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ON THE CHOW RING OF CERTAIN HYPERSURFACES IN A
GRASSMANNIAN

ROBERT LATERVEER

This note is about Plücker hyperplane sections X of the Grassmannian
Gr(3,V10). Inspired by the analogy with cubic fourfolds, we prove that the
only non-trivial Chow group of X is generated by Grassmannians of type
Gr(3,W6) contained in X . We also prove that a certain subring of the
Chow ring of X (containing all intersections of positive-codimensional
subvarieties) injects into cohomology.

1. Introduction

Let L be the Plücker polarization on the complex Grassmannian Gr(3,V10), and
let

X ∈ |L|
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be a smooth hypersurface in the linear system of L. The Hodge diamond of the
20-dimensional variety X is

1
2
3
∗
...
∗

0 . . . . . . 0 1 30 1 0 . . . . . . 0
∗
...
∗
3
2
1

(Here ∗ indicates some unspecified number, and all empty entries are 0. The
Hodge numbers of the vanishing cohomology can be found in [4, Theorem 1.1];
alternatively, they can be computed using [7, Theorem 1.1].)

This looks much like the Hodge diamond of a cubic fourfold. To further this
analogy, Debarre and Voisin [4] have constructed, for a general such hypersur-
face X , a hyperkähler fourfold Y that is associated (via an Abel–Jacobi isomor-
phism) to X . Just as in the famous Beauville–Donagi construction starting from
a cubic fourfold [2], the hyperkähler fourfolds Y form a 20-dimensional family,
deformation equivalent to the Hilbert square of a K3 surface. The analogy

Plücker hypersurfaces in Gr(3,V10) ! cubic fourfolds

also exists on the level of derived categories [8, Section 4.4].
In this note we will be interested in the Chow ring A∗(X)Q of the hypersur-

face X . Using her celebrated method of spread of algebraic cycles in families,
Voisin [18, Theorem 2.4] (cf. also the proof of theorem 2.1 below) has already
proven a form of the Bloch conjecture for X : one has vanishing

Ai
hom(X)Q = 0 ∀ i 6= 11

(where Ai
hom(X)Q is defined as the kernel of the cycle class map to singular

cohomology). This is the analogue of the well-known fact that the only non-
trivial Chow group of a cubic fourfold is the Chow group of 1-cycles.

We complete Voisin’s result, by describing the only non-trivial Chow group
of X :
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Theorem (=theorem 2.1). Let L be the Plücker polarization on Gr(3,V10). Let
X ∈ |L| be a smooth hypersurface for which the associated hyperkähler four-
fold Y is smooth. Then A11

hom(X)Q is generated by Grassmannians Gr(3,W6)
contained in X .

This is the analogue of the well-known fact that for a cubic fourfold V ⊂
P5(C), the Chow group A3(V ) is generated by lines [12]. Theorem 2.1 is readily
proven using the spread method of [17], [18], [19]; as such, theorem 2.1 could
naturally have been included in [18].

The second result of this note concerns the ring structure of the Chow ring
of X , given by the intersection product:

Theorem (=theorem 3.1). Let L be the Plücker polarization on Gr(3,V10), and
let X ∈ |L| be a smooth hypersurface. Let R11(X) ⊂ A11(X)Q be the subgroup
containing intersections of two cycles of positive codimension, the Chern class
c11(TX) and the image of the restriction map A11(Gr(3,V10))Q→ A11(X)Q. The
cycle class map induces an injection

R11(X) ↪→ H22(X ,Q) .

This is reminiscent of the famous result about the Chow ring of a K3 surface
[2]. It is also an analogue of the fact that for a cubic fourfold V , the subgroup
A2(V )Q ·A1(V )Q ⊂ A3(V )Q is one-dimensional. Theorem 3.1 suggests that the
hypersurfaces X might have a multiplicative Chow–Künneth decomposition, in
the sense of Shen–Vial [14]. This seems difficult to establish, however (cf.
remark 3.6).

Conventions. In this note, the word variety will refer to a reduced irreducible
scheme of finite type over C. For a smooth variety X , we will denote by A j(X)
the Chow group of codimension j cycles on X with Q–coefficients.

The notations A j
hom(X), Ai

AJ(X) will be used to indicate the subgroups of
homologically trivial (resp. Abel–Jacobi trivial) cycles.

For a morphism between smooth varieties f : X → Y , we will write Γ f ∈
A∗(X×Y ) for the graph of f , and tΓ f ∈ A∗(Y ×X) for the transpose correspon-
dence.

We will write H∗(X) = H∗(X ,Q) for singular cohomology with rational
coefficients.

2. Generators for A11

Theorem 2.1. Let L be the Plücker polarization on Gr(3,V10). Let X ∈ |L| be a
smooth hypersurface for which there is an associated smooth hyperkähler four-
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fold Y . Then A11
hom(X) is generated by the classes of Grassmannians Gr(3,W6)⊂

X (where W6 ⊂V10 is a six-dimensional vector space).

Proof. As mentioned in the introduction, Voisin [18, Theorem 2.4] has proven
that

Ai
hom(X) = 0 ∀i > 11 .

Using the Bloch–Srinivas “decomposition of the diagonal” method [3], [19,
Chapter 3] (in the precise form of [9, Theorem 1.7]), this implies that

Niveau
(
A∗(X)

)
≤ 2

in the language of [9], and also (using [9, Remark 1.8.1])

Ai
AJ(X) = 0 ∀i 6= 11 .

But all intermediate Jacobians of X are trivial (there is no odd-degree cohomol-
ogy), and so

Ai
hom(X) = 0 ∀i 6= 11 .

That is, the 20-dimensional variety X motivically looks like a surface, and so in
particular the Hodge conjecture is true for X [9, Proposition 2.4].

Let
X → B

denote the universal family of smooth hypersurfaces in the linear system |L|.
The base B is the Zariski open in P(∧3V ∗10) parametrizing 3-forms σ such that
the corresponding hyperplane section

Xσ ⊂ Gr(3,V10) ⊂ P(∧3V10)

is smooth.
Let B′ ⊂ B be the Zariski open such that the fibre Xσ has an associated

hyperkähler fourfold Yσ , in the sense of [4]. That is, B′ parametrizes 3-forms σ

such that both Xσ and

Yσ :=
{

W6 ∈ Gr(6,V10) such that σ |W6 = 0
}
⊂ Gr(6,V10)

are smooth of the expected dimension.
We rely on the spread result of Voisin’s, in the following form:

Theorem 2.2 (Voisin [18]). Let Γ ∈ A20(X ×B X ) be a relative correspondence
with the property that

(Γ|Xσ×Xσ
)∗H11,9(Xσ ) = 0 for very general σ ∈ B .

Then
(Γ|Xσ×Xσ

)∗A11
hom(Xσ ) = 0 for all σ ∈ B .
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(For basics on the formalism of relative correspondences, cf. [10, Section
8.1].) Since theorem 2.2 is not stated precisely in this form in [18], we briefly
indicate the proof:

Proof. (of theorem 2.2) The assumption on Γ (plus the shape of the Hodge
diamond of Xσ , and the truth of the Hodge conjecture for Xσ , as shown above)
implies that for the very general σ ∈ B there exist closed subvarieties V i

σ ,W
i
σ ⊂

Xσ with dimV i
σ +dimW i

σ = 20, and such that

Γ|Xσ×Xσ
=

s

∑
i=1

V i
σ ×W i

σ in H40(Xσ ×Xσ ) .

One has the Noether–Lefschetz property that H20(Xσ ,Q)van∩F10 = 0 for very
general Xσ (this is because the Picard number of the very general Debarre–
Voisin hyperkähler fourfold is 1). This implies that all the subvarieties V i

σ ,W
i
σ

are obtained by restriction from subvarieties of Gr(3,V10), hence they exist uni-
versally. (Instead of evoking Noether–Lefschetz, one could also apply Voisin’s
Hilbert scheme argument [17, Proposition 3.7] to obtain that the V i

σ ,W
i
σ exist

universally). That is, there exist closed subvarieties V i,W i ⊂X with codimV i+
codimW i = 20, and a cycle δ supported on ∪V i×BW i, such that(

Γ−δ )|Xσ×Xσ
= 0 in H40(Xσ ×Xσ ) , for very general σ ∈ B .

We now define a relative correspondence

R := Γ−δ ∈ A20(X ×BX ) .

For brevity, from now on let us write M := Gr(3,V10). Since M has trivial
Chow groups (this is true for all Grassmannians, and more generally for linear
varieties, cf. [15, Theorem 3]), and the hypersurfaces Xσ have non-zero primi-
tive cohomology (indeed h11,9(Xσ ) = 1), we are in the set–up of [18]. As in loc.
cit., we consider the blow-up M̃×M of M×M along the diagonal, and the quo-
tient morphism µ : M̃×M→M[2] to the Hilbert scheme of length 2 subschemes.
Let B̄ := PH0(M,L) and as in [18, Lemma 1.3], introduce the incidence variety

I :=
{
(σ ,y) ∈ B̄× M̃×M | s|µ(y) = 0

}
.

Since L is very ample on M, I has the structure of a projective bundle over
M̃×M.

Next, let us consider

f : X̃ ×BX → X ×BX ,
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the blow-up along the relative diagonal ∆X . There is an open inclusion

X̃ ×BX ⊂ I .

Hence, given our relative correspondence R∈An(X ×BX ) as above, there exists
a (non-canonical) cycle R̄ ∈ An(I) such that

R̄|X̃×BX
= f ∗(R) in An(X̃ ×BX ) .

Hence, we have

R̄|
X̃σ×Xσ

=
(

f ∗(R)
)
|
X̃σ×Xσ

= ( fσ )
∗(R|Xσ×Xσ

) = 0 in H40(X̃σ ×Xσ ) ,

for σ ∈ B very general, by assumption on R. (Here, as one might guess, the
notation

fσ : X̃σ ×Xσ → Xσ ×Xσ

indicates the blow-up along the diagonal ∆Xσ
.)

We now apply [18, Proposition 1.6] to the cycle R̄. The result is that there
exists a cycle γ ∈ A20(M×M) such that there is a rational equivalence

R|Xσ×Xσ
= ( fσ )∗(R̄|X̃σ×Xσ

) = γ|Xσ×Xσ
in A20(Xσ ×Xσ ) ∀σ ∈ B .

We know that the restriction of γ acts as zero on A11
hom(Xσ ). (Indeed, let ι : Xσ →

M denote the inclusion, and let a ∈ A11
hom(Xσ ). With the aid of Lieberman’s

lemma [16, Lemma 3.3], one finds that(
(ι× ι)∗(γ)

)
∗(a) = ι

∗
γ∗ι∗(a) in A11

hom(Xσ ) .

But ι∗(a) ∈ A12
hom(M) = 0).

Thus, it follows that(
R|Xσ×Xσ

)
∗ = 0: A11

hom(Xσ ) → A11
hom(Xσ ) ∀σ ∈ B .

For any given σ ∈ B, one can construct the subvarieties V i,W i ⊂X in the above
argument in such a way that they are in general position with respect to the fibre
Xσ . This implies that the restriction

δ |Xσ×Xσ
∈ A20(Xσ ×Xσ )

is a completely decomposed cycle, i.e. a cycle supported on a union of subvari-
eties V σ

j ×W σ
j ⊂ Xσ ×Xσ with codim(V σ

j )+codim(W σ
j ) = 20. But completely

decomposed cycles do not act on A∗hom() [3], and so(
Γ|Xσ×Xσ

)
∗ =

(
(R+δ )|Xσ×Xσ

)
∗ = 0: A11

hom(Xσ ) → A11
hom(Xσ ) ∀σ ∈ B .

This ends the proof of theorem 2.2.
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Let us now pick up the thread of the proof of theorem 2.1. As in [4, Section
2], for any 3-form σ ∈ B′ let

Gσ :=
{
(W3,W6) ∈ Gr(3,V10)×Gr(6,V10)

∣∣W3 ⊂W6 , σ |W6 = 0
}

denote the incidence variety, with projections

Gσ

pσ−→ Xσ

↓ qσ

Yσ .

The fibres of qσ are 9-dimensional Grassmannians Gr(3,W6).
Let Y → B′ denote the universal family of Debarre–Voisin fourfolds (i.e.,

Y ⊂ Gr(6,V10)×B′ is the subvariety of pairs (W6,σ) such that σ |W6 = 0), and
let G → B′ be the relative version of Gσ , with projections

G p−→ X
↓ q

Y .

We will rely on an Abel–Jacobi type result from [4], concerning the vanish-
ing cohomology defined as

H20(Xσ ,Q)van := ker
(
H20(Xσ ,Q) → H22(Gr(3,V10),Q)

)
,

H2(Yσ ,Q)van := ker
(
H2(Yσ ,Q) → H42(Gr(6,V10),Q)

)
.

Lemma 2.1. Let σ ∈ B′ be very general. Then there is an isomorphism

(qσ )∗(pσ )
∗ : H20(Xσ ,Q)van

∼=−→ H2(Yσ ,Q)van .

The inverse isomorphism is given by

H2(Yσ ,Q)van
· 1

µ
g2

−−−→ H6(Yσ ,Q)van
(pσ )∗(qσ )

∗
−−−−−−→ H20(Xσ ,Q)van .

(Here µ ∈Q is some non-zero number independent of σ , and g ∈ A1(Yσ ) is the
Plücker polarization.)

Proof. The first part (i.e. the fact that (qσ )∗(pσ )
∗ is an isomorphism on the

vanishing cohomology) is [4, Theorem 2.2 and Corollary 2.7]. For the second
part, we observe that the dual map (with respect to cup product)

(pσ )∗(qσ )
∗ : H6(Yσ ,Q)van −→ H20(Xσ ,Q)van
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is also an isomorphism. In particular, using hard Lefschetz, this means that the
composition

H2(Yσ ,Q)van
·g2

−→ H6(Yσ ,Q)van
(pσ )∗(qσ )

∗
−−−−−−→ H20(Xσ ,Q)van

(qσ )∗(pσ )
∗

−−−−−−→ H2(Yσ ,Q)van

is non-zero (and actually an isomorphism). Hence, the assignment

< α,β >vv:=< α,(qσ )∗(pσ )
∗(pσ )∗(qσ )

∗(g2 ·β )>Yσ

defines a polarization on H2(Yσ ,Q)van. Here, < α,β >Yσ
is the Beauville–

Bogomolov form. However, as explained in [18, Proof of Lemma 2.2], for very
general σ the Hodge structure on H2(Yσ ,Q)van is simple, and admits a unique
polarization up to a coefficient. That is, there exists a non-zero number µ ∈ Q
such that

< α,β >vv= µ < α,β >Yσ
.

The Beauville–Bogomolov form being non-degenerate, this proves that

(qσ )∗(pσ )
∗(pσ )∗(qσ )

∗(g2 ·β ) = µ β ∀β ∈ H2(Yσ ,Q)van .

Reasoning likewise starting from H20(Xσ ,Q)van (now using the cup product
instead of the Beauville–Bogomolov form), we find that the other composition
is also the identity.

Finally, the fact that the constant µ is the same for all fibres Xσ is because
the map in cohomology H2(Yσ ,Q)van→H20(Xσ ,Q)van is locally constant in the
family.

Let us define the relative correspondence

Γ := µ∆X −Γp ◦ t
Γq ◦Γg2 ◦Γq ◦ t

Γp ∈ A20(X ×B′ X ) ,

where Γg2 ∈ A6(Y ×B′ Y) is the correspondence acting fibrewise as intersection
with two Plücker hyperplanes. Lemma 2.1 implies that

(Γ|Xσ×Xσ
)∗H20(Xσ ,Q)van = 0 for very general σ ∈ B′ .

That is, the relative correspondence Γ satisfies the assumption of theorem 2.2.
Thanks to theorem 2.2, we thus conclude that

(Γ|Xσ×Xσ
)∗A11

hom(Xσ ) = 0 ∀σ ∈ B .

Unraveling the definition of Γ, this means in particular that there is a surjection

(pσ )∗(qσ )
∗ : A4

hom(Yσ ) � A11
hom(Xσ ) ∀σ ∈ B′ .
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As we have seen, for any point y ∈ Yσ the fibre (qσ )
−1(y) is a 9-dimensional

Grassmannian Gr(3,W6) such that the 3-form σ vanishes on W6. Such a Grass-
mannian is contained in the hypersurface Xσ , and so

(pσ )∗(qσ )
∗(y) = Gr(3,W6) in A11(Xσ ) ∀y ∈ Yσ .

The theorem is proven.

Remark 2.3. The above argument actually shows that

A11
hom(Xσ )

(qσ )∗(pσ )
∗

−−−−−−→ A2
hom(Yσ )

·g2

−→ A4
hom(Yσ )

(pσ )∗(qσ )
∗

−−−−−−→ A11
hom(Xσ )

is a non-zero multiple of the identity, for any σ ∈ B′. This is very much remi-
niscent of cubic fourfolds and their Fano varieties of lines [1], [14]. Inspired by
this analogy, it is tempting to ask the following: can one somehow prove that

Im
(
A11(Xσ )→ A4(Yσ )

)
is the same as the subgroup of 0-cycles supported on a uniruled divisor ?

3. An injectivity result

Theorem 3.1. Let L be the Plücker polarization on Gr(3,V10), and let X ∈ |L|
be a smooth hypersurface. Let R11(X) ⊂ A11(X)Q be the subgroup containing
intersections of two cycles of positive codimension, the Chern class c11(TX) and
the image of the restriction map A11(Gr(3,V10))→A11(X). The cycle class map
induces an injection

R11(X) ↪→ H22(X ,Q) .

In order to prove theorem 3.1, we first establish a “generalized Franchetta
conjecture” type of statement (for more on the generalized Franchetta conjec-
ture, cf. [11], [13], [6]):

Theorem 3.2. Let X → B denote the universal family of Plücker hyperplanes
in Gr(3,V10) (as in section 2). Let Ψ ∈ A11(X ) be such that

Ψ|Xσ
= 0 in H22(Xσ ) ∀σ ∈ B .

Then
Ψ|Xσ

= 0 in A11(Xσ ) ∀σ ∈ B .

Proof. This is a two-step argument:
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Claim 3.3. There is equality

Im
(
A11(X )→ A11(Xσ )

)
= Im

(
A11(Gr(3,V10))→ A11(Xσ )

)
∀σ ∈ B .

Claim 3.4. Restriction of the cycle class map induces an injection

Im
(
A11(Gr(3,V10))→ A11(Xσ )

)
↪→ H22(Xσ ) ∀σ ∈ B .

Clearly, the combination of these two claims proves theorem 3.2. To prove
claim 3.3, let B̄ := PH0(Gr(3,V10),L) and let

X̄ π−→ Gr(3,V10)
↓ φ

B̄

denote the universal hyperplane (including the singular hyperplanes). The mor-
phism π is a projective bundle, and so any Ψ ∈ A11(X̄ ) can be written

Ψ = ∑
`

π
∗(a`) ·φ ∗(h`) in A11(X̄ ) ,

where a` ∈ A11−`(Gr(3,V10)) and h := c1(OB̄(1)) ∈ A1(B̄). For any σ ∈ B, the
restriction of φ ∗(h) to the fibre Xσ vanishes, and so

Ψ|Xσ
= a0|Xσ

in A11(Xσ ) ,

which establishes claim 3.3.
Let us prove claim 3.4. For any given σ ∈ B, let ι : Xσ → Gr(3,V10) denote

the inclusion morphism. We know that

ι∗ι
∗ : A j(Gr(3,V10)) → A j+1(Gr(3,V10))

equals multiplication by the ample class c1(L) ∈ A1(Gr(3,V10)). Now let

b ∈ A11(Gr(3,V10))

be such that the restriction ι∗(b) ∈ A11(Xσ ) is homologically trivial. Then we
have that also

b · c1(L) = ι∗ι
∗(b) = 0 in H24(Gr(3,V10)) = A12(Gr(3,V10)) .

To conclude that b = 0, it suffices to show that

·c1(L) : A11(Gr(3,V10)) → A12(Gr(3,V10))
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is injective (and hence, by hard Lefschetz, an isomorphism). By hard Lefschetz,
this is equivalent to showing that

·c1(L) : A9(Gr(3,V10)) → A10(Gr(3,V10))

is surjective (hence an isomorphism).
According to [5, Theorem 5.26], the Chow ring of the Grassmannian is of

the form
A∗(Gr(3,V10)) =Q[c1,c2,c3]/I ,

where c j ∈ A j(Gr(3,V10)) are Chern classes of the universal subbundle, and I is
a certain complete intersection ideal generated by the 3 relations

c8
1 +7c6

1c2 +15c4
1c2

2 +10c2
1c3

2 + · · ·+3c2c2
3 ,

c9
1 +8c7

1c2 +21c5
1c2

2 +20c3
1c3

2 + · · ·+ c3
3 ,

c10
1 +9c8

1c2 +28c6
1c2

2 +35c4
1c3

2 + · · ·+4c1c3
3 ,

in degree 8,9,10. With the aid of the relations in I, we find that

A10(Gr(3,V10)) =Q[c10
1 ,c8

1c2,c6
1c2

2,c
4
1c3

2,c
7
1c3,c5

1c2c3,c4
1c2

3,c
3
1c2

2c3,

c2
1c2c2

3,c1c3
2c3]

is 10-dimensional (the classes c2
1c4

2,c
5
2 are eliminated thanks to the relation in de-

gree 8 containing c4
2; the class c1c3

3 is eliminated thanks to the relation in degree
9; the class c2

2c2
3 is eliminated thanks to the relation in degree 10). Inspecting

this description of A10(Gr(3,V10)), we observe that the inclusion

c1 ·A9(Gr(3,V10)) ⊂ A10(Gr(3,V10))

is an equality. Since c1 is proportional to c1(L), this proves claim 3.4.

It remains to prove theorem 3.1:

Proof. (of theorem 3.1) Clearly, the Chern class is universally defined: for any
σ ∈ B, we have

c11(TXσ
) = c11(TX/B)|Xσ

.

Also, the image
Im
(
A11(Gr(3,V10))→ A11(Xσ )

)
consists of universally defined cycles. (For a given a ∈ A11(Gr(3,V10)), the
relative cycle

(a×B)|X ∈ A11(X )

does the job.)
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Likewise, for any j < 10 the fact that A j
hom(Xσ ) = 0, combined with weak

Lefschetz in cohomology, implies that

A j(Xσ ) = Im
(
A j(Gr(3,V10))→ A j(Xσ )

)
,

and so A j(Xσ ) consists of universally defined cycles for j < 10. In particular,
all intersections

A j(Xσ ) ·A11− j(Xσ ) ⊂ A11(Xσ ) , 1 < j < 10

consist of universally defined cycles.
It remains to make sense of intersections

A10(Xσ ) ·A1(Xσ ) ⊂ A11(Xσ ) .

To this end, we note that A1(Xσ ) is 1-dimensional, generated by the restriction g
of the Plücker line bundle L. Let ι : Xσ → Gr(3,V10) denote the inclusion. The
normal bundle formula implies that

a ·g = ι
∗
ι∗(a) in A11(Xσ ) ∀ a ∈ A10(Xσ ) .

It follows that

A10(Xσ ) ·A1(Xσ ) ⊂ Im
(
A11(Gr(3,V10))

ι∗−→ A11(Xσ )
)

also consists of universally defined cycles.
In conclusion, we have shown that R11(Xσ ) consists of universally defined

cycles, and so theorem 3.1 is a corollary of theorem 3.2.

Remark 3.5. There are more cycle classes that can be put in the subgroup
R11(X) of theorem 3.1. For instance, let Yσ be the hyperkähler fourfold as-
sociated to X = Xσ , and assume Yσ is smooth. Then (as we have seen above)
the class

(pσ )∗(qσ )
∗c4(TYσ

) ∈ A11(X)

is universally defined, hence it can be added to the subgroup R11(X) of theorem
3.1.

Remark 3.6. Theorem 3.1 is an indication that perhaps the hypersurfaces X ⊂
Gr(3,V10) have a multiplicative Chow–Künneth decomposition, in the sense of
[14, Chapter 8]. Unfortunately, establishing this seems difficult; one would need
something like theorem 3.2 for

A40(X ×BX ×BX ) .
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