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MAXIMAL SUBGROUPS OF FINITE CLASSICAL

GROUPS AND THEIR GEOMETRY

ANTONIO COSSIDENTE

We survey some recent results on maximal subgroups of finite classical
groups.

1. Introduzione.

The seminal contribution to the classification of the maximal subgroups of
the finite classical groups was Aschbacher’s theorem [1]. Aschbacher defines
eight “geometric” classes C1, . . . , C8 of subgroups of the finite classical groups
and proves that a maximal subgroup either belongs to one of these classes or
has a non–abelian simple group as its generalized Fitting subgroup.

In their book, Kleidman and Liebeck [33] have identified the members of
the eight classes for modules with dimension greater than 12, and Kleidman
in his Ph.D. Thesis [32] completed the work for modules with dimension up to
12. However, their analysis relies heavily upon the classification of finite simple
groups. Various authors, too many to be quoted here, have used Aschbacher’s
theorem to elucidate much of the maximal subgroup structure on the finite
classical groups.

Li and his coworkers, obtained several results on maximal subgroups of
classical groups, allowing the ground field to be infinite. Mainly he adopted
an elementary but rather technical matrix approach, see for instance [35], [36],
[37], [38].
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At least seven of the eight Aschbacher’s classes can be described as
stabilizers of geometric configurations. Consequently, one might prefer a
direct approach to the classification of maximal subgroups, which is free of
the classification of finite simple groups, using the natural representations of
classical groups.

Certainly, this is the approach adopted by R.H. Dye, O.H. King and A.
Cossidente, elucidating in many cases howmaximal subgroups of finite classical
groups and geometry are closely related.

In this paper we survey some recent results on the determination of maxi-
mal subgroups of finite classical groups by making maximum use of the under-
lying geometry.

Our hope, one day, is to have in hands a complete geometric classification
of maximal subgroups of finite classical groups.

2. Notation.

Let V be a vector space of dimension n ≥ 2 over a field K with
general linear group GLn(K ) and special linear group SLn(K ). The centre
Z of GLn(K ) is the group consisting of scalar matrices and the quotient
group GLn(K )/Z is the projective general linear group PGLn(K ) whose
natural module is the projective space PG(n − 1, K ) associated with V .
For any subgroup G of GLn(K ) its image in PGLn(K ) under the canonical
epimorphism will be denoted by P(G).

In the sequel, Q will denote a quadratic form on V with associated
symmetric bilinear form given by

B(x , y) = Q(x + y)− Q(x )− Q(y).

A and C will denote alternating and hermitian forms on V , respectively (often
( , ) will denote anyone of the three forms on V × V ). A form on V is said
to be non–degenerate if {v ∈ V : (u, v) = 0, ∀u ∈ V } = {0}; we shall assume
our forms to be non–degenerate. We shall also assume that there exist non–zero
vectors v such that Q(v) = 0 or C(v, v) = 0. This is always the case if K
is a finite field and n ≥ 3 (for C , n ≥ 2 suffices) but for infinite fields this
restriction is necessary if V is to have a nice geometrical structure with respect
to the given form. The orthogonal group On(K ), the symplectic group Spn(K )
and the unitary groupUn(K ) consists of all isomorphisms of V preserving Q , A
and C respectively. The groups SOn(K ) and SUn(K ) are the special orthogonal
and special unitary groups, and �n(K ) is the commutator subgroup of On(K ).
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These groups together with GLn(K ), SLn(K ) and their projective counterparts,
represents the classical groups.

The groups PSLn(K ), PSpn(K ), PSUn(K ) and P�n(K ), apart from
some few cases, are simple groups.

Given a subspace U of V , the orthogonal complem ent U⊥ of U with
respect to ( , ) is given by

U⊥ = {v ∈ V : (u, v) = 0, ∀u ∈ V }.

U is said to be

– non–isotropic if the restriction of ( , ) to U is non–degenerate, i.e.,
U ∩U⊥ = {0};
– totally isotropic if (u, v) = 0 for all u, v ∈U , i.e., U ≤ U⊥ .

In the orthogonal case a vector v ∈ V is said to be singular if Q(v) = 0
and a subspace U of V is said to be totally singular if all its vectors are
singular; a totally singular subspace is necessarily totally isotropic. Indeed,
totally singular subspaces and totally isotropic subspaces only differ over fields
of even characteristic.

The totally singular subspaces form a geometry (polar geometry). They
are permuted by On(K ), Spn(K ) and Un(K ) and it is a consequence of Witt’s
Theorem that if we restrict their action to subspaces of a given dimension the
action is transitive.

3. Aschbacher’s Theorem.

The subgroup structure theorem for finite classical group is due to As-
chbacher [1]. In [1], eight collections Ci , (1 ≤ i ≤ 8), of natural subgroups of
a finite classical group G are described. A precise and concise definition of the
members in Ci is quite difficult to give in limited space (this can be found for
instance in [1] and [33]), so we content ourselves with a “rough” description:

• (C1): stabilizers of totally singular or non–singular subspaces;
• (C2): stabilizers of direct sum decompositions V = ⊕b

i=1 Vi , all Vi ’s
having constant dimension;

• (C3): stabilizers of extension fields of GF(q) of prime degree;
• (C4): stabilizers of tensor product decompositions V = V1 ⊗ V2;
• (C5): stabilizers of subfields of GF(q) of prime index;
• (C6): normalizers of extraspecial–type r–groups (r prime) in absolutely
irreducible representations;
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• (C7): stabilizers of decompositions V = ⊗b
i=1 Vi , all Vi ’s having constant

dimension;
• (C8): classical subgroups.

It is quite evident that groups in classes Ci , i = 1, 2, 4, 7, are stabilizers of
geometric configurations. However, it should be noted that some restriction is
in order on the nature of the subspaces when members in C1 are considered.

Indeed, assume G = On(K ) and U is a subspace of V . Then, the stabilizer
of U in G is also the stabilizer of U⊥ and of U ∩ U⊥ . Thus, the stabilizer of
U in G will only be maximal if U ∩U⊥ = {0}, or one of the two subspaces U
and U⊥ lies inside the other, i.e., either U is non–isotropic or one of U , U⊥ is
totally isotropic.

For groups in class C3 is assumed that V has the structure of vector
space over an extension field GF(qt) of GF(q) of prime degree t . Each 1–
dimensional GF(qt )–subspace of V corresponds to a t–dimensional GF(q)–
subspace of V . These t–dimensional GF(q)–subspaces form a so–called
spread of V (i.e., each non–zero vector lies in exactly one member of the spread,
and the spread is the geometric configuration stabilized.

Groups in class C5 are normalizers of classical groups acting on the n–
dimensional vector spaces VF over maximal subfields F = GF(q ′) of GF(q)
such that V = VF ⊗F GF(q).

It is now clear that in this case the geometric configuration stabilized is
a subgeometry: think for instance of a Baer subplane in a projective plane of
square order. However, we shall see in the sequel, that at least in the unitary case,
the more natural description of groups in class C5 is in terms of “commuting
polarities”.

There is no natural and “obvious” geometric configuration for groups in
class C6. However, very recently such groups have played a crucial role in the
theory of non–linear binary codes.

Groups in class C8 may be thought of as the stabilizers of the sets of
singular 1–dimensional subspaces (for instance orthogonal groups may be
thought of as stabilizing quadrics and unitary groups stabilizing Hermitian
varieties).

As an example, consider the group On(q), q even. In this case the bilinear
form B stabilized by On(q) is alternating as well and, as a consequence, On(q)
turns out to be a subgroup of the symplectic group Spn(q) and indeed a maximal
subgroup [17].
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4. Some methods.

One geometric method of proving results on the structure of a given
classical group is based on generating sets for that group. When we talk about
generators we mean transvections, semi–transvections, symmetries or quasi–
symmetries.

In Spn(q), a transvection centered on a non–zero vector is given by

v 
→ v + λA(x , v)x ,

for some λ ∈GF(q) \ {0}.
In Un(q2), a transvection centered on a non–zero singular vector is given by

v 
→ v + λC(x , v)x ,

for some λ ∈GF(q2) \ {0} such that λq = −λ. Such maps lie in SUn(q2).

In On(q), a symmetry or −1-quasi symmetry centered on a non–zero singular
vector y is given by

v 
→ v − [B(y, v)/Q(y)]y.

In Un(q), if λ ∈ GF(q2) \ {1} such that λλq = 1, then the λ-quasi symmetry
centered on a non–singular vector y is given by

v 
→ v + (λ − 1)[C(y, v)/C(y, y)]y.

Let H be one of the groups On(q) and Un(q2). Let x be a non–zero singular
vector in V , let w ∈ 〈x〉⊥ and let ρx,w be the isomorphism of 〈x〉⊥ defined by

v 
→ v + (w, v)x .

We call elements of H that extend ρx,w (they exist by Witt’s theorem) semi-
transvections centered on x .

There are several theorems in literature specifying sets of such generators
which generate a given finite classical group or at least an interesting subgroup.
See, for instance, [15], [16] and [47].

As an easy example of the general method, let us consider the case of
H = Spn(q). Let U be a r–dimensional subspace of V . Let G =StabH (U ).
Assume that U is not a maximal totally isotropic subspace. It is straightforward
to show that G has three orbits of non–zero vectors in V . The orbits consist of
all non–zero vectors in U , all non–zero vectors in U⊥ and all non–zero vectors



178 ANTONIO COSSIDENTE

in V \U ∪U⊥ . Also it can be proved that any larger subgroup F of G must be
transitive on non–zero vectors of V .

It is evident from the definition that if t is a transvection centered on a
vector of U , then t stabilizes U . Let t be any transvection in H , centered on x
say, and let α ∈U . Then, there exists f ∈ F such that f (x ) = α, i.e., f (x )∈U .
Now, f t f −1 is again a transvection centered on f (x ), so it stabilizes U . Thus
f t f −1 ∈ G < F , and so t ∈ F . Therefore, every transvection in H lies in F .
It is known that H is generated by its transvections, [15], [16]. Hence F = H
and G is maximal in H .

Another very useful method in establishing maximality theorems is by
induction, for instance, on the dimension of V . In this cases, sometimes, some
results on small finite classical groups are involved: for instance, one can reduce
to a subgroup of PSL2(q), PSL3(q) or PSp4(q), whose “geometric” subgroup
structure is very well known, see [41], [14], [39], [40], [26].

In many other instances, generating sets or induction do not suffice and
special geometric settings and techniques are needed.

Now, ourmain purpose is to illustrate the “ state of the art ” of the geometric
classification of maximal subgroups of finite classical groups. We shall try to
report, for each Aschbacher’s class, what has been already done and what we
need to do yet.

5. The classes Ci , i = 1, 2, 4, 7, 8.

For these classes there is very little to say. The maximality of subgroups
in the classes C1, C2 and C8 has been completely addressed by R.H. Dye and
O.H. King. On the other hand, very little has been done for the classes C4 and
C7, apart from a couple of papers by Li.

6. The class C3: the class of spreads.

Let GF(qt ) be an extension of the finite field GF(q) of degree t > 1,
where t |n. Then V acquires the structure of a GF(qt)–vector space: there is a
GF(q)–vector space isomorphism between V and an m–dimensional vector
space over GF(qt), say W , where m = n/t , and so GF(qt ) acts on V
via this isomorphism. This way, GF(qt ) embeds in EndGF (q)(V ). Hence,
in the simplest case when W is equipped with the zero–form, we obtain the
embedding:

GLm(q
t ) ≤ GLn(q).
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Typically, the normalizer of GLm(qt ) inside GLn(q) turns out to be maximal in
GLn(q). This general case has been investigated by R.H. Dye in [24].

The focus now is the symplectic group Sp2n(q). In this case Aschbacher
lists two subclasses: normalizers of Sp2m(qt ) where n = mt and t is prime; and
normalizers of Un(q2). The first subclass was considered by R.H. Dye in [18],
[19], [20], [21], [22], [23], where he proves the maximality in purely geometric
terms. Our object is to do the same for the second subcase when q is odd.

Let L = GF(q2) and K = GF(q), q odd. Let ω be an element of L such
that ωq = −ω. Then 1 and ω form a basis for L over K , and if θ ∈ L , then
θ = α + βω, with α, β ∈GF(q). Let {e1, . . . , en} be a basis of Ln as a vector
space over L .

Define a bijective map 	 from Ln to K 2n by the rule

(θ1, . . . , θn) 
→ (α1, β1, . . . , αn, βn),

where θi = αi + βiω, for each i = 1, . . . , n. We denote a vector of K 2n by
z̄ with the corresponding vector in Ln represented by z. The vectors of the 1–
subspace 〈z〉 of Ln are K –linear combinations of the vectors z and ωz which
correspond in K 2n to the vectors of a 2–dimensional subspace we call kz . Since
	 is a bijection, each non–zero vector in K 2n lies in exactly one kz . Passing to
the projective space PG(2n − 1, q) whose underlying vector space is K 2n , the
subspace kz gives a line sz in PG(2n − 1, q), and the set of all such lines gives
a spread of lines (regular spread [27]) of PG(2n − 1, q).

Let H be a non–degenerate Hermitian form on Ln with isometry group
Un(q2). We can take {e1, . . . , en} to be an orthogonal basis for Ln with respect
to H . Starting from H we can define a non–degenerate alternating form A on
K 2n by

A(x̄ , ȳ) = Tr(ωH (x , y)) = ωH (x , y)+ ωqH (x , y)q,

for any x̄, ȳ ∈ K 2n. In this setting isotropic 1–dimensional subspaces of Ln cor-
respond to totally isotropic 2–dimensional subspaces of K 2n , and non–isotropic
1–dimensional subspaces of Ln correspond to non–isotropic 2–dimensional
subspaces of K 2n . Any linear map on Ln preserving H gives rise to a linear
map on K 2n preserving A.

We obtain an embedding

ι : Un(q
2) → Sp2n(q).

Let
Kn = {kz : z �= 0, H (z) = 0}; Ln = {kz : H (z) �= 0},
K̄n = {sz : z �= 0, H (z) = 0}; L̄n = {sz : H (z) �= 0}.
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We have k = |Kn | = (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1) and so l = |Ln | =
(q2n − 1)/(q2 − 1)− k. Of course l > k.

From our previous discussion, it follows that K̄n ∪ L̄n is a line–spread S
of PG(2n− 1, q).

Let σ : L → L be the Frobenius automorphism of L: θ 
→ θ q , for
each θ in L . Then σ gives rise to a semi–linear map: θi ei 
→ θ

q
i ei on L

n which
corresponds to a linear map on K 2n . It turns out that A(σ (x̄ ), σ (ȳ)) = −A(x̄ , ȳ)
and so σ multiplies A by −1. Hence σ is an element of GSp2n(q). If
τ ∈GUn(q2) is such that τ (ei ) = λei , i = 1, . . .n, where λ ∈ L and λq+1 = −1,
then it is easy to see that τ multiplies H by −1 and corresponds to an element
of GSp2n(q) again multiplying A by −1. Thus τσ ∈ Sp2n(q); it has order 4
since its square is −I2n , where I denotes the identity matrix.

We denote by G the group ι(〈Un(q2), τσ 〉) and often write G = Un(q2) ·2.
From our previous discussion it follows that G is contained in the stabilizer in
Sp2n(q) of Kn ∪ Ln . Since the subspaces in Kn are isotropic while those in
Ln are non–isotropic it follows that G stabilizes each of Kn and Ln . We shall
prove that G is maximal in Sp2n(q) fromwhich it follows that G is the stabilizer
of Kn ∪ Ln , and indeed the stabilizer of Kn . Moreover G contains the centre
of Sp2n(q) so an immediate consequence is the maximality of the image P(G)
of G in PSp2n(q).

We observe that Un(q2) acts transitively on the 1–dimensional non–
isotropic subspaces of Ln and transitively on the non–zero singular vectors of
Ln [15], [16]. Hence G acts transitively on Ln and transitively on the non–zero
vectors lying in members ofKn . The stabilizer in Un(q2) of a non–isotropic 1–
dimensional subspace 〈x〉 of Ln is isomorphic to U1(q2) ×Un−1(q2) acting on
〈x〉⊕〈x〉⊥. Thus the stabilizer in G of kx is isomorphic to (U1(q2)×Un−1(q2))·2
and fixes the set Kn−1 ∪ Ln−1 where Kn−1 (respectively Ln−1) corresponds to
the set of elements of Kn (respectively Ln ) contained in k⊥

x .

In [7], Cossidente and King proved the following theorem.

Theorem 6.1. Assume n ≥ 3 and q odd. Then the group G = Un(q2) · 2 is
a maximal subgroup of Sp2n(q). If n = 2 and q is odd then U2(q2) · 2 is a
maximal subgroup of Sp4(q) except for q = 3. In the excepted case there is a
single group X ∼= 2 · 24 · A5 , such that G < X < Sp4(q).

The group Sp2n(q) is transitive on the set of all isotropic 2–dimensional
subspaces of K 2n so cannot stabilizeKn ∪Ln orKn . It will be clear that in the
excepted case, X does not stabilize K2 ∪ L2 or K2 either. Thus we have the
following theorem.

Theorem 6.2. The stabilizer of K̄n ∪ L̄n in Sp2n(q) is the stabilizer of K̄n , is
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isomorphic to Un(q2) · 2 and is a maximal subgroup of Sp2n(q) except when
n = 2 and q = 3.

As we have already observed, G contains the centre of Sp2n(q). Thus we
have the further theorem.

Theorem 6.3. The stabilizer of the line spread K̄n ∪ L̄n of PG(2n − 1, q) in
PSp2n(q) is the stabilizer of the partial spread K̄n and is a maximal subgroup
of PSp2n(q) except when n = 2 and q = 3.

The case n = 2 of Theorem 6. was proved in [40], see [7] for another
proof. The case n ≥ 3 is based on the following reduction argument.

Lemma 6.4. Suppose that G = Un(q2) · 2 ≤ F < Sp2n(q). Then there
is a non–isotropic 2–dimensional subspace kx of Ln such that if F1 and F2
are the projections of StabF (kx ) acting on kx and k⊥

x respectively, then either
U1(q2) · 2 < F1 or Un−1(q2) · 2 < F2 (or both).

Assume n ≥ 3 and q �= 3. Here is a sketch of the proof of Theorem 6.1.
Assume as an inductive argument that Un−1(q2) · 2 is a maximal subgroup

of Sp2n−2(q). Note also that U1(q2) · 2 is a maximal subgroup of Sp2(q). By
Lemma 6.4, if G < F ≤ Sp2n(q) then there is a non–isotropic 2–dimensional
subspace kx ∈ Ln such that if F1 and F2 are the projections of StabF (kx ) acting
on kx and k⊥

x , respectively, then eitherU1(q
2) · 2 < F1 or Un−1(q2) · 2 < F2 (or

both). It follows that either F1 = Sp2(q) or F2 = Sp2n−2(q).
Suppose that F2 = Un−1(q2) · 2. Then F1 = Sp2(q) and the subgroup

{ f1 ∈ F1 : ( f1, f2) ∈ F , for some f2 ∈ Un−1(q2)} forms a subgroup of F1 of
index at most two, but Sp2(q) has no subgroup of index two. Furthermore
1 × Un−1(q2) ≤ G and so Sp2(q) × 1 ≤ F . There exists g ∈ G such that
g(kx ) = ku ⊆ k⊥

x . Expressing V as kx ⊕ (k⊥
x ∩ k⊥

u )⊕ ku , we see that F contains
Sp2(q)×1×1 and g(Sp2(q)×1×1)g−1 = (1×1× Sp2(q)). The last subgroup
is contained in StabF (kx ) but not in Sp2(q)× (Un−1(q2) · 2). We conclude that
F2 cannot be just Un−1(q2) · 2 and therefore F2 = Sp2n−2(q).

The subgroup { f2 ∈ F2 : (1, f2) ∈ F} of F2 is a normal subgroup of
index at most |Sp2(q)|, but PSp2n−2(q) is simple and the centre of Sp2n−2(q)
has order 2 so 1 × F2 ≤ F . Utilizing u and g as above, F contains
g(1 × Sp2n−2(q))g−1 = Sp2n−2(q) × 1 (where the first expression is acting
on kx ⊕ k⊥

x and the second on k
⊥
u ⊕ ku ). In particular F contains Sp2(q)× 1× 1

so contains Sp2(q) × Sp2n−2(q), the stabilizer of kx in Sp2n(q). This stabilizer
is maximal in Sp2n(q), [31, Section 3] but does not contain Sp2n−2(q) × 1 so
F = Sp2n(q). Hence G is maximal in Sp2n(q). Ad hoc arguments for q = 3
complete the proof of Theorem 6.1. �
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Now, we pass to investigate another C3–embedding: On(q2) ≤ O2n(q),
q odd. In this case the group G = On(q2) · 2 is maximal in either the
orthogonal group O2n(q) or the special orthogonal group SO2n(q). With the
same geometric setting as in the symplectic case, the group G corresponds to
the stabilizer of a line–spread S of the projective space PG(2n− 1, q) in which
some lines lie on a quadric Q, some are secant to the quadric and others are
external to the quadric.

Notice that, the study of On(q2).2 as a subgroup of O2n(q) makes sense
when q is even, and a similar approach could work, but there are several
significant geometric differences.

Let Q be a non–degenerate quadratic form on Ln with associated non–
degenerate symmetric bilinear form B and isometry group On(q2). We can take
{e1, e2, . . . , en} to be an orthogonal basis for Ln with respect to B . Moreover
we can choose it so that Q(ei ) = ξ for each i < n and Q(en) = 1 or ξ . Starting
from Q we can define a non–degenerate quadratic form Q̄ on K 2n by

Q̄(x̄) = Tr(Q(x )) = Q(x )+ Q(x )q,

for any x̄ ∈ K 2n . In this setting isotropic 1–dimensional subspaces of Ln corre-
spond to totally isotropic 2–dimensional subspaces of K 2n , and non–isotropic
1–dimensional subspaces of Ln correspond to non–isotropic 2–dimensional
subspaces of K 2n . Any linear map on Ln preserving Q gives rise to a linear
map on K 2n preserving Q̄ . We obtain an embedding On(q2) ≤ O2n(q).

Given a subspace Uz of K 2n with z non-isotropic we see that Q is either
square or non-square in GF(q2) on the non-zero vectors. It follows that we can
choose z so that Q(z) = 1 or ξ . We say that Q(z) is the type of Uz and also
of both the corresponding line l ∈ S and the 1-dimensional subspace 〈z〉 of Ln .
Thus 〈ei〉 has type ξ for each i ≤ n − 1. We say that Q(en) is the type of Q .
We write S1 for the lines in S of type 1 and Sξ for the lines in S of type ξ . For
completeness we write S0 for the lines in S corresponding to isotropic vectors
in Ln . Thus S = S0 ∪ S1 ∪ Sξ with each of the three subsets non-empty when
n ≥ 3.

Consider the Frobenius automorphism of L: θ 
→ θ q , for each θ in L .
There is a semi–linear involutory map ρ on Ln given by θi ei 
→ θ

q
i ei (if

Q(ei ) = 1) and θi ei 
→ θ
q
i εei (if Q(ei ) = ξ ) which corresponds to a linear

map on K 2n . It can be seen that Q(ρ(x )) = Q(x )q and Q̄(ρ(x̄ )) = Q̄(x̄ ), and
clearly ρ preserves S. Thus O2n(q) has a subgroup 〈On(q2), ρ〉 with structure
On(q2).2 preserving S.

We denote by H2, H1 and H0 the groups O2n(q), SO2n(q) and �2n(q)
respectively, by G2 the subgroup On(q2).2 of H2, and by G1, and G0 the
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subgroups G2 ∩ H1 and G2 ∩ H0 respectively. From our previous discussion it
follows that G2 is contained in the stabilizer in H2 of S. Since the subspaces in
S0 are totally isotropic while those in S1 and Sξ are non–isotropic of different
types, it follows that G2 stabilizes each of S0, S1 and Sξ . We shall prove that G0

is maximal in H0 from which it follows that G0 is the stabilizer of S, and indeed
the stabilizer of S0. Similarly G1 is maximal in H1 and G2 is maximal in H2 or
H1. In fact it can be proved that G2 is contained in H1 precisely when Q has
type ξ . Moreover G2 contains the centre of H2 so an immediate consequence
is the maximality of the image of G2 in PO2n(q) or PSO2n(q).

There are two conjugacy classes of symmetries, C1 and Cξ , the first
corresponding to Q(x ) square and the other to Q(x ) non-square. We denote
by RξOn(q2) the subgroup of On(q2) generated by Cξ . Note that SOn(q2)
has index 2 in On(q2) and since �n(q2) is generated by pairs of conjugate
symmetries it follows that �n(q2) has index 2 in SOn(q2). It turns out that
�n(q2) has index 2 in RξOn(q2) and RξOn(q2) has index 2 in On(q2) but
RξOn(q2) is distinct from SOn(q2). It turns out that RξOn(q2) is a subgroup
of H0 so lies inside G0 but that symmetries in C1 lie in H1 \ H0. The group
On(q2).2 lies in H1 if Q has type ξ but not if Q has type 1. It now follows that
if Q has type 1, then G1 = On(q2) and G0 = RξOn(q2), while if Q has type
ξ , then G1 = G2 and G0 = RξOn(q2).2 (not a subgroup of On(q2)).

In [10], Cossidente and King proved the following theorem.

Theorem 6.5. If n ≥ 3, then G0 is maximal in H0 and G1 is maximal in H1.
Moreover, if Q has type 1, then G2 is maximal in H2. If Q has type ξ , then
G2 ≤ SO2n(q). The groups G0, G1 and G2 are the stabilizers of S in H0, H1
and H2.

The centre of H2 consists of the matrices ±I2n , both of which lie in G1.
Hence, by the standard isomorphism theorem for subgroups of quotient groups,
we can deduce the following from the main theorem:

Theorem 6.6. If n ≥ 3, then the stabilizer of the line spread S of PG(2n−1, q)
in PSO2n(q) is the stabilizer of the partial spread S0 and is a maximal subgroup
of PSO2n(q). If Q has type 1, then the stabilizer of S in PO2n(q) is the
stabilizer of S0 and is a maximal subgroup of PO2n(q). If Q has type ξ , then
the stabilizer lies in PSO2n(q).

The proof of Theorem 6.5 is again by induction on the vector space
dimension n, with n = 3 as an initial step. We omit the details.

Remark 6.7. If n = 3 or 4, there are connections between the partial spread S0
and certain combinatorial configurations in PG(2n − 1, q).
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When n = 3 and Q̄ is elliptic, the lines of the partial spread S0 of Q−(5, q)
is a so–called BLT-set (see [45]), that is, a set of q2+1 mutually disjoint lines of
Q−(5, q) with the property that every line of Q−(5, q), which is not a member
of S0 meets non–trivially exactly two or none of the lines in S0. The partial
spread S0 is the only known example of BLT–set of Q−(5, q).

A 1–system M of Q−(7, q) is a set of q4 + 1 lines �0, �1, . . . , �q4 of
Q−(7, q) such that every plane of Q−(7, q) containing a line �i ∈ M has an
empty intersection with (�0, �1, . . . , �q4 ) \ �i , see [44] for more details. There
is just one 1–system of Q−(7, q) known, both for q even and for q odd. This
is the classical 1–system, which arises from the so–called trace trick applied to
Q−(3, q2) considered as an ovoid of itself.

Other C3–embeddings remain to be investigated such as unitary embed-
dings and certain special orthogonal embeddings: this is work in progress!

7. The class C5.

We recall that for a classical group G acting on an n–dimensional vector
space V over a field F , the class C5 is the collection of normalizers of the
classical groups acting on the n–dimensional vector spaces VK over maximal
subfields K of F such that V = F ⊗K VK .

Apart form the work of Kleidman and Liebeck, very little has been done
for subgroups belonging to this class. As far as we know there are just three
papers by Li [35], [36], [37] and Li and Zha [38] devoted to this case.

When the ground field is finite and G is a unitary group then there seems
to be a close connection between subgroups in the class C5 and the geometry of
commuting polarities as it has been introduced by Segre [42].

Here, we start with certain symplectic subgroups belonging to the class C5
of the unitary group PSUn(K ), n ≥ 4 even, where K now is any field admitting
a non-trivial involutory automorphism. When the ground field is finite, the same
result has also been obtained by Li and Zha in [38] using suitable subgroups of
unitary transvections.

7.1. Symplectic subgroups of unitary groups.

Let K be a commutative field admitting a non-trivial involutory automor-
phism λ 
→ λ̄, with K0 the fixed subfield.

Suppose that V is an n–dimensional vector space over K0 and A is a non–
degenerate alternating bilinear form on V . Let ω be an element of K \K0. Then
K = K0⊕K0ω and there is a vector space W = V ⊗K0 K = {(α+βω)v|α, β ∈
K0, v ∈ V }. Any vector w ∈ W can be written as w = ∑

vi ⊗ (ai + biω) =
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(vi ⊗ 1)ai + ∑

(vi ⊗ ω)bi = (
∑

vi ai ) ⊗ 1 + (
∑

vi bi) ⊗ w = w1 + w2ω.
[Also if ω2 = γω + δ , then (α + βω)(w1 + w2ω) = (αw1 + βδw2) + (βw1 +
βγw2 + αw2)ω]. There is a natural extension of A to an anti-hermitian form C
on W given by:

C(w1+w2ω, v1+v2ω) = A(w1, v1)+ωω̄A(w2, v2)+ωA(w2 , v1)+ω̄A(w1, v2).

If charK = 2, then C is already an hermitian form. In all cases there exists
a τ ∈ K such that τ̄ = −τ (as follows from Hilbert’s Theorem 90) and τC is
a hermitian form with the same group as C . We write H for τC , Un(K ) for
the unitary group of H , Spn(K0) for the symplectic group of A. We obtain the
embedding Spn(K0) ≤ SUn(K ). Note that H does not depend on the choice of
ω. Factoring out scalars, we get the embedding PSpn(K0) ≤ PSUn(K ).

Let x = w1 + w2ω ∈ W . Then, with respect to H , x is isotropic if and
only if C(x , x ) = 0, i.e., if and only if ωA(w2, w1) + ω̄A(w1, w2) = 0, i.e., if
and only if ωA(w2, w1) = ω̄A(w2, w1), i.e., if and only if A(w1, w2) = 0. In
particular every vector in V is isotropicwith respect to H . Suppose that 0 �= v ∈
V and that t is a unitary transvection centred on v. Then t : x 
→ x+λH (x , v)v
for some λ ∈ K such that λ̄ = −λ. If x ∈ V , then t(x ) = x + λτ A(x , v)v with
λτ ∈ K0, so t fixes V globally and the restriction of t to V is a symplectic
transvection, i.e., t ∈ Spn(K0).

Let H be the Hermitian variety of PG(n − 1, K ) associated with H . Let
� be the set of points of the PG(n − 1, K0) corresponding to V , considered
as a subset of H inside PG(n − 1, K ). We can regard Spn(K0) and SUn(K )
as acting on PG(n − 1, K ). Then Spn(K0) fixes H globally and has � as one
orbit. Suppose that x and y are isotropic vectors in W corresponding to points
of H \ � . Then x = w1 + w2ω, y = v1 + v2ω, for some linearly independent
w1, w2 ∈ V and some linearly independent v1, v2 ∈ V and by Witt’s Theorem
there is an element of Spn(K0) taking wi to vi for each i , i.e., taking x to y .
Hence Spn(K0) has exactly two orbits on H.

Let Gn denote the stabilizer of � in SUn(K ) and let F be a subgroup
of SUn(K ) such that Gn < F . Then F has a single orbit of points on H.
If t is any unitary transvection in SUn(K ), centred on y say, then there exists
f ∈ F such that f (y) ∈ V and f t f −1 is a transvection centred on f (y). Thus
f t f −1 ∈ Spn(K0) and t ∈ F . It is well known that SUn(K ), n ≥ 4, is generated
by its transvections [15], [16] and so F = SUn(K ), and Gn is maximal in
SUn(K ). By the standard theorem for subgroups of quotients groups, the
stabilizer P(Gn) of � in PSUn(K ) is maximal in PSUn(K ).

It is of some interest to know the structure of Gn . Suppose that g ∈ Gn

and that v1, . . . , vm, vm+1, . . . , vn (with n = 2m) is a symplectic basis for V
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with respect to A (i.e., A(vi , vm+ j) = δi j ). Then A(g(vi ), g(vm+ j )) = 0 if
and only if i �= j and by Witt’s Theorem there exists h1 ∈ Spn(K0) such that
h1g(vi ) = λivi for some λi ∈ K (1 ≤ i ≤ n). As h1g fixes � , it follows
that for all i > 1, λi = βiλ1 for some βi ∈ K0. Hence h1g = λ1 Inh2, where
h2 ∈GLn(K0) and fixes � , i.e., h2 ∈GSpn(K0) (the general symplectic group,
consisting of elements of GLn(K0) that preserve A up to a scalar). It is now
clear that g can be expressed as the product of a scalar matrix and an element
of GSpn(K0). Indeed all such products stabilize � . Hence Gn consists of all
such products lying in SUn(K ). The image P(Gn) of Gn in PGLn(K ) is then
simply PGSpn(K0) ∩ PSUn(K ).

We have the following theorem, see [5].

Theorem 7.1. Gn is a maximal subgroup of SUn(K ) containing Spn(K0) and
Gn = (GSpn(K0).GK ) ∩ SUn(K ) where GK is the group of scalar matrices in
GLn(K ). The stabilizer P(Gn) of � in PSUn(K ) is a maximal subgroup of
PSUn(K ) containing PSpn(K0) and P(Gn) = PGSpn(K0) ∩ PSUn(K ).

7.2. Commuting polarities.

When the ground field K is finite, a natural approach in proving the
maximality of P(Gn) in PSUn(q2) seems to be Segre’s theory on commuting
polarities as described in his celebrated paper [42]. Here, we briefly discuss this
theory.

In PG(n− 1, q2) a non–singularHermitian variety is defined to be the set
of all absolute points of a non–degenerate unitary polarity, and is denoted by
H(n − 1, q2).

For an Hermitian varietyH = H(n − 1, q2) we have that ([42])

1. the number of points is [qn + (−1)n−1][qn−1 − (−1)n−1]/(q2 − 1).
2. the number of generators (maximal totally singular subspaces) is (q3 +

1)(q5 + 1) . . . (q2m+1 + 1), if n = 2m + 1, and (q + 1)(q3 + 1) . . . (q2m+1 + 1),
if n = 2m + 2.

Let A be a symplectic polarity commuting with the Hermitian polarity
U associated with H(n − 1, q2). Set V = AU = UA. Then V is a non–
linear collineation and V, A and U together with the identity map form a four–
group. From [42] pg. 132, the points and lines fixed by V form a configuration
W on H(n − 1, q2). As B. Segre pointed out [42], p. 128, 132, V fixes
(qn+1−1)/(q−1) points onH(n−1, q2) but no point outsideH(n−1, q2), and
leaves ((qn − 1)(qn/2 − 1))/((q − 1)(q2 − 1) lines ofH(n − 1, q2) invariant so
that each fixed point is incident with (qn/2 − 1)/(q − 1) invariant lines and each
invariant line is incident with q + 1 fixed points. This symmetric configuration
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extends to a (n − 1)-dimensional projective space � ∼= PG(n − 1, q). In this
context, � is naturally equipped with the symplectic polarityA whose absolute
lines are the lines of the above symmetric configuration. If H(n − 1, q2) has
canonical equation

∑n−1
i=0 X

q+1
i = 0, then � can be described as the subset

of points of H(n − 1, q2) whose coordinates are of the form x2i−1 = ρxq2i ,
i = 0, 1, . . . , (n − 2)/2, where ρ ∈ GF(q2) such that ρq+1 = −1. Finally,
since A and U commute, a V–fixed point P on H(n − 1, q2) admits the same
conjugate hyperplane P⊥ with respect to bothA and U.

The stabilizer of � in PSUn(q2) turns out to be PSpn(q) · ((2, q − 1)(q +
1, n/2))/((q + 1, n)).

Now, we study some geometry of the embedding P(G4) ≤ PSU4(q2).
This gives us information on possible intersection sizes of two symplectic
groups PSp4(q) inside the unitary group PSU4(q2) . Notice that, if n = 4,
there are q2(q3 + 1) symplectic subgeometries embedded in H(3, q2) [42].

The next lemma allows us to have information on possible intersection
sizes of two copies of PSp4(q) inside PSU4(q2).

Lemma 7.2. Two symplectic subgeometries in H(3, q2) meet in 0, q + 1 or
2(q + 1) points. In the case of q + 1 points, the points lie on a totally isotropic
line. In the case of 2(q + 1) points, the points lie on a hyperbolic pair. If q = 2,
no two disjoint symplectic subgeometries exist.

We have the following theorem.

Theorem 7.3. Let P(G4), P(G4)′ be the stabilizers in PSU4(q2) of two sym-
plectic geometries embedded in H(3, q2). Set K = P(G4) ∩ P(G4)′ . Then one
of the following cases occur. K is either the stabilizer of an elliptic congruence
or, the stabilizer of a totally isotropic line or, the stabilizer of an hyperbolic pair.
In all cases K is a maximal subgroup of P(G4).

7.3. Orthogonal subgroups of unitary groups.

Here we discuss the maximality of certain orthogonal subgroups of the
finite unitary group PSUn(q2) for n ≥ 3. Our main result is expressed again in
terms of, and our approach to the proof depends on, the geometry of commuting
polarities in projective spaces, described in [42].

In [9] Cossidente and King proved the following theorem.

Theorem 7.4. Suppose that n ≥ 3 and that q is odd. If U a non–degenerate
unitary polarity on PG(n−1, q2) and ifB is an orthogonal polarity commuting
with U, then the set of absolute points of U fixed by the non-linear collineation
V = UB forms a non-degenerate quadric in a subgeometry PG(n−1, q). The



188 ANTONIO COSSIDENTE

stabilizer of the quadric in PSUn(q2) is maximal except when n = 3 and q = 3
or 5 and when n = 4, q = 3 and the quadric is hyperbolic.

The approach here is essentially an induction argument in which a reduc-
tion to lower dimension is achieved via “hyperbolic rotations”. These are ele-
ments of order q − 1 that “rotate” most of the points on a hyperbolic line and
leave fixed two points of the line and the points on its orthogonal complement.

We assume that q is a power of an odd prime p and that n ≥ 3. It is perhaps
appropriate to comment that over even order fields, the orthogonal groups have
symplectic groups as overgroups and so cannot be maximal.

Here below is the geometric setting. Let us adopt the notation of the above
subsection.

Let B be an orthogonal polarity commuting with the unitary polarity U
associated with H. Set V = BU = UB. Then V is a non–linear collineation
and from [42], the fixed points of V on H form a non–degenerate quadric Q.
Moreover, the complete set of points of � fixed by V forms a subgeometry �0

isomorphic to PG(n−1, q) such that Q = �0∩H. Notice that the points of �
fixed under V are those admitting the same tangent or polar space with respect
to both the unitary polarity and the orthogonal polarity.

Remark 7.5. In the geometric setting of quadrics commuting with a Hermitian
surface of PG(3, q2), q odd, a class of hemisystems on the Hermitian surface
H(3, q2) admitting the group P�−

4 (q) has been constructed in [12].

In a very recent paper jointly with A. Siciliano [13] we proved the follow-
ing theorem which is based on the classification of irreducuble classical groups
generated by elations due to A. Wagner [49].

Let V be an n-dimensional vector space, n > 2, over the finite field GF(q),
q = ph , p prime. Let GF(q0) be the subfield of index r in GF(q), that is,
q0 = q1/r , r ≥ 2 prime. Let V0 be the GF(q0)-span of a GF(q)-basis β of V .

Theorem 7.6. Let G(q) be one of the groups SLn(q), SUn(q), Spn(q). Let F be
the form stabilized by G(q). Let �0 be the lattice of totally isotropic subspaces
with respect to the restriction F|V0 of F to V0 and let G0 denote the stabilizers
of �0 in G(q). If q0 > 2, then G0 is maximal in G(q).

Another C5–embedding remains to be investigated, namely, orthogonal
subgroups of orthogonal groups: this is work in progress!
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8. The class C6: any hope?

There is very little to say about this class. What we can observe is that
there seems to be a close connection between extraspecial 2–groups and certain
non–linear binary codes.

9. The class C9: the Steinberg’s geometry.

Let G be a finite classical group with natural module V0 of dimension

n ≥ 2 over the Galois field GF(qt ). Let V ψ i

0 denote the G–module V0 with
group action given by v · g = vgψ i

, where gψ i
denotes the matrix g with its

entries raised to the qi–th power, i = 0, . . . , t−1. Then one can form the tensor
product module V0⊗V ψ

0 ⊗. . .⊗V ψ t−1
0 , a module which can be realized over the

field GF(q). This gives rise to an embedding of the group G in a classical group
having an nt–dimensional natural module over GF(q), yielding an absolutely
irreducible representation of the group G . Also let V ∗

0 denote the G–module
with group action given by v · g = vg∗ , where g∗ is the inverse–transpose of g.
For t even, there is a similar module given by V0 ⊗ V ∗ψ

0 ⊗ V ψ2

0 ⊗ . . . ⊗ V ∗ψ t−1
0 ,

realizable over GF(q2). Such representations are given by Steinberg ([46])
and further studied by Seitz ([43]). As Seitz observed, the normalizers of such
“twisted tensor product groups” might easily be considered a ninth Aschbacher
class [1].

As we have seen, the geometry of maximal subgroups in the Aschbacher
classes is well understood (with the possible exception of the class C6). Our
main purpose is to describe the geometry of subgroups lying outside the As-
chbacher classes, little being known at present.

In the first part we concentrate on classical groups of low dimension,
namely with t = 2 and n = 3, and study the embeddings PGL(3, q2) in
PGL(9, q), PGL(3, q2) in PU (9, q2) and �(3, q2) in �(9, q); in the last
case q is odd. We identify the normalizers of the embedded groups as (in
most cases) maximal subgroups and stabilizers of geometrical configurations:
hermitian veroneseans, twisted hermitian veroneseans and rational curves.

In the second part we study the geometry of two other classes of twisted
tensor product groups: PSL2(qt ) ≤ P�+

2t (q); and PSp2m(q
t ) ≤ P�ε

(2m)t (q).
Throughout this second part we shall assume that q is even and that t ≥ 2. We
will see that the last embeddings are closely related to partial ovoids of quadrics.

An ovoid O in a classical polar space [28,Chapter 26] is a set of singular
points such that every maximal totally singular subspace contains just one point
of O. The points of O are pairwise non-orthogonal. More generally a partial
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ovoid is a set of pairwise non-orthogonal singular points. A partial ovoid is said
to be complete if it is maximal with respect to set–theoretic inclusion.

The possibility of the existence of ovoids in polar spaces of various
dimensions has been studied extensively, for both odd and even q (although
the results referred to here are solely for even q ). On the one hand there are
known to be ovoids in PG(7, q), both infinite families such as the unitary ovoids
and the Desarguesian ovoids and individual ovoids such as Dye’s ovoid, and
although the 2-transitive ovoids have been classified by Kleidman in [34], there
is no general classification of ovoids. On the other hand J.A. Thas [48] has
shown that quadrics in PG(2n, q) and elliptic quadrics in PG(2n + 1, q) have
no ovoids if n ≥ 4 and Kantor [29], [30], has shown that hyperbolic quadrics
in PG(2n + 1, 2) have no ovoids if n ≥ 4. Further, Blokhuis and Moorhouse
([2]) established an upper bound for the size of a partial ovoid of a polar space,
a consequence of which is the non-existence of ovoids of hyperbolic quadrics
in PG(2n + 1, q) if n ≥ 4. There are known to be examples of partial ovoids
on quadrics in PG(4n+3, 8) whose size meets the Blokhuis-Moorhouse bound
([25]) for all values of n; also in [25] there are examples of complete partial
ovoids on quadrics in PG(4n+1, 8) whose size falls just short of the Blokhuis-
Moorhouse bound.

We find that our embedding of PSL(2, qt) is associated with an embedding
of PG(1, qt) as a partial ovoid of a quadric in PG(2t − 1, q); if t ≥ 3, then the
quadric is hyperbolic. In PG(2t − 1, q) with q even, the Blokhuis–Moorhouse
bound is given by qt + 1. We thus have a family of partial ovoids whose size
attains the Blokhuis–Moorhouse bound. In particular when t = 3 and q ≥ 4 the
embedding yields a nice description of a Desarguesian ovoid of the hyperbolic
quadric of PG(7, q) ([29], [30]) as the image of a projective line in much
the same way as an elliptic quadric of PG(3, q) is the image of a projective
line. Similarly our embedding of PSp2m(qt ) in P�ε

(2m)t (q) has a particular
application when m = 2 in the embedding of ovoids of PG(3, qt) as partial
ovoids of PG(4t − 1, q) again with size attaining the Blokhuis–Moorhouse
bound. The families of complete partial ovoids arising from Suzuki-Tits ovoids
are not equivalent to those arising from elliptic quadrics or projective lines; the
partial ovoids given by Dye in [19] are different again.

10. n = 3, t = 2 and some generalizations.

10.1. The Hermitian Veronesean of PG(2, q2).

10.1.1. Tensored spaces.

Let Vi , 1 ≤ i ≤ t be vector spaces of dimension ni over the Galois field
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GF(q). Then V = V1 ⊗ . . . ⊗ Vt is a vector space of dimension
∏t

i=1 ni = n.
Assuming that mi = ni − 1 ≥ 1 for each i , let PG(m1, q), PG(m2, q),

. . . , PG(mt , q) be the projective spaces over GF(q) corresponding to V1, V2,

. . . , Vt . The set of all vectors in V of the form v1 ⊗ . . . ⊗ vt with 0 �= vi ∈ Vi
corresponds to a set of points in PG(n − 1, q) known as the Segre variety,
Sm1,...,mr , of PG(m1, q), . . . , PG(mr , q), [28], 25.5.

10.1.2. A representation of GL(3, q2).

Let G = GL3(q2) and let ψ : GF(q2) → GF(q2) be the Frobenius
automorphism of GF(q2) given by x 
→ xq ; we sometimes write x̄ for xq . Let
V0 be the natural module for GL3(q2) over GF(q2). Let V

ψ

0 be the G–module
with group action given by v · g = vgψ , where vgψ denotes the matrix g with
its entries raised to the q -th power and let V = V0 ⊗ V ψ

0 . Then we have a
representation ρ : G → GL32 (q2) with ρ(g) = g ⊗ gψ ∈GL3(q2)⊗ GL3(q2).
This representation of GL3(q2) is absolutely irreducible (c.f. [46]). The two
representations ρ and ρψ are isomorphic, so this representation of G on V
can be written over GF(q) (c.f. [1, 26.3]). Moreover if ψ0 is the Frobenius
automorphism of GF(q2) given by x 
→ xq0 for any q0 ≤ q , then ρ and ρψ0
are not isomorphic (c.f. [46]) and so ρ cannot be written over GF(q0).

We can give a concrete construction of a GF(q)-subspace of V fixed by
ρ(G). If v1, v2, v3 is a basis for V0 and α ∈GF(q2) \ GF(q) is fixed, then the
vectors vi ⊗vi , vi ⊗vj +vj ⊗vi and αvi ⊗vj +αqvj ⊗vi (i ≤ j ) form a basis for
an 32- dimensional GF(q)-subspace Vq of V fixed by G . There is an involution
θ ∈ GL(32, q2) on V that takes vi ⊗ vj to vj ⊗ vi for each i, j . We see that θ
fixes Vq and normalizes ρ(G); it is not difficult to show that θ does not lie in
ρ(G). Factoring out scalars we get an embedding of PGL3(q2) in PGL32(q).
Restricting to matrices with determinant one, we find ρ(SL3(q2)) ≤ SL32(q) so
that PSL3(q2) is embedded in PSL32(q). The involution −θ lies in SL32 (q)
and normalizes ρ(SL3(q2)).

The realization over GF(q) can be seen in another way. Let φ : V → V ,
λu1 ⊗ u2 → λqu2 ⊗ u1, with each ui being one of v1, v2, v3, extended linearly
over GF(q). Then φ is a semi–linear map that commutes with ρ(G). Let W
be the set of all vectors in V that are fixed by φ . Then for all u ∈ W, g ∈ G ,
φ(g(u)) = g(φ(u)) = g(u), and so g(u) ∈ W . Thus the set W is fixed by
G and it is a GF(q)–subspace of V . We observe that W contains all the
vectors in Vq above. Moreover GF(q)–linearly independent vectors in W
are linearly independent over GF(q2). For otherwise, consider a minimally–
sized counterexample: w1, . . . , wr are linearly independent over GF(q) but
not over GF(q2). Then, there are scalars μ1, . . . , μr ∈ GF(q2) such that∑r

i=1 μiwi = 0, with not all μi in GF(q) , and we may assume, without loss
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of generality that μr = 1. Now
∑r

i=1 μ
q
i wi = 0 and so

∑r−1
i=1 (μ

q
i − μi )wi = 0.

We get a contradiction to r minimal. Given the absolute irreducibility of ρ(G)
we conclude that W has dimension 32 over GF(q). Thus W = Vq .

10.2. The Hermitian veronesean embedding and its automorphism group.
Every element z ∈ GF(q2) has a unique representation as x + αy with

x , y ∈GF(q) and z̄ = x + ᾱy . Let PG(2, q2) denote the projective plane over
GF(q2) and consider the map ϕ : PG(2, q2)→ PG(8, q2) defined as follows:

(X0, X1, X2)→
(Xq+1

0 , Xq+1
1 , Xq+1

2 , X0X
q
1 , X

q
0X1, X0X

q
2 , X

q
0X2, X1X

q
2 , X

q
1X2).

The map ϕ is well–defined and injective. ϕ is called the Hermitian verone-
sean embedding of PG(2, q2) and we denote by Ĥ the image of such a cor-
respondence in PG(8, q2). We note that Ĥ is contained in the Segre variety
S2,2 � PG(2, q2) × PG(2, q2). In fact Ĥ = {(P, P̄) f : P ∈ PG(2, q2)},
where f is the Segre map sending PG(2, q2) × PG(2, q2) onto S2,2. In-
deed, the co-ordinate system for PG(8, q2) corresponds to the basis vi ⊗ vj
(1 ≤ i ≤ 3, 1 ≤ j ≤ 3) for V and the points of Ĥ all lie in the Baer subge-
ometry of PG(8, q2) determined by the subset Vq = W of V . The point–set
Ĥ is a variety of the Baer subgeometry known as the Hermitian Veronesean of
PG(2, q2) [35], [13]. We denote the varietyH when regarding it as a variety in
PG(8, q).

The variety H can also be described in terms of a normal line spread of
PG(5, q) [35]. If τ : PG(5, q2) → PG(5, q2) is the map sending the point
P(X0, . . . , X5) to P(X̄3, X̄4, X̄5, X0, X1, X2), then the points fixed by τ form
a subgeometry G of PG(5, q2) isomorphic to PG(5, q). If π is the plane with
equations X3 = X4 = X5 = 0, then the plane π̄ with equations X0 = X1 = X2
is disjoint from π . The set of lines of PG(5, q2) joining a point P ∈ π with
the point P̄ ∈ π̄ is a normal line spread of G which can be represented on the
Grassmannian G1,5 of lines of PG(5, q) by the variety H. The variety H is a
(q4 + q2+ 1)-cap of PG(8, q) and it is not contained in any proper subspace of
PG(8, q) [13].

Let G(H) = {ζ ∈ PGL9(q) : ζ (H) = H}. The group G(H) is a subgroup
of PGL9(q) containing PGL3(q2). Given a projectivity ξ of PG(2, q2), the
corresponding projectivity of G(H) ≤ PGL9(q), denoted by ξ , is called the
Hermitian lifting of ξ , or briefly theH–lifting of ξ [13].

Let ξ be a linear collineation of PG(2, q2) with matrix representation
A = (ai j ), i, j = 0, 1, 2. The matrix representation of the H–lifting xiH of
ξ is the matrix whose generic column is

(ā0ia0 j , ā0ia1 j , ā0ia2 j , ā1ia0 j , ā1i a1 j , ā1ia2 j , ā2ia0 j , ā2i a1 j , ā2ia2 j )
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with 0 ≤ i, j ≤ 2. In particular, xiH is the collineation induced by the Kro-
necker product A ⊗ Aψ . Hence, the embedding PGL3(q2) ≤ PGL9(q) gives
the representation of the group PGL3(q2) as an automorphismgroup of the Her-
mitian Veronesean H. Notice that the involutory Frobenius automorphism of
GF(q2) induces a collineation of PG(8, q) fixing H (actually, it interchanges
the planes π and π̄ ).

Theorem 10.1. The full stabilizer H of the Hermitian Veronesean H in
PSL9(q) is almost simple and is induced by an absolutely irreducible subgroup
of SL9(q) modulo scalars.

Corollary 10.2. H is isomorphic to PSL3(q2) · [(q−1, 3)2/(q−1, 9)] ·C2 and
is a maximal subgroup of PSL9(q).

10.2.1. Generalizations.

Here we discuss a generalization of the ideas above in which we consider
mappings from GLn(qt ) to GLnt (q).

Remark 10.3. The concrete realization over GF(q) described above can be
extended to a more general setting. Let G = GLn(qt ) and let ψ : GF(qt ) →
GF(qt ) be the Frobenius automorphism of GF(qt ) given by x 
→ xq . Let V0
be the natural module for GLn(qt ) over GF(qt ) with V

ψ i

0 the G–module with

group action given by V · g = vgψ i
, and let V = V0 ⊗ V ψ

0 ⊗ V ψ2

0 . . . ⊗ V ψ t−1
0 .

Then we have a representation ρ : G → GLnt (qt ) with ρ(g) = g ⊗ gψ ⊗
. . . ⊗ gψ t−1

. As with the specific case above, this representation of GLn(qt )
is absolutely irreducible, can be written over GF(q) but over no subfield of
GF(q). This time let {v1, v2, . . . , vn} be a basis of V0 and let φ : V → V ,
λu1 ⊗ u2 ⊗ . . . ⊗ ut → λqut ⊗ u1 ⊗ . . . ⊗ ut−1, with each ui being one of
v1, v2, . . . , vn , extended linearly over GF(q). The set W of all vectors in V that
are fixed by φ is fixed by G and is a GF(q)–subspace of V . Moreover GF(q)–
linearly independent vectors inW are linearly independent over GF(qt) and we
conclude that W has dimension nt over GF(q). We return to this later.

10.3. The Twisted Hermitian Veronesean of PG(2, q2): the geometry of
flags of PG(2, q2).

10.3.1. Embedding PGL3(q2) in PU9(q2).

The notation here is similar to that used earlier, with G = GL3(q2), ψ the
Frobenius automorphism of GF(q2) and V0 the natural module for GL3(q2)
over GF(q2). Let V ∗

0 be the dual module of V0 (with group action given by
v · g = vg∗ = v(gT )−1) and let V = V ∗

0 ⊗ V ψ

0 . Then we have an absolutely
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irreducible representation ρ∗ : G → GL32 (q2) with ρ∗(g) = g∗ ⊗ gψ ∈
GL3(q2)⊗GL3(q2) [46]. The module presented here is dual to V0⊗V ψ∗

0 but is a
more convenient setting from our point of view. The modules V ∗ = V0⊗ (V ψ∗

0 )
and V ψ = (V ψ∗

0 )⊗ V0 are isomorphic and so ρ∗(G) fixes a Hermitian form on
V . In general such a representation cannot be realized over a subfield of GF(q2)
(see [1], [33, theorem 5.4.5]). Indeed, suppose V ∗

0 ⊗ V ψ

0 can be realized over a
proper subfield GF(q0) of GF(q2). Then V ∗

0 ⊗ V ψ

0 � V ψ0∗
0 ⊗ V ψψ0

0 , where ψ0

is the automorphism x 
→ xq
0
of GF(q2). By [46] these two representations

are equivalent if and only if, either V ∗
0 � V ψ0∗

0 (i.e., V0 � V ψ0
0 ), which is not

possible, or V ∗
0 � V ψψ0

0 and V ψ

0 � V ψ0∗
0 . The latter can happen if and only

if ψ0 = ψ and V0 � V ∗
0 , which in turn is possible if and only if GL3(q

2)
fixes a symmetric or symplectic bilinear form on V0. As GL3(q2) fixes no such
form on V0, its representation on V cannot be realized over a proper subfield of
GF(q2). The same applies to SL3(q2).

The representation of GL3(q2) may be stated explicitly as follows. Assume
that we have a fixed basis v1, v2, v3 for V0 as in the previous section. A non-
degenerate Hermitian form is defined by (u ⊗ v, w ⊗ z) = (uzψT ).(wψ vT )
and this is preserved by ρ∗(g) = (gT )−1 ⊗ gψ for all g ∈ G . It follows
that PGL3(q2) can be embedded in PU9(q2). Recall that the involution θ

of V (9, q2) takes vi ⊗ vj to vj ⊗ vi for each i, j ; we now observe that
θ lies in U9(q2) and normalizes (but does not lie in) ρ∗(G). We find that
ρ∗(SL3(q2)) ≤ SU9(q) with PSL3(q2) embedded in PSU9(q2); −θ ∈ SU9(q2)
and normalizes ρ∗(SL3(q2)). We shall shortly see that the image of PGL3(q2)
is an automorphism group of a variety that we call the Twisted Hermitian
Veronesean of PG(2, q2) and denote by H∗ .

10.3.2. The Twisted Hermitian Veronesean.

In considering the action of G = GL3(q2) on V (9, q2), we see that one
orbit is given by {(v1 ⊗ v2)ρ∗(g) : g ∈ GL3(q2)} and this orbit consists of
singular vectors. The corresponding orbit in PG(8, q2) is preserved by (the
image of) PGL3(q2). Let R be the set of non-zero singular vectors of the form
u ⊗ v. For any u ⊗ v ∈R and any g ∈G we see that (u ⊗ v)g = ug∗ ⊗ vgψ is
singular and so lies in R. It is straightforward to calculate that u⊗v is singular
if and only if u.wψT = 0, so singular vectors of the form v1 ⊗ w are precisely
the vectors given by w = λv2 + μv3 where λ, μ ∈ GF(q2); such a singular
vector is mapped to v1 ⊗ v2 by the inverse of( 1 0 0

0 λq μq

0 ν ζ

)
,
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where ν, ζ ∈GF(q2) such that the matrix is non-singular. Thus G is transitive
on R, i.e., R is precisely the orbit that we initially identified. The involution
−θ preserves the Hermitian form and preserves the tensor product V0 ⊗ V0 so
it preserves R. Hence the stabilizer in U9(q2) of R has a subgroup isomorphic
to GL3(q2) · C2 .

Let H∗ be the set of points in PG(8, q2) corresponding toR. We call this
the Twisted Hermitian Veronesean of PG(2, q2). This set is the intersection of
the Hermitian variety corresponding to the given Hermitian form and the Segre
variety S2,2. As we have seen above, the points of H∗ corresponding to v1 ⊗ w

for various w are just P(v1 ⊗ (λv2 + μv3)), i.e., are the points on a line. It
follows that H∗ consists of q4 + q2 + 1 disjoint lines of the form u⊗ L . At the
same timeH∗ can be expressed as the disjoint union of lines of the form L⊗u.

Theorem 10.4. The full stabilizer H ∗ of the Twisted Hermitian Veronesean
H∗ in PSU9(q2) is almost simple and is induced by an absolutely irreducible
subgroup of SU9(q2) modulo scalars.

Corollary 10.5. H ∗ is isomorphic to PSL3(q2)[(q+1, 3)2/(q+1, 9)] ·C2 and
is a maximal subgroup of PSU9(q2).

10.3.3. Generalizations.

As before, we discuss a generalization of the ideas above and consider
mappings from GLn(q2) to Un2 (q2).

Remark 10.6. From [33], Lemma 2.10.15 ii, Theorem 5.4.5, there is an ab-
solutely irreducible representation ρ∗ of the group G = GLn(q2) on V =
V ∗
0 ⊗ V ψ

0 over GF(q2) that fixes a Hermitian form, not generally realizable
over a subfield of GF(q2). As argued above, ρ∗ can be realized over a subfield
of GF(q2) if and only if GLn(q2) fixes a symmetric or symplectic bilinear form
on V0, and this can never happen. However, when we consider SLn(q2), we find
that it fixes a non-degenerate symplectic bilinear form precisely when n = 2. In
this one case, ρ∗(SL2(q2)) can be realized over GF(q), effectively we have the
well known isomorphism between PSL2(q2) and �−

4 (q). The non-degenerate
Hermitian form defined by (u ⊗ v, w ⊗ z) = (uzψT ).(wψ vT ) is preserved by
ρ∗(G). It now follows that PGLn(q2) can be embedded in PUn2 (q2). The invo-
lution θ lies in Un2 (q2) and normalizes (but does not lie in) ρ∗(G). We find that
for n ≥ 3 the image of PGLn(q2) acts transitively on the intersection of a Her-
mitian variety and a Segre variety, the automorphism group of this intersection
contains PGLn(q2) · C2 and so the full automorphism group is absolutely irre-
ducible. This intersection can be expressed as the disjoint union of subspaces of
(projective) dimension n − 2 in two ways.
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10.4. PSL2(q2) � �3(q2) ≤ �9(q), q odd, as the stabilizer of a rational
curve.

10.4.1. Embedding �3(q2) in �9(q).

Now suppose that q is odd, that H ≤ GL3(q2) and that H fixes a non–
degenerate symmetric bilinear form f0 on V0. Then one can define a non–
degenerate symmetric bilinear form f = f0⊗ f0 on V by f (u1⊗u2, w1⊗w2) =
f0(v1, w1). f0(v2, w2), fixed by ρ(H ). Assume that the basis {v1, v2, v3} chosen
for V0 is such that f0(vi , vj ) ∈ GF(q) for each i, j . Recall the semilinear
map φ introduced before (with W its space of fixed vectors). Then for any
u, v ∈ W = Vq we have f (u, v) = f (φ(u), φ(v)) = f (u, v)q . Hence
f (u, v) ∈ GF(q) for all u, v ∈ W . If H = O3(q2), then ρ(H ) is absolutely
irreducible on V and therefore the restriction of f toW is non-degenerate. Thus
ρ(O3(q2)) ≤ O9(q). Indeed (considering commutator subgroups) ρ(�3(q2)) ≤
�9(q) and the restriction of ρ to �3(q2) is injective.

Let us specifically choose the basis v1, v2, v3 for V0 so that the quadratic
form corresponding to f0 is given by Q0(λ1v1+λ2v2+λ3v3) = λ23−λ1λ2. Then
the points on the conic C0 of Q0 can be represented by (1, t2, t) : t ∈ GF(q2)
together with (0, 1, 0). The image X of C0 in the Hermitian Veronesean H is
then given by

{P(1, t2q+2, t q+1, t2q, t2, t q, t, t2+q, t2q+1) : t ∈GF(q2)} ∪ {P(0, 1, 0, . . . , 0)}.
Thus X is a rational curve, all of whose points lie in a Baer subgeometry.
Put another way, X is just the orbit of ρ(SO3(q2)) on PG(8, q2) given by
{P(v1g ⊗ v1gψ ) : g ∈ SO3(q2)}. A point x ⊗ xψ of H is singular precisely
when x is singular. Hence if Q is the quadric corresponding to the bilinear
form f the points of Q lying on H are precisely the points of X, i.e., X is the
intersection of H and Q. No two points of X are orthogonal so X is a partial
ovoid.

There is a further geometric description. Take a conic C in π and C̄ in π̄ .
The lines joining a point on C with its conjugate on C̄ form a set Y of q2 + 1
lines defined over GF(q), and it lies in the subgeometry G of PG(5, q2). The
image of Y on the Grassmannian G1,5 of lines of PG(5, q), under the Plücker
map, is the curve X.

Proposition 10.7. Let X be the full stabilizer of the rational curve X in �9(q)
(q odd), then X contains a subgroup isomorphic to PSL2(q2) · C2 .
Theorem 10.8. The full stabilizer X of the rational curve X is almost simple
and is an absolutely irreducible subgroup of �9(q).
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Corollary 10.9. Assume that q �= 3. X is isomorphic to PSL2(q2) · C2 and is
maximal in P�9(q).

In considering the case q = 3 we find the following.

Corollary 10.10. If q = 3 then X is isomorphic to A10 and is maximal in
P�9(3).

10.4.2. Generalizations.

Let us consider possible generalizations of the ideas above. On this
occasion we consider different forms as well as mappings from subgroups
of GLn(qt ) to GLnt (q), and we consider possible embeddings of alternating
groups.

If On(qt ) is the orthogonal group of a non-degenerate symmetric bi-
linear form f0 on V (n, qt) (with q odd) and if ρ is the representation of
GLn(qt ) → GLnt (qt ) described in Subsection 10.2.1, then ρ(On(qt ) preserves
a non-degenerate symmetric bilinear form f on V (nt, q). If f0 can be given by
a matrix with entries in GF(q), then f = f0⊗· · ·⊗ f0 (t copies of f0 ); in other
cases some care is required in writing down f . If an appropriate basis is chosen
for V0, then f is defined on Vq = W over GF(q) and ρ(O(n, qt )) ≤ Ont q).
If we assume n ≥ 3 and exclude the case O+

4 (q
t ), the subgroup ρ(�n(qt )) is

absolutely irreducible and cannot be written over a subfield of GF(q).
If Spn(qt ) is the symplectic group of a non-degenerate alternating form

f0 on V (n, qt ) (with n even but q odd or even), then ρ(Spn(qt )) preserves the
tensor product form f . If t is odd, then f is an alternating form and we find
that ρ(Spn(qt )) is a subgroup of Spnt (q). If t is even and q is odd, then f
is a symmetric bilinear form and ρ(Spn(qt )) is a subgroup of Ont (q). If q is
even (and n must then be even), then On(qt ) maybe regarded as a subgroup
of Spn(qt ) so ρ(On(qt )) ≤ Spnt (q), but more than this ρ(Spn(qt )) preserves a
quadratic form on Vq = W so ρ(On(qt )) ≤ ρ(Spn(qt )) ≤ Ont (q). If Un(qt ) is
the unitary group of a non-degenerate Hermitian form f0 on V (n, qt ) (with
q square and t odd), then the tensor product form f is an Hermitian form
preserved by ρ(Un(qt )) and ρ(Un(qt )) ≤ Unt (q). [Except in the case of O

+
4 (q

t ),
the image under ρ is absolutely irreducible and cannot be written over a subfield
of GF(q).]

It is worth noting that the restrictions on n mean that there is no irreducible
subgroup ρ(SL3(q2)) of SL9(q) and thus, for q even, no irreducible subgroup
ρ(O3(q2)) of SL9(q). The restriction on t for Un(qt ) is more subtle. Steinberg’s
Tensor Product Theorem leads us to believe that for t even ρ(Un(qt )) is not
absolutely irreducible. Indeed for the case t = 2 it is known that ρ(Un(q2))
is reducible, indeed ρ(Un(q2)) fixes all vectors in a 1-dimensional subspace of
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V (n2, q2); moreover the restriction of the Hermitian form f to Vq = W is
actually a symmetric bilinear form so ρ(Un(q2)) is a subgroup of On2 (q) (for q
odd) or Spn2 (q) (for q even).

11. Embedding Sp2m(qt) in �ε
(2m)t (q).

11.1. Introduction.

Let V0 now be a 2m–dimensional vector space over GF(qt ). Then
V = V0 ⊗ V0 ⊗ . . . ⊗ V0 (t copies of V0) is a vector space of dimension
(2m)t . If f0 is a non-degenerate alternating form on V0 then one can define
a non-degenerate alternating form on V as follows:

f (u1 ⊗ . . . ⊗ ut , w1 ⊗ . . . ⊗ wt ) =
t∏

i=1
f0(ui , wi ).

Moreover there exists a unique quadratic form Q on V such that Q(u1 ⊗
. . . ⊗ ut ) = 0 for all ui ∈ V0 and such that f is the bilinear form associated
with Q ([1]). If U is an m–dimensional totally isotropic subspace of V0, then
U ⊗ V0⊗ . . .⊗ V0 is a totally singular subspace of V of dimension (2m)t/2, so
Q is a quadratic form of maximal Witt index.

Let G be the group Sp2m(qt ) acting on V0 and preserving f0 . Let
x1, x2, . . . , xm , y1, y2, . . . , ym be a symplectic basis for V0 (so f0(xi , xj ) =
f0(yi, yj ) = 0 and f0(xi , yj ) = δi j ). The action of G on V , as described in the
introduction, is given by u1 ⊗ . . . ⊗ ut 
→ u1g⊗ u2gψ ⊗ . . .⊗ ut gψ t−1

with gψ i

preserving f0 for each i . Thus g preserves Q on V . Taking note of the fact that
Sp2m(qt ) is perfect, we thus have a representation ρ : G → �+

(2m)t (q
t ).

We introduced a semi–linearmap φ on V and the subsetW of V consisting
of all vectors fixed by φ . Here we list a number of properties of φ andW that we
shall need to refer to. We recall that φ(λu1⊗u2⊗ . . .⊗ut ) = λqut ⊗u1⊗ . . .⊗
ut−1, whenever each ui is one of x1, x2, . . . , xm, y1, y2, . . . , ym and λ ∈GF(qt)
and then φ is extended linearly over GF(q). If we write vψ = ∑

(λqi xi + μ
q
i yi )

when v = ∑
(λi xi+μi yi)∈ V0, then φ(v1⊗v2⊗. . .⊗vt ) = v

ψ
t ⊗v

ψ

1 ⊗. . .⊗v
ψ

t−1 .
We have not explicitly referred to the case: m = 1 here. However, given any
basis x1, y1 for V0 when m = 1 we can define an alternating form f0 on V0
such that f0(x1, y1) = 1 and the symplectic group Sp2(qt ) is just SL2(qt ).

Lemma 11.1.
(i) The semilinear map φ commutes with ρ(G) on V ;
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(ii) The set W = {w ∈ V : φ(w) = w} is a GF(q)–subspace of V , (globally)
stabilized by ρ(G);

(iii) Any vectors in W that are linearly independent over GF(q) are linearly
independent over GF(qt );

(iv) W has dimension (2m)t over GF(q) and spans V over GF(qt ).
(v) Q(w) ∈ GF(q) for each w ∈ W and Q is non–degenerate on restriction

on W .

Since Sp2m(qt ) has a trivial centre and is simple, ρ is injective. Thus we may
regard Sp2m(qt ) as a subgroup of �ε

2t (q), and equivalently in the projective
context, PSp2m(qt ) as a subgroup of P�ε

(2m)t (q).

11.2. The nature of the quadrics.

It is of some interest to know the nature of the quadratic form on W
described above. The investigation is complex but yields the following.

Theorem 11.2. If t is odd, then Q has maximal Witt index on W . If t is even,
then Q has maximal Witt index on W except when t = 2 and m = n/2 is odd.
In the exceptional case, Q has non-maximal Witt index on W .

11.3. Embedding PG(2m− 1, qt) in PG((2m)t − 1, q).
11.3.1. Embedding the projective line and partial ovoids.

Given 0 �= v ∈ V0 let us denote by v the vector v ⊗ vψ ⊗ ... ⊗ vψ t−1 ∈
V ; recall that all such vectors lie in W and are singular. Observe that for
0 �= λ ∈ GF(qt ) we have λv = (λλq ...λq

t−1
)v with λλq ...λq

t−1 ∈ GF(q).
Hence the injective map: V0 → W , v → v leads to an injective map
ϕ : PG(2m − 1, qt ) → PG((2m)t − 1, q). Suppose that x , y ∈ V0 such that
f0(x , y) �= 0. Then

f (x , y) = f0(x , y) · f0(xψ, yψ) · . . . · f0(xψ t−1
, yψ t−1

)

= f0(x , y) · f0(x , y)q · . . . · f0(x , y)qt−1 �= 0 .

This leads to the following theorem:

Theorem 11.3. Suppose that L is either the projective line PG(1, qt) or a
partial ovoid of a symplectic polarity of PG(2m − 1, qt) with m ≥ 2, and
that P = ϕ(L) in PG((2m)t − 1, q). Then P is a partial ovoid of a non-
degenerate quadric in PG((2m)t−1, q) having the same size asL. The quadric
is hyperbolic unless t = 2 and m = n/2 is odd, in which case it is elliptic.
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11.3.2. The Blokhuis-Moorhouse bound.

In their 1995 paper [2] Blokhuis and Moorhouse give an upper bound for
size of a partial ovoid of a classical polar space in PG(k, q). If q = pe where p

is prime, then the size of a partial ovoid is no greater than

(
k + p − 1

k

)e

+1. If
p = 2, then this bound becomes simply (k + 1)e + 1. If, in addition, k + 1 = 2t

for some t , then the bound is 2te + 1 = qt + 1. In particular we get the same
value for the bound in PG(2a − 1, 2et) and PG(2at − 1, 2e) for any a ≥ 1.

The following theorem is a corollary to 11.3. It demonstrates that, for
p = 2, the Blokhuis-Moorhouse bound is sharp for arbitrarily large dimension
of the form 2t − 1.

Theorem 11.4. If L is the projective line PG(1, qt), then ϕ(L) is a partial
ovoid of a non-degenerate quadric in PG(2t − 1, q) whose size attains the
Blokhuis-Moorhouse bound. If L is a partial ovoid of a symplectic polarity
of PG(2a − 1, qt ) (with a ≥ 2 and q = 2e) whose size attains the Blokhuis-
Moorhouse bound, then ϕ(L) is a partial ovoid of a non-degenerate quadric in
PG(2at − 1, q) whose size attains the Blokhuis-Moorhouse bound.

11.3.3. Complete partial ovoids from embeddings of PG(1, qt) and ovoids
of PG(3, qt).

Now let us consider complete partial ovoids in PG(2t−1, q) and PG(4t−
1, q) arising as images of projective lines and of elliptic quadrics or Suzuki-Tits
ovoids of PG(3, qt) respectively. We identify the stabilizers of these partial
ovoids using the classification of finite 2-transitive groups. In turn this relies
on the Classification of Finite Simple Groups. Our source for the list of finite
2-transitive groups is [3] where the groups are listed in Tables 7.3 and 7.4. Our
interest is in groups having permutation degree 2k + 1 for some k ≥ 1.

Result 11.5. A 2-transitivepermutationgroup of degree 2k+1 for some k ≥ 1 is
almost simple with unique minimal normal subgroup one of the following: AM
with M = 2k + 1, SL2(2k), PSU3(22k/3), Sz(2k/2) where k/2 an odd integer.

We consider three possibilities:

• Case PL: L is the projective line PG(1, qt) with t ≥ 3, G = SL2(qt ),
2k = qt , we write � = �+

2t (q) and PW = PG(2t − 1, q).
• Case EQ : L is an elliptic quadric of PG(3, qt), G = �−

4 (q
t ), 2k = q2t ,

we write � = �+
4t (q) and PW = PG(4t − 1, q).

• Case ST O : L is a Suzuki-Tits ovoid of PG(3, qt) with q an odd power
of 2 and t odd, G = Sz(qt ), 2k = q2t , we write � = �+

4t (q) and
PW = PG(4t − 1, q).
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We write P = ϕ(L), F̃ = ρ(F) for any subgroup F of G and let H̃ be
the stabilizer of P in �. Then H̃ contains G̃ and acts 2-transitively on P . The
action of G̃ on the vector space W is irreducible by Steinberg’s Tensor Product
Theorem ([46, Theorem 7.4, Theorem 12.2]) and so the points of P span the
corresponding projective space. As the number of points exceeds the vector
space dimension and G̃ acts 2-transitively, the only transformations fixing each
point of P are scalar maps, here the identity is the only possibility. Thus the
action of H̃ is faithful and we have:

Proposition 11.6. H̃ is almost simple with unique minimal normal subgroup
X being isomorphic to one of the following: AM with M = 2k + 1, SL2(2k),
PSU3(22k/3), Sz(2k/2) where k/2 is an odd integer.

The subgroup X ∩ G̃ is normal in G̃ , but G̃ is simple so either X ∩ G̃ = 1
or G̃ ≤ X .

Proposition 11.7. G̃ ≤ X .

Proposition 11.8. X = G̃ except when q = 2, in which case X = AM with
M = 2k + 1.

Proposition 11.9. The normalizer of X stabilizes P .

In summary, the results above give:

Theorem 11.10.

(i) Suppose that q ≥ 2 is even and that t ≥ 3. If L = PG(1, qt), then the
stabilizer of P in �+

2t (q) is the normalizer of ρ(SL2(q
t )).

(ii) Suppose that q ≥ 2 is even and that t ≥ 2. If L is an elliptic quadric
in PG(3, qt), then the stabilizer of P in �+

4t (q) is the normalizer of
ρ(�−

4 (q
t )).

(iii) Suppose that q ≥ 2 is an odd power of 2 and that t ≥ 3 is odd. If L is
a Suzuki-Tits ovoid in PG(3, qt), then the stabilizer of P in �+

4t (q) is the
normalizer of ρ(Sz(qt )).

(iv) If q = 2, then in all three cases P is a polygon whose stabilizer is the
alternating group on the points.

Remark 11.11. Comparing the partial ovoids arising as images of Suzuki-Tits
ovoids with those arising as the images of elliptic quadrics, the difference in the
structure of the stabilizers shows that the two families of partial ovoids are not
equivalent. The cases where L = PG(1, qt) (with t ≥ 2 even) and where L
is an elliptic quadric of PG(3, qt) lead to stabilizers with the same structure,
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but it is not clear whether or not the partial ovoids are equivalent. Indeed,
the embedding procedure allows for the possibility of a stepped embedding of
PG(1, qabcd...) as a partial ovoid in PG(2a − 1, qbcd...) that is then embedded
in PG(2ab − 1, qcd...) and so on, and it is not clear that the resulting partial
ovoid is necessarily equivalent to that obtained from a single step embedding of
PG(1, qabcd...) in PG(2abcd... − 1, q).

For more details see [8], [11].

11.3.4. Dye’s partial ovoids.

In [18], R.H. Dye constructed new ovoids on a hyperbolic quadric in
PG(7, 8). Later, in [25], he constructed partial ovoids on quadrics (some-
times elliptic, sometimes hyperbolic) in PG(2m + 1, 8) whose size attains the
Blokhuis–Moorhouse bound. The construction of ovoids in PG(7, 8) involved
an initial construction of nine points of a polygon, followed by the addition
of points lying on conics formed by the intersection of various planes with the
quadric. This approach formed the basis of the constructions of partial ovoids in
the later paper. We are led to ask whether the partial ovoids we have constructed
in PG(2t − 1, 8) could be those constructed by Dye. The answer is no for the
reason that Dye’s partial ovoids, by construction, meet some planes in conics,
whereas our partial ovoids never meet a plane in a conic.
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