called the ����

function. Thanks to the axiom of choice, a well-ordering � can be imposed
to any given set x so that

y� z when rk y < rk z and y, z∈ x .
4 Given two sets A and B , by BA we mean the collection of all functions from A to

B .
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We are now ready to define the von Neumann standard cumulative hier-
archy V of all sets by the following transfinite induction on the class O of all
ordinals:

V0 = ∅
Vα+1 = P(Vα) , for each ordinal α,
Vλ = ⋃

μ<λ Vμ , for each limit ordinal λ,

V = ⋃
μ∈On Vμ .

The class Vμ of all sets whose rank is smaller than μ is, for every ordinal μ,
a set, which is easily recognized to be transitive. Among these sets, one has
the family Vω of the ����
������� ������ sets, which are those sets that are
finite and whose elements, elements of elements, etc., all are finite.

Example 1. Using the notation

∅n =Def {{. . . {︸ ︷︷ ︸
n

∅ } . . .}}︸ ︷︷ ︸
n

,

the first few layers of the von Neumann standard cumulative hierarchy are

V0 = ∅
V1 = { ∅ }
V2 = { ∅, ∅1 }
V3 = { ∅, ∅1, ∅2, { ∅, ∅1 } }
V4 = { ∅, ∅1, ∅2, ∅3, { ∅, ∅1 }, { ∅, ∅2 }, { ∅1, ∅2 }, . . .
...

...
...

Sets of this kind can be represented as finite trees.

By traversing trees in bottom-up, we can compute the sets they represent,
through a simple labeling process.
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Unfortunately, different trees may represent the same set.

To prevent such pathology, it is possible to define a relation ≈ between
trees, called ���� ���������	�, such that any set is represented by
a unique ≈-equivalence class in the collection of all trees. However, an
exhaustive treatment of this subject is out of our intentions (see [1] for a deeper
presentation).

It can easily be checked that the rank of a hereditarily finite coincides with
the height of any tree representing it.



APPLICATIONS OF FORMATIVE PROCESSES TO THE. . . 113

3. The decision problem in set theory.

We are mainly interested in collections of propositional combinations of
set-theoretic literals belonging to specific families. We will freely refer to such
collections of formulae as ���	����. For instance, the theory MLSSP is the
collection of propositional combinations of literals of the following types:

(1)
v = w, v �= w, v = ∅, v = u ∪ w,

v = u ∩ w, v = u \ w, v ⊆ u, v �⊆ u,
v ∈ w, v /∈ w, v = P(w), v = {w1, w2, . . . , wH }.

An example of anMLSSP-formula is the following

(x ∈ y ∧ y ∈ z) → (x = ∅ ∨ x = P(z)).

To define the decision problem in set theory, we need the following further
notions.

Definition 4. An ��������� over a collection of variables V is any map
from V into the universe of all sets V.

Example 2. Let V = {x , y, z} be a collection of variables. Then an example of
an assignment over V is

Mx = ∅, My = {∅}, Mz = {{∅}}.

Definition 5. A set-theoretic formula ϕ is said to be ����������� if there exists
an assignmentM of sets from V over its free variables x , y, z, . . . such that the
formula resulting from ϕ by

• substituting in it sets Mx , My, Mz, . . . in place of free occurrences of
x , y, z, . . ., and by

• interpreting the set-theoretic operators and predicates in it according to
their standard meaning

is true (in the von Neumann universe V of all sets).
In this case M is said to be a 	
�� for ϕ .

Example 3. Let ϕ be the formula x ∈ y∧ y ∈ z∧z\x �= ∅. Then the assignment
M defined by

Mx = ∅, My = {∅}, Mz = {{∅}}
clearly satisfies ϕ .
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Definition 6. The 
�����	� ��	��� for a theory T is the problem of
establishing for any given formula ϕ in T whether ϕ is satisfiable.

Notice that a satisfiability test for a theory T can also be used to decide
whether any given formula ϕ in T is ���� (in the standard von Neumann
model of set theory). 5 In fact, a formula ϕ is true if and only if its negation
¬ϕ is unsatisfiable.

Example 4. The formula

x ∈ y ∧ y ∈ z ∧ z \ x = ∅

is unsatisfiable. Therefore the formula

(x ∈ y ∧ y ∈ z) → z \ x �= ∅

is true (regardless of the assignment).
Instead, the formula

(x ∈ y ∧ y ∈ z) → z \ x = ∅

is not true, since the formula

x ∈ y ∧ y ∈ z ∧ z \ x �= ∅

is satisfiable.

In several cases, the decidability of a given theory has been shown by
proving that it enjoys the ���� 	
�� ��	�����, defined as follows.

Definition 7. An assignment M is ������	��
�
 by k if rk Mx ≤ k, for
each variable x in the domain of M.

Definition 8. A theory T enjoys the ���� 	
�� ��	����� if there exists
a computable function fT such that any satisfiable formula ϕ of T is satisfied
by some (finite) model which is rank-bounded by fT (|ϕ|). 6

5 Moreover, when the arguments used to show that a formula is true are formalizable
within the ZFC axiomatic system, a satisfiability test can be used also to establish
theoremhood in ZFC .

6 By |ϕ| we mean the size of ϕ.
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Plainly, if a theory T enjoys the small model property, then it has a solvable
decision problem. Indeed, a possible, though very rough, satisfiability test for
T would be the following. Let fT be a computable function which rank-bounds
the theory T . Then, to check whether a given formula ϕ of T is satisfiable, one
can systematically verify whether any of the finitely many assignments over the
free variables of ϕ and rank-bounded by fT (|ϕ|) satisfies ϕ .

Below is a very short list of some of the fragments of set theory which
have a solvable decision problem: after each acronym, we list the operators
and predicate symbols admitted in the fragment, and some references to the
literature.

MLS: ∪, ∩, \, ⊆, =, ∈ (cf. [9])
MLSS: ∪, ∩, \, ⊆, =, ∈ , {·} (cf. [9])
MLSSP: ∪, ∩, \, ⊆, =, ∈ , {·},P (cf. [2] and [6])
MLSU: ∪, ∩, \, ⊆, =, ∈ , ⋃ (cf. [4])
. . . . . . . . .

The interested reader is referred to [3] and [5] for an extensive treatment of such
results.

4. Transitive partitions, formative processes, and P-graphs .

In this section we introduce the important notions of transitive partitions,
formative processes, and P-graphs .

4.1. Transitive partitions.

Definition 9. A ���������� �������	� is a collection of pairwise disjoint
nonempty sets, whose union is transitive.

A transitive partition � satisfies a formula ϕ if there exists a map

 : var(ϕ) → P(�)

such that the induced assignment

Mx =Def

⋃
s∈(x)

s

satisfies ϕ .

Given a finite transitive partition � and a formula ϕ , one can effectively
verify whether � satisfies ϕ by simply checking all the possibilities.
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Theorem 2. Let � and �̂ be transitive partitions, and let β : � → �̂ be a
bijection. Moreover, let ϕ be a set-theoretic formula involving only unquantified
variables and the symbols ∪, ∩, \, ⊆, �⊆, =, �=. If ϕ is satisfied by � , then it is
also satisfied by �̂.

Theorem 2, which can easily be deduced by a slight modification of
Lemmas 3.3 and 10.1 in [6], yields the following immediate decision test for
set-theoretic formulae involving only unquantified variables and the symbols ∪,
∩, \, ⊆, �⊆, =, �=:

Given a formula ϕ in the above language, involving n distinct free
variables, declare that ϕ is satisfiable provided that it is satisfiable
by any (transitive) partition of size 2n − 1.

To handle new operators, we can add further suitable constraints to the
bijection β . Here are some examples which have been treated in our recent
research.

Theorem 3. Let � and �̂ be transitive partitions, and let β : � → �̂ be a
bijection such that⋃

β[X ]∈
⋃

β[Y ] iff
⋃

X ∈
⋃

Y , for all X, Y ⊆ �

(i.e., �̂ ∈ -simulates � via β ), and⋃
β[X ] = P(

⋃
β[Y ]) if

⋃
X ∈P(

⋃
Y ) , for all X, Y ⊆ �

(i.e., �̂ P-simulates � via β ).
Moreover, let ϕ be a set-theoretic formula involving only unquantified

variables and the symbols ∪, ∩, \, ⊆, =, ∈ , /∈ , P.
If ϕ is satisfied by � , then it is also satisfied by �̂.

Theorem 3 can easily be deduced by a slight modification of Lemmas 3.3
and 10.1 in [6].

The last example involves finite enumerations.

Theorem 4. Let ϕ be a set-theoretic formula involving only unquantified vari-
ables and the symbols ∪, ∩, \, ⊆, =, ∈ , /∈ , P, {·}, where each term of type
{w1, . . . , wH } in ϕ is such that H ≤ L.

Let � and �̂ be transitive partitions, and let β : � → �̂ be a bijection
such that⋃

β[X ] =
{⋃

β[Y1], . . . ,
⋃

β[YH ]
}

if
⋃

X =
{⋃

Y1, . . . ,
⋃

YH
}

,
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for all X, Y1, . . . , YH ⊆ �, H ≤ L (i.e., �̂ L-simulates � via β ) and such
that �̂ ∈ -simulates and P-simulates� via β .

If ϕ is satisfied by � , then it is also satisfied by �̂.

Theorem 4 follows from Lemmas 3.3 and 10.1 in [6].
The above Theorems 3 and 4 are at the base of a decision test forMLSSP,

provided that we are able to prove that there exists a computable function f
such that for any given finite transitive partition � and any L ∈ N there exists
a “small” transitive partition �̂, rank-bounded by f (|�|), which ∈ -, P-, and
L-simulates� via some bijection β : � → �̂. It is therefore important to study
the combinatorial properties of transitive partitions.

4.2. Formative processes.

A transitive partition � can be constructed by monotone sequences of
approximations:

∅ = p(0) ⊆ p(1) ⊆ p(2) ⊆ . . . ⊆ p(ξ ) = p,

for each p ∈ � , which can be recursively defined as follows.
Firstly, let us put p(0) = ∅, for each p ∈ � .
Next, let us assume that after μ steps we have constructed a set p(μ) ⊆ p,

for each p ∈ � . If {p(μ) : p ∈ �} = � , then we are done. Otherwise, let us
select c ∈ ⋃

p∈�(p \ p(μ)) of minimal rank. By the transitivity of � and the
minimality of rank(c), we have c ⊆ ⋃

p∈� p(μ) ⊆ ⋃
p∈� p.

Let Aμ =Def {p ∈� : c ∩ p �= ∅} and let q ∈� be such that c ∈ q (Aμ is
called a P-�	
� and q is a ������ of Aμ ).

The P-node Aμ is the subset of � which is needed to build “new” sets at
stage μ of the construction, whereas the targets are the elements of � which
receive such “new” sets.

At each step, constructions are carried out through the operator

P∗(X )=Def {s ⊆
⋃

X : s ∩ x �= ∅, for each x ∈ X }

which, given a collection X , constructs the family of all subsets of
⋃
X which

intersect all sets in X .
In fact, it turns out that

(2) c ∈P∗(A(μ)μ ) \
⋃
p∈�

p(μ),
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where A(μ)μ =Def {q (μ) : q ∈ Aμ}, i.e., A(μ)μ is the P-node Aμ at stage μ.
Roughly speaking, (2) indicates that the element c appears in the construction
process at step μ + 1, for the first time.

Therefore we put

p(μ+1)=Def p
(μ) ∪ (p ∩ P∗({p(μ)) : p ∈ Aμ})), for p ∈ �

Tμ =Def {p ∈ � : p(μ+1) �= p(μ)}
(Tμ is the set of ������� at step μ).
At any limit ordinal λ, we put

p(λ)=Def

⋃
ν<λ

p(ν), for p ∈ �.

Such process terminates after ξ steps, where ξ is the minimum ordinal
such that p(ξ ) = p, for each p ∈ � .

The sequence ({p(μ)}p∈�)μ≤ξ is called a �	������ ��	���� for � .
The sequence (Aμ, Tμ)μ<ξ is the ����	�� of the formative process

({p(μ)}p∈�)μ≤ξ .

4.3. P-graphs

Definition 10. Let � be a transitive partition and let ({p(μ)}p∈�)μ≤ξ be a
formative process for� , with history (Aμ, Tμ)μ<ξ . The (expanded) P-������

 of � is defined by putting:

nodes(
) = {Aμ : μ < ξ} ∪ �

edges(
) = {(Aμ, q) : μ < ξ , q ∈ Tμ} ∪ {(p, Aμ) : μ < ξ , p ∈ Aμ}.
(Notice that |nodes(
)| ≤ |�| + 2|�|.)

The transitive partition � is a said to be a ���������	� of the induced
P-������ 
.
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The p-pgraph 
 is a kind of flow graph, whose source is the P-node ∅.
Example 5. Consider the following transitive partition � = {α, β, γ }, where

α = {∅}
β = {{∅}, {{∅}}}
γ = {{∅, {∅}, {{∅}}}}

(underlines are an aid to the reader to match parentheses).

We have
P∗(∅) ∩ α �= ∅
P∗({α}) ∩ β �= ∅
P∗({β}) ∩ β �= ∅
P∗({α, β}) ∩ γ �= ∅

Below is the corresponding P-pgraph both in extended and contracted
form. 7

7 The contracted form of a P-pgraph retains all information present in the corre-
sponding extended form. We refrain from giving here a formal definition, since it can
easily be deduced from the picture.
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Summing up, we have the following formative process(
α(μ)

β (μ)

γ (μ)

)
μ≤4

=
⎛⎝∅ {∅} {∅} {∅} {∅}

∅ ∅ {{∅}} {{∅}, {{∅}}} {{∅}, {{∅}}}
∅ ∅ ∅ ∅ {{∅, {∅}, {{∅}}}}

⎞⎠
with history (

Aμ

Tμ

)
μ<4

=
( ∅ {α} {β} {α, β}

{α} {β} {β} {γ }
)

.

Remark 1. During the “flow” propagation in P-graphs , one can focus just on
cardinalities of sets, rather than on the actual sets which are propagated (with
the only exception of the last element propagated during the final discharge).

For instance, the above pictures illustrates the situation in which at a
certain stage μ the place α has received l elements, the place β has received
m elements, etc. The intermediate unlabeled node can distribute up to (2l − 1) ·
(2m − 1) · (2n − 1) elements (this is the cardinality ofP∗({αμ, βμ, γ mu})), p′
of which have been assigned to the target π , r ′ have been assigned to the target
ρ , and s ′ have been assigned to the target σ .

A more detailed and different use of formative processes can be found in
[7] and [11], where they are used to enlarge a given transitive partition.

5. Thinning of formative processes as a technique for deciding certain
classes of formulae.

As argued in Section 4, the capability of L-simulating a given finite
transitive partition � by means of another partition �̂ having finite rank,
bounded by a computable function in L and |�| (the small model property), is
crucial in order to solve the decision problem for collections of literals, such as
MLSSP. Therefore, we need a technique which allows to prune those formative
processes which exceed the desired bound.
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Definition 11. Let � be a finite transitive partition and let ({p(μ)}p∈�)μ≤ξ be a
formative process for � , with history (Aμ, Tμ)μ<ξ .

Let L ∈ N and let ρ ∈ N be such that 2ρ−1 > max(ρ · �, L).
The ν-th step of ({p(μ)}p∈�)μ≤ξ is ������� if

• |p(ν)| < ρ , for each p ∈ Aν , or
• for some q ∈ � such that q (ν+1) �= q (ν) we have either |q (ν)| < ρ or
q (ν) ∩ P∗({p(ν) : p ∈ Aν}) = ∅, or

• {p(ν) : p ∈ Aν} = Aν and
⋃
Aν ∈ ⋃

� .
We denote the collection of all salient steps by Sal .

All the proofs of the results stated below can be found in [6]. The following
result gives a numerical bound on the number of relevant steps to build a new
smaller transitive partition from a given one.

Theorem 5. |Sal| < ρ · |�| · 2|�| + 3.

Let μ0, μ1, . . . , μ� be such that

• μ0 < μ1, . . . < μ�, and
• {μ0, μ1, . . . , μ�} = Sal ∪ {ξ}.
Using the original formative process as an oracle, it is possible, to extract

effectively a shorter formative process which has, as final product, a new
transitive partition that L-simulates the original one.

(A0, T0) , (A1, T1) , (A2, T2) , (A3, T3) , (A4, T4) , (A5, T5) , (A6, T6) , . . .

History

(A0, T0) , (A1, T1) , (A2, T2) , (A3, T3) , (A4, T4) , (A5, T5) , (A6, T6) , . . .

Salient Steps

(A0, T0) ,
................................................................................................
..............
..............
..............
.............
..............
.

(A1, T1) , (A2, T2) ,
................................................................................................
..............
..............
..............
.............
..............
.

(A3, T3) ,
................................................................................................
..............
..............
..............
.............
..............
.

(A4, T4) ,
................................................................................................
..............
..............
..............
.............
..............
.

(A5, T5) , (A6, T6) , . . .

History of a thinner formative process

Theorem 6. There exists a formative process ({ p̂( j)}p∈�)j≤� (with history
(Aμj , Tμj )j<�) for a transitive partition �̂ which L-simulates � .
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Then, in view of the results in Section 4, we can conclude

Theorem 7. Let ϕ be a satisfiableMLSSP conjunction with m variables. Then
ϕ is satisfiable by a transitive partition of rank at most⌈

25

24
m + 5

⌉
· 22m+m + 3

and size at most 2m − 1.

The above theorems are based on the following elementary combinatorial
property of formative processes.

Lemma 1. Let � be a finite transitive partition and let ({p(μ)}p∈�)μ≤ξ be a
formative process for � , with history (Aμ, Tμ)μ<ξ .

Let ρ ∈ N such that 2ρ−1 > ρ · |�|.
If for some μ < ξ and q ∈ Aμ we have |q(μ)| ≥ ρ and

P∗({p(μ) : p ∈ Aμ}) ⊆
⋃

� ,

then ∣∣∣∣∣∣
⋃
p∈Tμ

(p(μ+1) \ p(μ))
∣∣∣∣∣∣ > ρ · |�|,

and therefore there must exist an r ∈ Tμ such that |r (μ+1) \ r (μ)| ≥ ρ .

A quick and meaningful exposition of the above facts can be found in [8].

6. Conclusions and future work.

Decidability of MLSSP is NP-hard. Hence, there is no hope to find
a polynomial-time decision test for it. Nevertheless, it appears that its NP-
hardness is caused by very particular phenomena. It would therefore be very
convenient to be able to characterize, for any given formula ϕ , the collection of
compatible P-graphs , namely those P-graphs which are induced by models of
ϕ . Then select those P-graphs which are realizable by some formative process
and try to construct a model for ϕ using such P-graphs as oracles.

Having such approach in mind, it is rather clear why it is important

• to establish in an effective way whether a given P-pgraph is realizable by
a formative process (even in the presence of constraints);
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• to find the length of a shortest formative process which realizes a given
realizable constrained P-pgraph.

• to single out classes of constrained P-graphs which admit an effective
realizability test;

• to develop new techniques to describe formative processes through finite
skeletons.

It would also be important to develop new techniques for the realizability of
P-graphs endowed with specific constraints which could yield the decidability
of new extensions ofMLSS (e.g.,MLSS plus the cartesian product).
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