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HORIZONTAL GA-ACTIONS ON AFFINE
T-VARIETIES OF COMPLEXITY ONE

KEVIN LANGLOIS

We classify the Ga-actions on normal affine varieties defined over any
field that are horizontal with respect to a torus action of complexity one.
This generalizes previous results that were available for perfect ground
fields (cf. [12, 16, 17]).

1. Introduction

In this paper, we are considering algebraic varieties (that is, integral separated
finite type schemes) over a field k. We are interested in some classification
problems for algebraic group actions. Namely, we study normal affine varieties
endowed with an action of the additive group Ga of the base field k. The fur-
ther condition that we impose is that the Ga-action has to be normalized by a
torus action of complexity one. In the case where k is algebraically closed of
characteristic 0, this classification was obtained by Liendo in [17], generalizing
the former classification by Flenner and Zaidenberg for normal complex affine
C?-surfaces (see [12]). A next step to solve this problem was completed in [16]
for perfect ground fields. We treat here the remaining case, where the base field
is possibly imperfect (see Theorem 2.10 for the main result).

The investigation of the Ga-actions on algebraic varieties is of highest in-
terest in the research field called affine geometry where most of the classical
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problems can be reformulated in terms of Ga-actions satisfying some proper-
ties. The systematic method employed in this paper could serve as well for
describing the automorphism groups of certain complete varieties. This might
be performed, for instance, by using the Cox ring theory or by interpreting the
Ga-action as an integrable vector field, see [3, 4, 9] for the characteristic-zero
case. These developments are still open in positive characteristic. Special at-
tention should be paid to the case of imperfect base fields, as one may describe
some interesting algebraic groups (that only show up in this case) as automor-
phism groups of projective varieties such as the pseudo-reductive groups [5] or
the pseudo-abelian varieties [22].

Let us now introduce some notation in order to state our main results. In
the entire paper we fix a split algebraic torus T ' Gn

m over k. We make the
convention that a T-variety is a normal variety X equipped with a faithful T-
action. The complexity of X is then defined as the transcendence degree of the
field extension k(X)T/k, where the subfield k(X)T ⊆ k(X) consists of invariant
functions. Here we use the usual notation such as k[X ] = Γ(X ,OX) for the k-
algebra of regular global functions and k(X) for the residue field of the generic
point of X .

Assuming X to be affine, a Ga-action on X is equivalent to having a locally
finite iterative higher derivation (LFIHD) on k[X ], see [20]. This is a family of
k-linear operators

∂ = {∂ (i) : k[X ]→ k[X ]}i≥0

respecting the following conditions. (i) ∂ (0) is the identity; (ii) for all b1,b2 ∈
k[X ] and i ∈ Z≥0,

∂
(i)(b1 ·b2) = ∑

i=i1+i2

∂
(i1)(b1) ·∂ (i2)(b2);

(iii) for any b ∈ k[X ] we have ∂ ( j)(b) = 0 for j� 0; (iv) for all u,v ∈ Z≥0,

∂
(u) ◦∂

(v) =

(
u+ v

u

)
∂
(u+v).

Moreover, the datum of a T-action on X translates into an M-grading on the
k-algebra k[X ], where M denotes the character group of the torus T. Note that
finite type normal M-graded algebras admit combinatorial descriptions in terms
of polyhedral divisors (notion invented by Altmann and Hausen; see [1, 15, 24]).
The idea in [17] (and this is the viewpoint of the present paper) is to classify the
Ga-actions in question using this combinatorial approach.

A Ga-action is said to be normalized by the T-action if, for the correspond-
ing LFIHD ∂ , there is a lattice vector e ∈M (called the degree of ∂ ) such that
the linear maps ∂ ( j) are homogeneous of degree je. In other words, this means
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that any homogeneous element in k[X ] of degree m ∈ M is sent to a homoge-
neous element of degree m+ je ∈M by the map ∂ ( j) for every integer j ∈ Z≥0.
Using the Leibniz rule, that is Condition (ii) before, the LFIHD ∂ extends to
a sequence of linear operators on the function field k(X) satisfying Conditions
(i),(ii),(iv) (see e.g. [16, Lemma 2.5]). We say, in addition, that the Ga-action
normalized by the torus action is vertical (or of fiber type) if ∂ ( j)(k(X)T) = 0
for any j ∈Z>0, where ∂ means the extension on the function field k(X). Other-
wise, the normalized Ga-action is called horizontal. Over any field, the vertical
Ga-actions on complexity-one affine T-varieties were described in [16, Section
4] (see also [18]). Therefore, it remains to look at the horizontal case. Our
first main result (see 2.10) can be stated as follows. Here the combinatorial
equipment for describing the horizontal Ga-actions are the coherent families,
see Definition 2.9 for more details.

Theorem 1.1. Let X be a complexity-one affine T-variety described by a poly-
hedral divisor D over a regular curve C. Then the presence of a horizontal Ga-
action on X implies that C = A1

k or C = P1
k , and in this case, the map θ 7→ ∂θ

induces a bijection between the set of coherent families θ = (D̃,e,s,λ ) on D
and the set of horizontal LFIHDs on the k-algebra k[X ] = A[C,D].

The key observation for proving Theorem 1.1 is that the existence of such
a horizontal Ga-action automatically implies that the complexity-one affine T-
variety is geometrically integral over k (see Lemma 2.1) and therefore one may
extend the scalars to an algebraic closure k̄. While the proof of our main result
(see Theorem 2.10) boils down to understanding this field extension problem, it
is worthwhile mentioning that these k-varieties are not in general geometrically
normal. For instance, one may take the ones that have a regular non-smooth
affine global quotient. But, as observed in Lemma 2.1, such examples do not
fulfill the condition to have any horizontal Ga-action. Nevertheless, we exhibit
in 2.11 a non-geometrically normal example of complexity-one affine T-variety
that possesses a horizontal Ga-action.

As a further matter, the inseparable degree of the closed points of the ra-
tional quotient appears in the description of the horizontal Ga-action as a new
numerical invariant (see Definition 2.9 (v)). Finally, we show the following
intermediate result (see 2.5 and consult [10, Section 2], [12, Theorems 3.3 and
3.16], [16, Corollary 5.6] for perfect ground fields) on the geometric structure of
normal affine Gm-surfaces with horizontal Ga-action that gives rise to a positive
grading.

Theorem 1.2. Any (normal) affine Gm-surface over arbitrary field that is not
hyperbolic and having a horizontal Ga-action is a toric surface.
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Note 1.3. We will suppose that for any algebraic variety V over k, the field k
is algebraically closed in the function field k(V ). That means that all elements
of k(V ) that are solutions to a one-variable polynomial in k[t] belong to k. This
assumption implies that V is geometrically irreducible (see [19, §3.2, Corollary
2.14(d)]) and allows one to simplify the statements of the present paper. It is
not restrictive since, in the general case, one may change the base field k by its
algebraic closure in k(V ). We will also let VK = V ×Speck SpecK for any field
extension K/k. Finally, the letter p will denote the characteristic exponent of
the field k.

2. Classification of horizontal Ga-actions

2.1. Torus actions and polyhedral divisors

We fix a complexity-one affine T-variety X defined over k. The torus action
on X involves considering a combinatorial description which was, in partic-
ular, initiated by Mumford [13], Demazure [8], Timashëv [23, 24], Flenner-
Zaidenberg [11] and Altmann-Hausen [1]. We will adopt the notation used in
[1] (see [15] for a version over any field). Especially, the letter M stands for
the character lattice of the torus T, the space N := Hom(M,Z) is the lattice of
one-parameter subgroups and NQ :=Q⊗Z N,MQ :=Q⊗Z M are the associated
Q-vector spaces. We write 〈·, ·〉 for the duality bracket between MQ and NQ.
The M-graded algebra A := k[X ] admits a decomposition (cf. [1, Theorem 3.4],
[15, Theorem 0.2])

A = A[C,D] :=
⊕

m∈σ∨∩M

H0(C,OC(bD(m)c))χm,

where C is a regular curve over k and the subset σ ⊆ NQ is a polyhedral cone
with the property that the dual σ∨ ⊆MQ is full-dimensional. The letter D de-
notes a formal sum

D= ∑
y∈C

Dy · [y]

on the closed points of C which defines a σ -polyhedral divisor, that is, we ask
that each subset Dy ⊆NQ is a Minkowski sum of a polytope with σ and Dy = σ

for almost all closed point y ∈C. One can evaluate the polyhedral divisor at the
vector m ∈ σ∨ via the equality

D(m) = ∑
y∈C

min
v∈Dy
〈m,v〉 · [y],

which actually gives a Q-divisor on C. Finally, in each graded piece, a Laurent
monomial χm is attached for keeping track of the degree of every homogeneous
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element. Note that some positivity assumptions are required on the evaluations
D(m) in order to have a perfect dictionary between complexity-one affine T-
varieties and polyhedral divisors over regular curves (see [15, Definition 0.1]
for the details). In the case where the base curve C is affine, no condition is
required, whereas for C = P1

k (which is a case of main interest in this article),
the positivity is equivalent to ask the inclusion of polyhedra

degD := ∑
y∈C

[κy : k] ·Dy ( σ ,

where κy is the residue field of the closed point y ∈C.

2.2. Preliminary results on Ga-actions

We start by generalizing some results over any field which are originally derived
from the fundamental work of Liendo in [17, Section 3.2]. As usual, the letter
A = A[C,D] will stand for the algebra of regular functions of our complexity-
one T-variety X . For every homogeneous LFIHD ∂ on A = k[X ], recall that
the subset ker(∂ ) :=

⋂
∞
i=1 ker(∂ (i)) denotes the kernel of ∂ ; this an M-graded

subring of A.

Lemma 2.1. Assume that the homogeneous LFIHD ∂ on A = A[C,D] is hori-
zontal. Then the following assertions hold.

(i) The kernel of ∂ is a semigroup algebra, that is

ker(∂ ) =
⊕

m∈ω∩L

kϕmχ
m,

where ϕm ∈ k(C)?. The set ω ⊆MQ is a full-dimensional polyhedral cone
and L ⊆ M is a sublattice such that the quotient M/L is a finite abelian
group.

(ii) If C is projective, then C ' P1
k .

(iii) The variety X is geometrically integral over k.

(iv) If C is affine, then C'A1
k and in this case, the equality div(ϕm)+D(m) =

0 holds true for any m ∈ ω ∩L.

Proof. Assertions (i),(ii) have been proven in [16, Lemma 5.2].
(iii) Using the existence of a local slice for the Ga-action (see [21, Lemma

1.5, p20]) and Assertion (i), we may find a transcendent element xn+1 over
ker(∂ ) such that

k(X) = k(x1 = ϕe1 , . . . ,xn = ϕen ,xn+1),
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where (e1, . . . ,en) is a basis of the lattice L. Note that x1, . . . ,xn+1 are alge-
braically independent over k. Hence for any field extension K/k we have that

A⊗k K ⊆ k(x1, . . . ,xn+1)⊗k K ' K(x1, . . . ,xn+1),

proving that X = SpecA is geometrically integral over k.
(iv) Since finite fields are perfect, using [16, Lemma 5.2 (iii)], we may as-

sume that the cardinality of k is infinite. By virtue of [21, Lemma 1.5, p20],
one can find a homogeneous element f in ker(∂ ) and a transcendent homo-
geneous element x over ker(∂ ) such that A f = ker(∂ ) f [x]. From the inclu-
sion k[C] = AT ⊆ A, we get a dominant morphism γ : V ×A1

k → C, where
V = Specker(∂ ) f is a k-variety with a T-action and having a dense open orbit.
Assume (toward a contradiction) that for every v ∈ V (k), there exists a closed
schematic point yv ∈C such that {v}×A1

k ⊆ γ−1(yv)red. Since k is infinite, one
observes that if v ∈ V (k) belongs to the open orbit, then T(k) · v is dense in V .
Using that γ is T-invariant,

V ×A1
k = T(k) · ({v}×A1

k)⊆ γ
−1(yv)red,

which contradicts the dominance of γ . We conclude that there exists v ∈ V (k)
such that the map

γ|{v}×A1
k

: {v}×A1
k →C

is dominant.
As k(C) = k(P1

k), the regular affine curve C is an open subscheme of P1
k .

By the argument before we have a dominant morphism C1 := A1
k → C which

extends to the completions into a proper morphism γ̄ : P1
k → P1

k . Let y∞ be the
k-rational point such that P1

k \{y∞}=C1. Then the surjectivity of γ̄ implies that
{γ̄(y∞)} is the complement of C in its regular completion. We conclude that
C ' A1

k . The last claim of (iv) is done in [16, Lemma 5.4 (i)].

According to the previous result, we have that C = A1
k or C = P1

k . Let t be
a variable over k such that A1

k = Speck[t] and k(P1
k) = k(t). We write ∞ for

the k-rational point of P1
k satisfying P1

k \ {∞} = A1
k . In particular, the principal

divisor div(t) on P1
k is equal to [0]− [∞]. For a closed point y ∈A1

k we denote by
qy(t) ∈ k[t] the associated monic irreducible polynomial. We may write qy(t) =
q̃y(t p`), where q̃y(t) ∈ k[t] is a polynomial with nonzero derivative with respect
to the variable t. We call the number εy := p` the inseparable degree of y. In the
ring k̄[t], we have the decomposition

qy(t) =
sy

∏
i=1

(t−αi,y)
εy ,
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where the αi,y ∈ k̄ are pairwise distinct. Note that if sy = 1, then we say that y is
purely inseparable. We also set

Dk̄ = ∑
y∈C

sy

∑
i=1

εyDy · [αi,y],

where here (Dk̄)∞ =D∞ if C = P1
k ; this defines a σ -polyhedral divisor over Ck̄.

We introduce similar notations for polyhedral divisors over a non-empty open
subscheme of P1

k .

Lemma 2.2. Assume that the complexity-one T-variety X0 comes from a polyhe-
dral divisor D0 over a non-empty open subscheme C0 ⊆ P1

k . The normalization
of X0,k̄ = SpecA[C0,D0]⊗k k̄ is described by the polyhedral divisor D0,k̄. More-
over, via this description, we have the equality k(X0)∩A[C0,k̄,D0,k̄] = k[X0].

Proof. The first part of the lemma is obtained by choosing a finite system of
homogeneous generators a1, . . . ,as and by determining the normalization of the
ring k̄[a1, . . . ,as] via [14, Théorème 2.4] (see [15, Theorems 2.5, 3.5] for the
version over any field). For the second part, we obviously have that k[X0] ⊆
k(X0)∩A[C0,k̄,D0,k̄]. Let now β ∈ k(X0)∩A[C0,k̄,D0,k̄]. Then there exists a
finite field extension K/k such that β ∈ RK , where RK is the normalization of
k[X0]⊗k K. As RK is a finite type module over k[X0], the element β is integral
over k[X0]. Using that k[X0] is a normal ring, we conclude that β ∈ k[X0], proving
the lemma.

Lemma 2.3. Assume that our algebra A = k[X ] has a horizontal LFIHD ∂ and
that C = P1

k . Then there exists a k-rational point y∞ ∈ C(k) such that for any
m ∈ ω ∩L the effective Q-divisor D(m)+div(ϕm) has at most y∞ in its support.
Here ϕm is the regular function from Lemma 2.1(i).

Proof. Changing ∂ by {ξ i · ∂ (i)}i≥0, where ξ is a homogeneous element of
ker(∂ ), we may assume that the degree of ∂ belongs to ω . Since from [16,
Lemma 5.4 (v)] the effective Q-divisor Dk̄(m)+divCk̄

(ϕm) over Ck̄ is supported
in at most one point, one concludes that D(m)+ divC(ϕm) = α · [y∞] for some
α ∈ Z≥0 and some purely inseparable closed point y∞ ∈ C. Let us prove that
y∞ is a k-rational point. Let B := A[C′,D|C′ ], where C′ = C \ {y∞}. Consider
moreover the normalization B′ of the ring B⊗k k̄. Then, with respect to a local
parameter s over k̄ (such that k̄(Ck̄) = k̄(s)), the ring B′ is indeed the normaliza-
tion of the ring A[Ck̄,Dk̄][s]. According to [16, Lemma 5.5 (ii)], the LFIHD ∂

on A extends to one on B′. As k(X)∩B′ = B (use Lemma 2.2), we remark that
∂ extends to a horizontal LFIHD on B. This forces C′ to be isomorphic to A1

k
(see Lemma 2.1(iv)) and therefore y∞ to be a k-rational point.
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Until now we may assume that the k-rational point y∞ in Lemma 2.3 is the
point ∞ ∈ P1

k corresponding to the local parameter t considered before. With
this in hand, we obtain the following corollary, which is a generalization of [16,
Lemma 5.5 (ii)] over any field.

Corollary 2.4. Assume that C =P1
k and that A= k[X ] has a horizontal LFIHD ∂

with degree belonging to ω . Then the normalization of A[t], that is, the algebra
consisting of elements of the function field of A[t] that are integral over A[t],
identifies with A[A1

k ,D|A1
k
]. Moreover, under this identification, ∂ extends to a

horizontal LFIHD on the algebra A[A1
k ,D|A1

k
].

Proof. This litteraly follows from the proof of [16, Lemma 5.5 (ii)]. In the
argument of the proof of loc. cit., we only need to replace [16, Lemma 5.2(i)]
by Lemma 2.1(iv) and [16, Lemma 5.2(ii)] by Lemma 2.3.

An affine Gm-surface is hyperbolic if its Z-graded algebra is not positively
graded. The following theorem is a generalization of [12, Theorems 3.3 and
3.16] and [16, Corollary 5.6].

Theorem 2.5. Any (normal) affine Gm-surface X over a field k which is not hy-
perbolic and admitting a horizontal Ga-action is toric. More precisely, assume
that X is described by a polyhedral divisor D over a regular curve C. Then
C =A1

k or C = P1
k , and the fractional part {D(1)} of the Q-divisor D(1) is sup-

ported in at most one k-rational point if C = A1
k and in at most two k-rational

points if C = P1
k .

Proof. It suffices to show the second statement, as the toridicity of our surface is
a consequence of this (see e.g. the end of the proof of [16, Corollary 5.6]). The
case p= 1 is treated in [16, Corollary 5.6]. So we assume in the entire proof that
p > 1. We first look at the case where C =A1

k . Let d ∈Z>0 such that D(d) is an
integral divisor and consider a rational function f ∈ k(t)? that generates the k[t]-
module H0(C,OC(D(d))). Without loss of generality, we may assume that f ∈
k[t]\{0} is a monic polynomial. Let B be the normalization of A[ d

√
f χ], where

A= k[X ]. Taking d large enough if necessary, we may assume f χd ∈ ker(∂ ) (see
Lemma 2.1(iv)) and hence according to [16, Corollary 2.6] the LFIHD ∂ extends
to a horizontal one on B. Now B0 = BGm is the normalization of k[t, d

√
f ] and

also a polynomial algebra of one variable over k (compare with Lemma 2.1(iv)).
Moreover, if S is the normalization of B⊗k k̄, then S has a horizontal Ga,k̄-action
and S0 = SGm (which is the normalization of k̄[t, d

√
f ]) is a polynomial ring too.

Using that S is factorial and that S? = k?, we must have f = (t− µ)r for some
µ ∈ k̄ and r ∈ Z>0. In addition, f belongs to k[x] and so we write f = (t pu−λ )v

for some v ∈ Z≥0 \ pZ, u ∈ Z≥0 and some λ = µ pu ∈ k.
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This implies that

k
[
t, d
√

f
]
' k[x1,x2]/

(
xd

1− (xpu

2 −λ )v
)
.

Assume that
λ 6∈ kpu

:=
{

xpu |x ∈ k
}
.

If p divides d, then any geometric point of C0 := Speck
[
t, d
√

f
]

is singular and
this contradicts that C̃ := SpecB0 is an affine line over k. So p does not divides
d. Summing D(1) with a principal divisor, we may assume that d ≥ 2 and
v < d. Let us write v/d as an irreducible fraction e/d′. Then we claim that the
normalization C̃ of C0 has algebra of regular functions equal to R := k[x,y =
(xpu −λ )1/d′ ], i.e., C̃ is the plane curve defined by the equation yd′ = xpu −λ .
Indeed, this is clear that R ⊆ k(C0) is integral over k[C0]. So we only need to
check that R is a normal ring. Using the Jacobian criterion over k̄, this amounts
to show that R is regular at the prime ideal p = (y). Let s = (x− µ)1/d′ and
consider the field extension k(C0)⊆ k̄(s) where we get the parametrization x =
sd′ + µ and y = spu

. Let ν0 be the discrete valuation on k̄(s), trivial on k̄ and
satisfying ν0(s) = 1. Denote by ν the restriction of the valuation 1

pu v0 to the
subfield k(C0). Remarking that

Iν := { f ∈ R\{0}|ν( f )> 0}∪{0}

is a proper ideal that contains p, we have Iν = p. Therefore the local ring Rp

coincides with the valuation ring associated with ν and we conclude that C̃ =
SpecR is regular. Note that C̃ is not smooth (according to the Jacobian criterion
for C̃k̄). This contradicts the fact that C̃ is the affine line over k. Finally, λ ∈
kpu

and {D(1)} is supported in at most one k-rational point (by observing that
div( f )+D(d) = 0).

We pass to the case where C = P1
k . Changing ∂ by {ξ i · ∂ (i)}i≥0, where ξ

is a homogeneous element of ker(∂ ), we may assume that the degree e of ∂

is positive. Using Corollary 2.4, the LFIHD ∂ extends on the normalization
A[D|A1

k
,A1

k ] of A[t] into a horizontal one. Thus, we end the proof of the theorem
by using the previous case where C was assumed to be affine.

As a consequence of Theorem 2.5 we get the following result. We will here
assume that C is equal to A1

k or P1
k .

Corollary 2.6. Let us suppose that A = k[X ] = A[C,D] has a horizontal LFIHD
∂ . Then the following statements hold.

(i) The cone ω ⊆MQ introduced in Lemma 2.1 is a maximal subcone of σ∨

in which the restriction of the map m 7→D(m) when C is affine, or of the
map m 7→D(m)|A1

k
when C is projective, to it is linear.
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(ii) Set
Aω =

⊕
m∈ω∩M

H0(C,OC(bD(m)c))χm

and let τ =ω∨⊆NQ be the dual cone. Then Aω is isomorphic to A[C,Dω ]
as M-graded algebras, where Dω is the τ-polyhedral divisor over the
curve C satisfying the following conditions.

(a) Dω = (v+ τ) · [0] for some v ∈ NQ, whenever C is affine.

(b) Dω = (v+τ) · [0]+Dω,∞ · [∞] for some v∈NQ such that v+Dω,∞ (
τ , whenever C is projective.

Proof. The proof is similar to that of [17, Lemmata 3.18, 3.23]. We include the
argument here for the convenience of the reader.

(i) According to Lemma 2.1(iv) and Lemma 2.3, we only need to prove the
required maximality property. Since the case C = P1

k is similar, we may assume
that C = A1

k . Let ω0 be a subcone containing ω where the evaluation map m 7→
D(m) restricted to it is linear. Let us show that ω = ω0. Pick m ∈ ω0∩L such
that D(m) is an integral divisor and let fm be a generator of the k[t]-module
H0(C,OC(bD(m)c)). For an element m′ ∈ ω ∩L such that m+m′ ∈ ω ∩L we
have fm ·ϕm′χ

m+m′ ∈ ker(∂ ). As ker(∂ ) is factorially closed (cf. [6, Lemma 2.1
(a)]), we see that fmχm ∈ ker(∂ ) and therefore m ∈ ω ∩L. This shows (i).

(ii) Using Corollary 2.4, we may assume that C = A1
k and e ∈ ω . Letting

` ∈ ω ∩L we observe that the subalgebra⊕
r≥0

H0(C,OC(bD(r(`+ e))c))χr(`+e)

is stable by the Ga-action coming from the LFIHD {ϕ i
` · ∂ (i)}i≥0. Therefore

from Theorem 2.5, the Q-divisor {D(`+ e)} is supported in at most one k-
rational point. Now we remark that {D(`+e)}= {D(`′+e)} for all `,`′ ∈ω∩L
since the difference between D(`+e) and D(`′+e) is equal to div(ϕ`′/ϕ`). As
the subset {e}∪ L generates M, we conclude that assertion (a) of the lemma
holds.

2.3. Coherent families and Demazure roots

In this section, we again suppose that C = A1
k or C = P1

k . We want to give a
combinatorial description of the horizontal Ga-actions as in [2, Section 1.4].
We start with the following definition.

Definition 2.7. A collection

D̃= (D,(vy)y∈C′ ,y0),
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which in particular encompasses the polyhedral divisor D over C describing our
complexity-one affine T-variety X and a vertex vy of Dy for each schematic
closed point y belonging to a subset C′ of C, is called a coloring if the following
conditions are fulfilled.

(i) There is y∞ ∈C(k) if C = P1
k which allows to define the curve C′ as C \

{y∞}. Otherwise, we let C′ = A1
k .

(ii) We have y0 ∈C′(k) and vy ∈ N for any y ∈C′ \{y0}.

(iii) The element vdeg := ∑y∈C′ [κy : k] · vy is a vertex of the polyhedron

degD|C′ := ∑
y∈C′

[κy : k] ·Dy,

where κy stands for the residue field of y.

The vectors vy are called the colored vertices of D.

We now recall the notion of Demazure roots which was initially introduced
in [7, Section 4.5] for studying Cremona groups. It was then extended by Liendo
in [17, Section 2] for singular affine toric varieties.

Definition 2.8. Let σ0 ⊆ NQ be a polyhedral cone with 0 as vertex. An ele-
ment e ∈ M is called a Demazure root of the cone σ0 with distinguished one-
dimensional face ρe if

(i) 〈e,v〉 ≥ 0 for any v ∈ σ0 \ρe belonging to a one-dimensional face of σ0,
and

(ii) 〈e,µe〉=−1, where µe is the generator of the semigroup (ρe∩N,+).

Considering the semigroup algebra

k[σ∨0 ∩M] =
⊕

m∈σ∨0 ∩M

kχ
m,

it has been proved in [16, Theorem 3.5] (see [7, Section 4.5], [17, Theorem 2.7]
for the characteristic zero case) that any homogeneous LFIHD on this algebra
(up to a constant) is described by a Demazure root of σ0 and vice-versa. If
e ∈M is such a Demazure root, then the corresponding LFIHD ∂e is defined via
the formula

∂
(i)
e (χm) =

(
〈m,µe〉

i

)
·χm+ie for all i ∈ Z≥0 and m ∈ σ

∨
0 ∩M.
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For a coloring D̃ (see Definition 2.7), the associated cone ω (which will play
the role of the weight cone of the kernel of the corresponding horizontal LFIHD)
is the polyhedral cone whose dual τ ⊆ NQ is spanned by degD|C′ − vdeg. Also,
we denote by ω̃ ⊆ MQ×Q the polyhedral cone whose the dual τ̃ is spanned
by (τ,0),(vy0 ,1) if C = A1

k and by (τ,0),(vy0 ,1),(Dy∞
+ vdeg− vy0 + τ,−1) if

C = P1
k .

We then introduce the main tool for describing horizontal Ga-actions on
complexity-one affine T-varieties (see [2, Definition 1.9] for the classical case).
Recall that p is the characteristic exponent of the base field k.

Definition 2.9. A family θ = (D̃,e,s,λ ) is said to be coherent if first

(i) D̃= (D,(vy)y∈C′ ,y0) is a coloring of D,

(ii) e is a lattice vector of M,

(iii) s is a family of positive integers (s1, . . . ,sr) such that s1 < .. . < sr and
with the condition that r = 1 = s1 whenever p = 1. Moreover, we ask that

ẽi :=
(

psie,−1
d
−〈psie,vy0〉

)
for i = 1, . . . ,r,

is a Demazure root of the cone τ̃ ⊆ NQ×Q with distinguished ray Q≥0 ·
(vy0 ,1), where d ∈ Z>0 is the smallest element such that dvy0 ∈ N,

(iv) and finally, λ is a sequence (λ1, . . . ,λr) of elements of k?.

Together, they satisfy the following constraints.

(v) We have that
εy · pu〈ps1e,v〉 ≥ 1+ εy · pu〈ps1e,vy〉

for any y ∈ C′ \ {y0} and any uncolored vertex v of Dy, where d = `pu

with gcd(`, p) = 1 and εy is the inseparable degree of y.

(vi) We have that
d〈ps1e,v〉 ≥ 1+d〈ps1e,vy0〉

for any uncolored vertex v of Dy0 .

(vii) If C = P1
k , then

d〈ps1e,v〉 ≥ −1−d〈ps1e,vdeg〉

for any vertex v of Dy∞
.
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From a coherent family θ = (D̃,e,s,λ ) as in 2.9, we define a sequence of
k-linear operators {

∂
(i)
θ

: k(ζ )[M]→ k(ζ )[M]
}

i≥0
,

where k(ζ )[M] =
⊕
m∈M

k(ζ )χm and ζ = (t− y0)
1
d .

It satisfies the axioms (i),(ii),(iv) of an LFIHD of Section 1 (but does not sat-
isfies the axiom (iii) of an LFIHD). For all i,r ∈ Z≥0 and m ∈M we let

∂
(i)
θ
((t− y0)

r
ξmχ

m) := ζ
−dvz0 (m+ie)

∂
(i)
ζ ,s,λ (ζ

−dvz0 (m)(t− y0)
r)ξm+eχ

m+e,

where ξm is an element of k(t)? such that div(ξm)+∑y∈C〈m, ṽy〉 · [y] = 0 (here
ṽy = vy for all y ∈ C′ \ {y0} and ṽy = 0 otherwise) and ∂ζ ,s,λ is the LFIHD on
k[ζ ] given by the formula

∞

∑
j=0

∂
( j)
ζ ,s,λ (ζ )T

j = ζ +
r

∑
i=0

λiT psi

for a variable T over k[ζ ].

The main result of this paper is the following (see [12, Theorem 3.22], [17,
Theorem 3.28] , [16, Theorem 5.11] for the case of perfect ground fields).

Theorem 2.10. Let X be a complexity-one affine T-variety described by a poly-
hedral divisor D over a regular curve C. Then the presence of a horizontal Ga-
action on X implies that C = A1

k or C = P1
k , and in this case, the map θ 7→ ∂θ

induces a bijection between the set of coherent families θ = (D̃,e,s,λ ) on D
and the set of horizontal LFIHDs on the k-algebra k[X ] = A[C,D].

Proof. We first show how to a horizontal Ga-action on X we may associate a
coherent family. By Lemma 2.2, we have the equality k(X)∩A[Ck̄,Dk̄] = k[X ],
where Dk̄ is the polyhedral divisor corresponding to the normalization of Xk̄.
Therefore, having a horizontal LFIHD on k[X ] is equivalent to considering a
horizontal LFIHD ∂ on A[Ck̄,Dk̄] in which the extension ∂̄ on the function field
k̄(Xk̄) (defining a family of k-linear operators and satisfying (i),(ii),(iv) of the
definition of an LFIHD; see e.g. [25, Section 3] for the existence of such an
extension) stabilizes k(X), i.e., ∂̄ (i)(k(X)) ⊆ k(X) for any i ≥ 0. For such an
LFIHD ∂ let us denote by e its degree.

According to Corollary 2.6, there exists a k-rational point y∞ ∈ C and a
maximal subcone ω ⊆ σ∨ in which the evaluation map m 7→D(m)|C′ restricted
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to it is linear, where C′ = C \ {y∞}. Moreover, there exists a family (vy)y∈C′ of
NQ such that

D(m)|C′ = ∑
y∈C′
〈m,vy〉 · [y] for any m ∈ ω.

This family also satisfies Condition (ii) of Definition 2.7 of a coloring for some
k-rational point y0 ∈C′. The set of maximal cones in which the evaluation map
m 7→ D(m)|C′ restricted to it is linear coincides with the one for the piecewise
linear map m 7→ minv∈degD|C′ 〈m,v〉 (see e.g. the discussion in [17, Definition
1.3]). Therefore, vdeg := ∑y∈C′ vy is a vertex of degD|C′ and the dual of ω is
generated by degD|C′ − vdeg (compare [1, Lemma 1.4]). This shows that D̃ =
(D,(vy)y∈C′ ,y0) is a coloring.

As the field k̄ is perfect, by [16, Theorem 5.11] applied to the LFIHD ∂

on A[Ck̄,Dk̄], there exists a family θk̄ = (D̃k̄,e,s,λ ) which verifies Conditions
(i),(ii),(iii) of Definition 2.9 (here the coloring D̃k comes from the coloring D̃
above by scalar extension) and ∂ = ∂θk̄

.
Multiplying by a kernel element in A if necessary, the resulting LFIHD

would stabilize Aω (see Corollary 2.6 for the definition of Aω ). This forces
to have that λ j ∈ k? for any j ∈ {1, . . .r} (use [16, Theorem 5.8] that holds over
any field). So in order to show that θ = (D̃,e,s,λ ) is a coherent family, we have
to check that it satisfies Conditions (v),(vi),(vii) of Definition 2.9.

Let us write hy, when y ∈ C \ {y0,y∞} (respectively, hk̄,y, when y ∈ Ck̄ \
{y0,y∞}), for the piecewise linear map given by

hy(m) = min
v∈Dy
〈m,v− vy〉 respectively, hk̄,y(m) = min

v∈Dk̄,y

〈m,v− vk̄,y〉

for any m ∈ σ∨. Here we let (vk̄,y)y∈C′k̄
be the family of colored vertices of D̃k̄.

Denote by h the linear extension of (hy0)|ω on the whole cone σ∨ and by hy∞

(respectively, hk̄,y∞
) the support function

m 7→ min
v∈Dy∞

〈m,v− vdeg〉 respectively, m 7→ min
v∈Dy∞

〈m,v− vk̄,deg〉,

where vk̄,deg = ∑
y∈C′k̄

vk̄,y.

Moreover, we let hy0(m) = hk̄,y0
(m) = minv∈Dy0

〈m,v〉 for any m ∈ σ∨. Then,
assuming that m+ ps1e ∈ σ∨∩M with m ∈ σ∨∩M, [16, Theorem 5.11] gives
the following conditions.

(1) If hk̄,y(m+ ps1e) 6= 0, then bpuhk̄,y(m+ ps1e)c−bpuhk̄,y(m)c≥ 1 whenever
y ∈Ck̄ \{y0,y∞}.
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(2) If hk̄,y0
(m+ ps1e) 6= h(m+ ps1e), then bdhk̄,y0

(m+ ps1e)c−bdhk̄,y0
(m)c ≥

1+dh(ps1e).

(3) If C = P1
k̄ , then bdhk̄,y∞

(m+ ps1e)c−bdhk̄,y∞
(m)c− ≥ 1−dh(ps1e).

With the same condition on m, the definition of Dk̄ implies that the three last
conditions are respectively equivalent to:

(4) If hy(m+ ps1e) 6= 0, then bpuεy ·hy(m+ ps1e)c−bpuεy ·hy(m)c ≥ 1 when-
ever y ∈C \{y0,y∞}.

(5) If hy0(m+ ps1e) 6= h(m+ ps1e), then bdhy0(m+ ps1e)c−bdhy0(m)c ≥ 1+
dh(ps1e).

(6) If C = P1
k , then bdhy∞

(m+ ps1e)c−bdhy∞
(m)c− ≥ 1−dh(ps1e).

Therefore for showing that θ = (D̃,e,s,λ ) is a coherent family, it suffices to
prove that Conditions (v),(vi),(vii) of Definition 2.9 are respectively equivalent
to Conditions (4), (5), (6). Let us prove the equivalence (4)⇔ (v). The others
equivalences, namely (5)⇔ (vi) and (6)⇔ (vii), are shown in the same way
and are left to the reader. Assume that (4) holds. Take y ∈ C′ and let ω0 6= ω

be a maximal cone in which m ∈ ω0 7→ hy(m) is linear (note that if such an ω0
does not exist, then hy is identically zero and (4)⇔ (v) is true). We also denote
by hy,ω0 the linear extension on σ∨ of (hy)|ω0 . Then for m ∈ ω0 ∩M such that
hy(m) ∈ Z and m+ ps1e ∈ ω0 we have that

bpu
εy ·hy(m+ ps1e)c= pu

εy ·hy(m)+ bpu
εy ·hy,ω0(ps1e)c.

Therefore using (4), we get that puεy · hy,ω0(ps1e) ≥ bpuεy · hy,ω0(ps1e)c ≥ 1.
Now remarking that such maximal cones ω0 6= ω as previously are in bijection
with vertices v of Dy different from vy via hy,ω0(m) = 〈m,v− vy〉, we conclude
that (v) is satisfied.

Let us now assume (v). Let m ∈ σ∨ ∩M such that m+ ps1e ∈ σ∨ ∩N and
with hy(m+ ps1e) 6= 0. Then there exists a maximal cone ω0 6= ω where (hy)|ω0

is linear such that m+ ps1e ∈ ω0. Thus,

bpu
εy ·hy(m+ ps1e)c≥ bpu

εy ·hy(m)c+bpu
εy ·hy,ω0(ps1e)c≥ bpu

εy ·hy(m)c+1,

where the last inequality comes from (v). This establishes (4)⇔ (v).
Our analysis implies that we get an injective map from the set of horizontal

LFIHDs on k[X ] to the set of coherent families of D (the verification of the
injectivity being formal). It remains to check that for a given coherent family θ

on D, there is a horizontal Ga-action on X corresponding to it. The sequence of
operators ∂θ of k(X) extends to one on k̄(Xk̄). As the previous conditions (1),
(2), (3) are satisfied, by [16, Theorem 5.11], it defines a horizontal LFIHD ∂ on
A[Ck̄,Dk]. We conclude using Lemma 2.2 that ∂ stabilizes k[X ]. This gives the
required Ga-action and finishes the proof of the theorem.
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2.4. Some examples

We start by bringing an example that involves the inseparable degree of Defini-
tion 2.9 (v).

Example 2.11. Here the base field k is of characteristic 2. We assume that
NQ =Q and that σ = {0}. We consider the σ -polyhedral divisor D over A1

k =
Speck[t] supported in two points, and given by the formula

D=

{
1
5

}
· [0]+

[
0,

1
5

]
· [y],

with y 6= 0. Note that for the coloring D̃ = (D,(v0 = 1
5 ,vy′ = 0 for y′ ∈ A1

k \
{0}),0), we have that

τ̃ =Q≥0(1,0)+Q≥0(1,5).

If we take e = 1 and s1 = 2, then (2s1e,−1
5 −

2s1 e
5 ) = (4,−1) is a Demazure root

of τ̃ with distinguished ray Q≥0 · (1,5). It was observed in [16, Example 5.13]
that if k is algebraically closed, then X = SpecA[A1

k ,D] is isomorphic to the
affine surface

W2,5 = {(x,w,z) ∈ A3
k |x2w = x+ z5}

and that the family θ = (D̃,e,(2),(1)) is not coherent (as Condition (v) of Def-
inition 2.9 fails to be satisfied).

We claim that if k is imperfect, then θ defines a horizontal Ga-action for a
well-chosen y. Indeed, let us pick a non-square element λ in k and assume that
y is given by the polynomial py(t) = t2−λ . Then εy = 2 and θ is coherent (as
now Condition (v) of Definition 2.9 is satisfied). One can explicitly check this
on the graded pieces of A[A1

k ,D]. Let us denote

Am = H0(A1
k ,OA1

k
(bD(m)c))χm so that k[X ] =

⊕
m∈Z

Am.

If trχm ∈ A≥0 :=
⊕

m≥0 Am is a homogeneous element, then −5r ≤ m,

∂
(4 j)
θ

(tr
χ

m) =

(
5r+m

j

)
tr− j

χ
m+4 j ∈ A≥0 and ∂

(i)
θ
(tr

χ
m) = 0 for i 6∈ 4Z≥0.

Moreover, ∂
( j)
θ

((t2−λ )tχ−5) ∈ A≥0 for any j ∈ Z≥0. Since

A≥0∪{(t2−λ )tχ−5}

generates the k-algebra k[X ], we conclude that ∂θ gives rise to a horizontal Ga-
action on X . Finally, remark that X is not geometrically normal (as SpecA≥0 is
isomorphic to Speck[x1,x2,x3]/((x2

1−λ )x3− x2
2)).



HORIZONTAL GA-ACTIONS 91

Beside the inseparability condition on each point involving in Definition
2.9, one may ask why we need the factor pu in Condition (v). Originally, it
appears in the proof of [16, Lemma 5.10] because we lift a Ga-action from a
cyclic covering (whose the degree might be divisible by the characteristic of the
base field). Therefore, the factor pu comes from a ramification phenomenon.
The next example aims to illustrate this technical point.

Example 2.12. We assume that the base field k is algebraically closed. We
consider the polyhedral divisor D over the affine line A1

k = Speck[t] defined by

D0 =

(
1
2
,0
)
+σ ,D1 =

[(
1
2
,0
)
,(0,1)

]
+σ and Dy = σ for all y ∈ A1

k ,

where the lattice N is Z2 and the tail cone σ is Q2
≥0. Note that, regarding the

notations of Definitions 2.7 and 2.9, we have d = 2, C′ = A1
k , and

degD|C′− vdeg =

[(
1
2
,−1

)
,(0,0)

]
+σ ,

where we take the coloring (v0 = (1
2 ,0),v1 = (0,1)). This implies that

ω =Q≥0(0,1)+Q≥0(2,1)⊆MQ

and τ̃ =Q≥0(1,−2,0)+Q≥0(0,1,0)+Q≥0(1,0,2).

Now for defining a coherent family we choose a Demazure root ẽ of the cone τ̃

with distinguished ray Q≥0(1,0,2). For example, we take ẽ = (1,0,−1) and set
e = (1,0). One sees that if the characteristic of k is unequal to 2, then Condition
(v) of Definition 2.9 is not satisfied. However, if the characteristic is equal to 2,
due to the ramification phenomenon (presence of the factor pu), Condition (v)
of Definition 2.9 is indeed satisfied. So this means that, from the combinatorial
data discussed before, the Ga-action only shows up in characteristic 2. Let us
check this in example.

The graded pieces Am1,m2 of the algebra A = A[A1
k ,D] can be cut into two

regions according to the cones

ω = ω1 =Q≥0(1,0)+Q≥0(2,1) and ω2 =Q≥0(0,1)+Q≥0(2,1).

In those cones the evaluation map (m1,m2) 7→D(m1,m2) is linear, that is,

Am1,m2 = k[t]t−b
m1
2 c(t−1)−m2 χ

(m1,m2) if (m1,m2) ∈ ω1, and

Am1,m2 = k[t]t−b
m1
2 c(t−1)−b

m1
2 cχ(m1,m2) if (m1,m2) ∈ ω2.
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From this, we note that there is an isomorphism of graded rings

ψ : Aω =
⊕

(m1,m2)∈ω∩Z2

Am1,m2 → k[ω̃ ∩Z3] =
⊕

(r,m1,m3)∈ω̃∩Z3

ktr
χ
(m1,m2),

t 7→ t, ξm1,m2 χ
(m1,m2) 7→ χ

(m1,m2),

where ξm1,m2 = (t − 1)−m2 . Lifting the homogeneous LFIHD of k[ω̃ ∩Z3] at-
tached to the Demazure root ẽ via ψ gives the LFIHD ∂ on Aω defined as

∂
(i)(tr

ξm1,m2 χ
(m1,m2)) =

(
2r+m1

i

)
tr−i

ξm1+i,m2 χ
(m1+i,m2) for i = 0,1,2, . . .

Condition (v) in Definition 2.9 precisely means that ∂ extends to an LFIHD
on the whole algebra A. Denote by the same letter ∂ the extension of ∂ in
the fraction field of A. When the characteristic is unequal to 2, we see that
∂ (1)(A0,1) 6⊆ A since

∂
(1)(χ(0,1)) = ∂

(1)(tξ0,1χ
(0,1)−ξ0,1χ

(0,1)) = 2t−1
χ
(1,1) 6∈ A.

Now suppose that the characteristic is equal to 2 and observe that

Aω2 =
⊕

(m1,m2)∈ω2∩Z2

Am1,m2 = k[t,χ(0,1),χ(1,1),z := t−1(t−1)−1
χ
(2,1)].

We obviously have ∂ (i)(t) ∈ A for any i ∈ Z≥0 and z ∈ ker(∂ ). From a direct
computation, we get

∂
(0)(χ(0,1)) = χ

(0,1),∂ (1)(χ(0,1)) = 0,∂ (2)(χ(0,1)) = z,∂ ( j)(χ(0,1)) = 0

for all i≥ 3, and

∂
(0)(χ(1,1)) = χ

(1,1),∂ (1)(χ(1,1)) = tz,∂ (2)(χ(1,1)) = t−1
χ
(3,1) ∈ A,

∂
(3)(χ(1,1)) = t−2(t−1)−1

χ
(4,1) ∈ A,∂ ( j)(χ(1,1)) = 0 for all j ≥ 4.

That shows that, in characteristic 2, the sequence ∂ is an LFIHD on A.
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