ON THE CHOW RING OF CERTAIN HYPERSURFACES IN A GRASSMANNIAN

ROBERT LATERVEER

This note is about Plücker hyperplane sections X of the Grassmannian $\operatorname{Gr}\left(3, V_{10}\right)$. Inspired by the analogy with cubic fourfolds, we prove that the only non-trivial Chow group of X is generated by Grassmannians of type $\operatorname{Gr}\left(3, W_{6}\right)$ contained in X. We also prove that a certain subring of the Chow ring of X (containing all intersections of positive-codimensional subvarieties) injects into cohomology.

1. Introduction

Let \mathcal{L} be the Plücker polarization on the complex Grassmannian $\operatorname{Gr}\left(3, V_{10}\right)$, and let

$$
X \in|\mathcal{L}|
$$

Submission received : 28 July 2018
AMS 2010 Subject Classification: 14C15, 14C25, 14C30
Keywords: Algebraic cycles, Chow ring, motives, hyperkähler varieties, Beauville "splitting property"
be a smooth hypersurface in the linear system of \mathcal{L}. The Hodge diamond of the 20-dimensional variety X is

(Here $*$ indicates some unspecified number, and all empty entries are 0 . The Hodge numbers of the vanishing cohomology can be found in [4, Theorem 1.1]; alternatively, they can be computed using [7, Theorem 1.1].)

This looks much like the Hodge diamond of a cubic fourfold. To further this analogy, Debarre and Voisin [4] have constructed, for a general such hypersurface X, a hyperkähler fourfold Y that is associated (via an Abel-Jacobi isomorphism) to X. Just as in the famous Beauville-Donagi construction starting from a cubic fourfold [2], the hyperkähler fourfolds Y form a 20-dimensional family, deformation equivalent to the Hilbert square of a K3 surface. The analogy

Plücker hypersurfaces in $\operatorname{Gr}\left(3, V_{10}\right) \leftrightarrow$ cubic fourfolds
also exists on the level of derived categories [8, Section 4.4].
In this note we will be interested in the Chow ring $A^{*}(X)_{\mathbb{Q}}$ of the hypersurface X. Using her celebrated method of spread of algebraic cycles in families, Voisin [18, Theorem 2.4] (cf. also the proof of theorem 2.1 below) has already proven a form of the Bloch conjecture for X : one has vanishing

$$
A_{h o m}^{i}(X)_{\mathbb{Q}}=0 \quad \forall i \neq 11
$$

(where $A_{\text {hom }}^{i}(X)_{\mathbb{Q}}$ is defined as the kernel of the cycle class map to singular cohomology). This is the analogue of the well-known fact that the only nontrivial Chow group of a cubic fourfold is the Chow group of 1-cycles.

We complete Voisin's result, by describing the only non-trivial Chow group of X :

Theorem (=theorem 2.1). Let \mathcal{L} be the Plücker polarization on $\operatorname{Gr}\left(3, V_{10}\right)$. Let $X \in|\mathcal{L}|$ be a smooth hypersurface for which the associated hyperkähler fourfold Y is smooth. Then $A_{\text {hom }}^{11}(X)_{\mathbb{Q}}$ is generated by Grassmannians $\operatorname{Gr}\left(3, W_{6}\right)$ contained in X.

This is the analogue of the well-known fact that for a cubic fourfold $V \subset$ $\mathbb{P}^{5}(\mathbb{C})$, the Chow group $A^{3}(V)$ is generated by lines [12]. Theorem 2.1 is readily proven using the spread method of [17], [18], [19]; as such, theorem 2.1 could naturally have been included in [18].

The second result of this note concerns the ring structure of the Chow ring of X, given by the intersection product:

Theorem (=theorem 3.1). Let \mathcal{L} be the Plücker polarization on $\operatorname{Gr}\left(3, V_{10}\right)$, and let $X \in|\mathcal{L}|$ be a smooth hypersurface. Let $R^{11}(X) \subset A^{11}(X)_{\mathbb{Q}}$ be the subgroup containing intersections of two cycles of positive codimension, the Chern class $c_{11}\left(T_{X}\right)$ and the image of the restriction map $A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)_{\mathbb{Q}} \rightarrow A^{11}(X)_{\mathbb{Q}}$. The cycle class map induces an injection

$$
R^{11}(X) \hookrightarrow H^{22}(X, \mathbb{Q})
$$

This is reminiscent of the famous result about the Chow ring of a K3 surface [2]. It is also an analogue of the fact that for a cubic fourfold V, the subgroup $A^{2}(V)_{\mathbb{Q}} \cdot A^{1}(V)_{\mathbb{Q}} \subset A^{3}(V)_{\mathbb{Q}}$ is one-dimensional. Theorem 3.1 suggests that the hypersurfaces X might have a multiplicative Chow-Künneth decomposition, in the sense of Shen-Vial [14]. This seems difficult to establish, however (cf. remark 3.6).

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite type over \mathbb{C}. For a smooth variety X, we will denote by $A^{j}(X)$ the Chow group of codimension j cycles on X with \mathbb{Q}-coefficients.

The notations $A_{h o m}^{j}(X), A_{A J}^{i}(X)$ will be used to indicate the subgroups of homologically trivial (resp. Abel-Jacobi trivial) cycles.

For a morphism between smooth varieties $f: X \rightarrow Y$, we will write $\Gamma_{f} \in$ $A^{*}(X \times Y)$ for the graph of f, and ${ }^{t} \Gamma_{f} \in A^{*}(Y \times X)$ for the transpose correspondence.

We will write $H^{*}(X)=H^{*}(X, \mathbb{Q})$ for singular cohomology with rational coefficients.

2. Generators for A^{11}

Theorem 2.1. Let \mathcal{L} be the Plücker polarization on $\operatorname{Gr}\left(3, V_{10}\right)$. Let $X \in|\mathcal{L}|$ be a smooth hypersurface for which there is an associated smooth hyperkähler four-
fold Y. Then $A_{\text {hom }}^{11}(X)$ is generated by the classes of Grassmannians $\operatorname{Gr}\left(3, W_{6}\right) \subset$ X (where $W_{6} \subset V_{10}$ is a six-dimensional vector space).

Proof. As mentioned in the introduction, Voisin [18, Theorem 2.4] has proven that

$$
A_{h o m}^{i}(X)=0 \quad \forall i>11
$$

Using the Bloch-Srinivas "decomposition of the diagonal" method [3], [19, Chapter 3] (in the precise form of [9, Theorem 1.7]), this implies that

$$
\operatorname{Niveau}\left(A^{*}(X)\right) \leq 2
$$

in the language of [9], and also (using [9, Remark 1.8.1])

$$
A_{A J}^{i}(X)=0 \quad \forall i \neq 11
$$

But all intermediate Jacobians of X are trivial (there is no odd-degree cohomology), and so

$$
A_{h o m}^{i}(X)=0 \quad \forall i \neq 11
$$

That is, the 20-dimensional variety X motivically looks like a surface, and so in particular the Hodge conjecture is true for X [9, Proposition 2.4].

Let

$$
\mathcal{X} \rightarrow B
$$

denote the universal family of smooth hypersurfaces in the linear system $|\mathcal{L}|$. The base B is the Zariski open in $\mathbb{P}\left(\wedge^{3} V_{10}^{*}\right)$ parametrizing 3-forms σ such that the corresponding hyperplane section

$$
X_{\sigma} \subset \operatorname{Gr}\left(3, V_{10}\right) \subset \mathbb{P}\left(\wedge^{3} V_{10}\right)
$$

is smooth.
Let $B^{\prime} \subset B$ be the Zariski open such that the fibre X_{σ} has an associated hyperkähler fourfold Y_{σ}, in the sense of [4]. That is, B^{\prime} parametrizes 3-forms σ such that both X_{σ} and

$$
Y_{\sigma}:=\left\{W_{6} \in \operatorname{Gr}\left(6, V_{10}\right) \text { such that }\left.\sigma\right|_{W_{6}}=0\right\} \subset \operatorname{Gr}\left(6, V_{10}\right)
$$

are smooth of the expected dimension.
We rely on the spread result of Voisin's, in the following form:
Theorem 2.2 (Voisin [18]). Let $\Gamma \in A^{20}\left(\mathcal{X} \times{ }_{B} \mathcal{X}\right)$ be a relative correspondence with the property that

$$
\left(\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*} H^{11,9}\left(X_{\sigma}\right)=0 \text { for very general } \sigma \in B
$$

Then

$$
\left(\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*} A_{h o m}^{11}\left(X_{\sigma}\right)=0 \text { for all } \sigma \in B
$$

(For basics on the formalism of relative correspondences, cf. [10, Section 8.1].) Since theorem 2.2 is not stated precisely in this form in [18], we briefly indicate the proof:

Proof. (of theorem 2.2) The assumption on Γ (plus the shape of the Hodge diamond of X_{σ}, and the truth of the Hodge conjecture for X_{σ}, as shown above) implies that for the very general $\sigma \in B$ there exist closed subvarieties $V_{\sigma}^{i}, W_{\sigma}^{i} \subset$ X_{σ} with $\operatorname{dim} V_{\sigma}^{i}+\operatorname{dim} W_{\sigma}^{i}=20$, and such that

$$
\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}=\sum_{i=1}^{s} V_{\sigma}^{i} \times W_{\sigma}^{i} \quad \text { in } H^{40}\left(X_{\sigma} \times X_{\sigma}\right) .
$$

One has the Noether-Lefschetz property that $H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{\text {van }} \cap F^{10}=0$ for very general X_{σ} (this is because the Picard number of the very general DebarreVoisin hyperkähler fourfold is 1). This implies that all the subvarieties $V_{\sigma}^{i}, W_{\sigma}^{i}$ are obtained by restriction from subvarieties of $\operatorname{Gr}\left(3, V_{10}\right)$, hence they exist universally. (Instead of evoking Noether-Lefschetz, one could also apply Voisin's Hilbert scheme argument [17, Proposition 3.7] to obtain that the $V_{\sigma}^{i}, W_{\sigma}^{i}$ exist universally). That is, there exist closed subvarieties $\mathcal{V}^{i}, \mathcal{W}^{i} \subset \mathcal{X}$ with codim $\mathcal{V}^{i}+$ $\operatorname{codim} \mathcal{W}^{i}=20$, and a cycle δ supported on $\cup \mathcal{V}^{i} \times{ }_{B} \mathcal{W}^{i}$, such that

$$
\left.(\Gamma-\delta)\right|_{X_{\sigma} \times X_{\sigma}}=0 \text { in } H^{40}\left(X_{\sigma} \times X_{\sigma}\right), \quad \text { for very general } \sigma \in B
$$

We now define a relative correspondence

$$
R:=\Gamma-\delta \in A^{20}\left(\mathcal{X} \times_{B} \mathcal{X}\right)
$$

For brevity, from now on let us write $M:=\operatorname{Gr}\left(3, V_{10}\right)$. Since M has trivial Chow groups (this is true for all Grassmannians, and more generally for linear varieties, cf. [15, Theorem 3]), and the hypersurfaces X_{σ} have non-zero primitive cohomology (indeed $h^{11,9}\left(X_{\sigma}\right)=1$), we are in the set-up of [18]. As in loc. cit., we consider the blow-up $\widetilde{M \times M}$ of $M \times M$ along the diagonal, and the quotient morphism $\mu: \widetilde{M \times M} \rightarrow M^{[2]}$ to the Hilbert scheme of length 2 subschemes. Let $\bar{B}:=\mathbb{P} H^{0}(M, \mathcal{L})$ and as in [18, Lemma 1.3], introduce the incidence variety

$$
I:=\left\{(\sigma, y) \in \bar{B} \times \widetilde{M \times M}|s|_{\mu(y)}=0\right\}
$$

Since \mathcal{L} is very ample on M, I has the structure of a projective bundle over $\widetilde{M \times M}$.

Next, let us consider

$$
f: \widetilde{\mathcal{X} \times_{B} \mathcal{X}} \rightarrow \mathcal{X} \times_{B} \mathcal{X}
$$

the blow-up along the relative diagonal $\Delta_{\mathcal{X}}$. There is an open inclusion

$$
\widetilde{\mathcal{X} \times_{B} \mathcal{X}} \subset I
$$

Hence, given our relative correspondence $R \in A^{n}\left(\mathcal{X} \times{ }_{B} \mathcal{X}\right)$ as above, there exists a (non-canonical) cycle $\bar{R} \in A^{n}(I)$ such that

$$
\left.\bar{R}\right|_{\widetilde{\mathcal{X} \times_{B} \mathcal{X}}}=f^{*}(R) \text { in } A^{n}\left(\widetilde{\mathcal{X} \times_{B} \mathcal{X}}\right) .
$$

Hence, we have

$$
\left.\bar{R}\right|_{X_{\sigma} \times X_{\sigma}}=\left.\left(f^{*}(R)\right)\right|_{\widetilde{X_{\sigma} \times X_{\sigma}}}=\left(f_{\sigma}\right)^{*}\left(\left.R\right|_{X_{\sigma} \times X_{\sigma}}\right)=0 \quad \text { in } H^{40}\left(\widetilde{X_{\sigma} \times X_{\sigma}}\right),
$$

for $\sigma \in B$ very general, by assumption on R. (Here, as one might guess, the notation

$$
f_{\sigma}: \widetilde{X_{\sigma} \times X_{\sigma}} \rightarrow X_{\sigma} \times X_{\sigma}
$$

indicates the blow-up along the diagonal $\Delta_{X_{\sigma}}$.)
We now apply [18, Proposition 1.6] to the cycle \bar{R}. The result is that there exists a cycle $\gamma \in A^{20}(M \times M)$ such that there is a rational equivalence

$$
\left.R\right|_{X_{\sigma} \times X_{\sigma}}=\left(f_{\sigma}\right)_{*}\left(\left.\bar{R}\right|_{X_{\sigma} \times X_{\sigma}}\right)=\left.\gamma\right|_{X_{\sigma} \times X_{\sigma}} \quad \text { in } A^{20}\left(X_{\sigma} \times X_{\sigma}\right) \quad \forall \sigma \in B
$$

We know that the restriction of γ acts as zero on $A_{\text {hom }}^{11}\left(X_{\sigma}\right)$. (Indeed, let $l: X_{\sigma} \rightarrow$ M denote the inclusion, and let $a \in A_{h o m}^{11}\left(X_{\sigma}\right)$. With the aid of Lieberman's lemma [16, Lemma 3.3], one finds that

$$
\left((\boldsymbol{\imath} \times \boldsymbol{\imath})^{*}(\gamma)\right)_{*}(a)=\imath^{*} \gamma_{*} l_{*}(a) \text { in } A_{h o m}^{11}\left(X_{\sigma}\right) .
$$

But $\left.\boldsymbol{l}_{*}(a) \in A_{h o m}^{12}(M)=0\right)$.
Thus, it follows that

$$
\left(\left.R\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*}=0: \quad A_{h o m}^{11}\left(X_{\sigma}\right) \rightarrow A_{h o m}^{11}\left(X_{\sigma}\right) \quad \forall \sigma \in B
$$

For any given $\sigma \in B$, one can construct the subvarieties $\mathcal{V}^{i}, \mathcal{W}^{i} \subset \mathcal{X}$ in the above argument in such a way that they are in general position with respect to the fibre X_{σ}. This implies that the restriction

$$
\left.\delta\right|_{X_{\sigma} \times X_{\sigma}} \in A^{20}\left(X_{\sigma} \times X_{\sigma}\right)
$$

is a completely decomposed cycle, i.e. a cycle supported on a union of subvarieties $V_{j}^{\sigma} \times W_{j}^{\sigma} \subset X_{\sigma} \times X_{\sigma}$ with $\operatorname{codim}\left(V_{j}^{\sigma}\right)+\operatorname{codim}\left(W_{j}^{\sigma}\right)=20$. But completely decomposed cycles do not act on $A_{h o m}^{*}()$ [3], and so

$$
\left(\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*}=\left(\left.(R+\delta)\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*}=0: \quad A_{h o m}^{11}\left(X_{\sigma}\right) \rightarrow A_{h o m}^{11}\left(X_{\sigma}\right) \quad \forall \sigma \in B .
$$

This ends the proof of theorem 2.2.

Let us now pick up the thread of the proof of theorem 2.1. As in [4, Section 2], for any 3-form $\sigma \in B^{\prime}$ let

$$
G_{\sigma}:=\left\{\left(W_{3}, W_{6}\right) \in \operatorname{Gr}\left(3, V_{10}\right) \times \operatorname{Gr}\left(6, V_{10}\right)\left|W_{3} \subset W_{6}, \sigma\right|_{W_{6}}=0\right\}
$$

denote the incidence variety, with projections

$$
\begin{array}{lll}
G_{\sigma} & \xrightarrow{p_{\sigma}} & X_{\sigma} \\
\downarrow q_{\sigma} & & \\
Y_{\sigma} . & &
\end{array}
$$

The fibres of q_{σ} are 9-dimensional Grassmannians $\operatorname{Gr}\left(3, W_{6}\right)$.
Let $\mathcal{Y} \rightarrow B^{\prime}$ denote the universal family of Debarre-Voisin fourfolds (i.e., $\mathcal{Y} \subset \operatorname{Gr}\left(6, V_{10}\right) \times B^{\prime}$ is the subvariety of pairs $\left(W_{6}, \sigma\right)$ such that $\left.\left.\sigma\right|_{W_{6}}=0\right)$, and let $\mathcal{G} \rightarrow B^{\prime}$ be the relative version of G_{σ}, with projections

$$
\begin{array}{lll}
\mathcal{G} & \xrightarrow{p} & \mathcal{X} \\
\downarrow q & & \\
\mathcal{Y} . & &
\end{array}
$$

We will rely on an Abel-Jacobi type result from [4], concerning the vanishing cohomology defined as

$$
\begin{aligned}
H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{v a n} & :=\operatorname{ker}\left(H^{20}\left(X_{\sigma}, \mathbb{Q}\right) \rightarrow H^{22}\left(\operatorname{Gr}\left(3, V_{10}\right), \mathbb{Q}\right)\right) \\
H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }} & :=\operatorname{ker}\left(H^{2}\left(Y_{\sigma}, \mathbb{Q}\right) \rightarrow H^{42}\left(\operatorname{Gr}\left(6, V_{10}\right), \mathbb{Q}\right)\right)
\end{aligned}
$$

Lemma 2.1. Let $\sigma \in B^{\prime}$ be very general. Then there is an isomorphism

$$
\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}: H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{v a n} \stackrel{\cong}{\rightrightarrows} H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{v a n} .
$$

The inverse isomorphism is given by

$$
H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{v a n} \xrightarrow{\frac{\cdot 1}{\mu} g^{2}} H^{6}\left(Y_{\sigma}, \mathbb{Q}\right)_{v a n} \xrightarrow{\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}} H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{v a n}
$$

(Here $\mu \in \mathbb{Q}$ is some non-zero number independent of σ, and $g \in A^{1}\left(Y_{\sigma}\right)$ is the Plücker polarization.)

Proof. The first part (i.e. the fact that $\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}$ is an isomorphism on the vanishing cohomology) is [4, Theorem 2.2 and Corollary 2.7]. For the second part, we observe that the dual map (with respect to cup product)

$$
\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}: H^{6}\left(Y_{\sigma}, \mathbb{Q}\right)_{v a n} \rightarrow H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{v a n}
$$

is also an isomorphism. In particular, using hard Lefschetz, this means that the composition

$$
\begin{aligned}
H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }} \xrightarrow{g^{2}} H^{6}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }} & \xrightarrow{\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}} H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{\text {van }} \\
& \xrightarrow{\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}} H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }}
\end{aligned}
$$

is non-zero (and actually an isomorphism). Hence, the assignment

$$
<\alpha, \beta>_{\mathrm{vv}}:=<\alpha,\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}\left(g^{2} \cdot \beta\right)>_{Y_{\sigma}}
$$

defines a polarization on $H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }}$. Here, $\left\langle\alpha, \beta>_{Y_{\sigma}}\right.$ is the BeauvilleBogomolov form. However, as explained in [18, Proof of Lemma 2.2], for very general σ the Hodge structure on $H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }}$ is simple, and admits a unique polarization up to a coefficient. That is, there exists a non-zero number $\mu \in \mathbb{Q}$ such that

$$
<\alpha, \beta>_{\mathrm{vv}}=\mu<\alpha, \beta>_{Y_{\sigma}} .
$$

The Beauville-Bogomolov form being non-degenerate, this proves that

$$
\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}\left(g^{2} \cdot \beta\right)=\mu \beta \quad \forall \beta \in H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }} .
$$

Reasoning likewise starting from $H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{\text {van }}$ (now using the cup product instead of the Beauville-Bogomolov form), we find that the other composition is also the identity.

Finally, the fact that the constant μ is the same for all fibres X_{σ} is because the map in cohomology $H^{2}\left(Y_{\sigma}, \mathbb{Q}\right)_{\text {van }} \rightarrow H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{\text {van }}$ is locally constant in the family.

Let us define the relative correspondence

$$
\Gamma:=\mu \Delta \mathcal{X}-\Gamma_{p} \circ{ }^{t} \Gamma_{q} \circ \Gamma_{g^{2}} \circ \Gamma_{q} \circ t \Gamma_{p} \in A^{20}\left(\mathcal{X} \times_{B^{\prime}} \mathcal{X}\right),
$$

where $\Gamma_{g^{2}} \in A^{6}\left(\mathcal{Y} \times_{B^{\prime}} \mathcal{Y}\right)$ is the correspondence acting fibrewise as intersection with two Plücker hyperplanes. Lemma 2.1 implies that

$$
\left(\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*} H^{20}\left(X_{\sigma}, \mathbb{Q}\right)_{\text {van }}=0 \text { for very general } \sigma \in B^{\prime} .
$$

That is, the relative correspondence Γ satisfies the assumption of theorem 2.2. Thanks to theorem 2.2, we thus conclude that

$$
\left(\left.\Gamma\right|_{X_{\sigma} \times X_{\sigma}}\right)_{*} A_{\text {hom }}^{11}\left(X_{\sigma}\right)=0 \quad \forall \sigma \in B .
$$

Unraveling the definition of Γ, this means in particular that there is a surjection

$$
\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}: A_{\text {hom }}^{4}\left(Y_{\sigma}\right) \rightarrow A_{\text {hom }}^{11}\left(X_{\sigma}\right) \quad \forall \sigma \in B^{\prime} .
$$

As we have seen, for any point $y \in Y_{\sigma}$ the fibre $\left(q_{\sigma}\right)^{-1}(y)$ is a 9-dimensional Grassmannian $\operatorname{Gr}\left(3, W_{6}\right)$ such that the 3 -form σ vanishes on W_{6}. Such a Grassmannian is contained in the hypersurface X_{σ}, and so

$$
\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}(y)=\operatorname{Gr}\left(3, W_{6}\right) \quad \text { in } A^{11}\left(X_{\sigma}\right) \quad \forall y \in Y_{\sigma}
$$

The theorem is proven.
Remark 2.3. The above argument actually shows that

$$
A_{h o m}^{11}\left(X_{\sigma}\right) \xrightarrow{\left(q_{\sigma}\right)_{*}\left(p_{\sigma}\right)^{*}} A_{h o m}^{2}\left(Y_{\sigma}\right) \xrightarrow{. g^{2}} A_{h o m}^{4}\left(Y_{\sigma}\right) \xrightarrow{\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*}} A_{h o m}^{11}\left(X_{\sigma}\right)
$$

is a non-zero multiple of the identity, for any $\sigma \in B^{\prime}$. This is very much reminiscent of cubic fourfolds and their Fano varieties of lines [1], [14]. Inspired by this analogy, it is tempting to ask the following: can one somehow prove that

$$
\operatorname{Im}\left(A^{11}\left(X_{\sigma}\right) \rightarrow A^{4}\left(Y_{\sigma}\right)\right)
$$

is the same as the subgroup of 0-cycles supported on a uniruled divisor?

3. An injectivity result

Theorem 3.1. Let \mathcal{L} be the Plücker polarization on $\operatorname{Gr}\left(3, V_{10}\right)$, and let $X \in|\mathcal{L}|$ be a smooth hypersurface. Let $R^{11}(X) \subset A^{11}(X)_{\mathbb{Q}}$ be the subgroup containing intersections of two cycles of positive codimension, the Chern class $c_{11}\left(T_{X}\right)$ and the image of the restriction map $A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{11}(X)$. The cycle class map induces an injection

$$
R^{11}(X) \hookrightarrow H^{22}(X, \mathbb{Q})
$$

In order to prove theorem 3.1, we first establish a "generalized Franchetta conjecture" type of statement (for more on the generalized Franchetta conjecture, cf. [11], [13], [6]):

Theorem 3.2. Let $\mathcal{X} \rightarrow B$ denote the universal family of Plücker hyperplanes in $\operatorname{Gr}\left(3, V_{10}\right)$ (as in section 2). Let $\Psi \in A^{11}(\mathcal{X})$ be such that

$$
\left.\Psi\right|_{X_{\sigma}}=0 \text { in } H^{22}\left(X_{\sigma}\right) \quad \forall \sigma \in B
$$

Then

$$
\left.\Psi\right|_{X_{\sigma}}=0 \text { in } A^{11}\left(X_{\sigma}\right) \quad \forall \sigma \in B
$$

Proof. This is a two-step argument:

Claim 3.3. There is equality

$$
\operatorname{Im}\left(A^{11}(\mathcal{X}) \rightarrow A^{11}\left(X_{\sigma}\right)\right)=\operatorname{Im}\left(A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{11}\left(X_{\sigma}\right)\right) \quad \forall \sigma \in B
$$

Claim 3.4. Restriction of the cycle class map induces an injection

$$
\operatorname{Im}\left(A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{11}\left(X_{\sigma}\right)\right) \hookrightarrow H^{22}\left(X_{\sigma}\right) \quad \forall \sigma \in B
$$

Clearly, the combination of these two claims proves theorem 3.2. To prove claim 3.3, let $\bar{B}:=\mathbb{P} H^{0}\left(\operatorname{Gr}\left(3, V_{10}\right), \mathcal{L}\right)$ and let

denote the universal hyperplane (including the singular hyperplanes). The morphism π is a projective bundle, and so any $\Psi \in A^{11}(\overline{\mathcal{X}})$ can be written

$$
\Psi=\sum_{\ell} \pi^{*}\left(a_{\ell}\right) \cdot \phi^{*}\left(h^{\ell}\right) \quad \text { in } A^{11}(\overline{\mathcal{X}})
$$

where $a_{\ell} \in A^{11-\ell}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)$ and $h:=c_{1}\left(\mathcal{O}_{\bar{B}}(1)\right) \in A^{1}(\bar{B})$. For any $\sigma \in B$, the restriction of $\phi^{*}(h)$ to the fibre X_{σ} vanishes, and so

$$
\left.\Psi\right|_{X_{\sigma}}=\left.a_{0}\right|_{X_{\sigma}} \quad \text { in } A^{11}\left(X_{\sigma}\right)
$$

which establishes claim 3.3.
Let us prove claim 3.4. For any given $\sigma \in B$, let $\imath: X_{\sigma} \rightarrow \operatorname{Gr}\left(3, V_{10}\right)$ denote the inclusion morphism. We know that

$$
\imath_{*} \imath^{*}: \quad A^{j}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{j+1}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)
$$

equals multiplication by the ample class $c_{1}(\mathcal{L}) \in A^{1}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)$. Now let

$$
b \in A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)
$$

be such that the restriction $\imath^{*}(b) \in A^{11}\left(X_{\sigma}\right)$ is homologically trivial. Then we have that also

$$
b \cdot c_{1}(\mathcal{L})=l_{*} l^{*}(b)=0 \quad \text { in } H^{24}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)=A^{12}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) .
$$

To conclude that $b=0$, it suffices to show that

$$
\cdot c_{1}(\mathcal{L}): A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{12}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)
$$

is injective (and hence, by hard Lefschetz, an isomorphism). By hard Lefschetz, this is equivalent to showing that

$$
\cdot c_{1}(\mathcal{L}): A^{9}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{10}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)
$$

is surjective (hence an isomorphism).
According to [5, Theorem 5.26], the Chow ring of the Grassmannian is of the form

$$
A^{*}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)=\mathbb{Q}\left[c_{1}, c_{2}, c_{3}\right] / I
$$

where $c_{j} \in A^{j}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)$ are Chern classes of the universal subbundle, and I is a certain complete intersection ideal generated by the 3 relations

$$
\begin{aligned}
& c_{1}^{8}+7 c_{1}^{6} c_{2}+15 c_{1}^{4} c_{2}^{2}+10 c_{1}^{2} c_{2}^{3}+\cdots+3 c_{2} c_{3}^{2} \\
& c_{1}^{9}+8 c_{1}^{7} c_{2}+21 c_{1}^{5} c_{2}^{2}+20 c_{1}^{3} c_{2}^{3}+\cdots+c_{3}^{3} \\
& c_{1}^{10}+9 c_{1}^{8} c_{2}+28 c_{1}^{6} c_{2}^{2}+35 c_{1}^{4} c_{2}^{3}+\cdots+4 c_{1} c_{3}^{3}
\end{aligned}
$$

in degree $8,9,10$. With the aid of the relations in I, we find that

$$
\begin{array}{r}
A^{10}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)=\mathbb{Q}\left[c_{1}^{10}, c_{1}^{8} c_{2}, c_{1}^{6} c_{2}^{2}, c_{1}^{4} c_{2}^{3}, c_{1}^{7} c_{3}, c_{1}^{5} c_{2} c_{3}, c_{1}^{4} c_{3}^{2}, c_{1}^{3} c_{2}^{2} c_{3}\right. \\
\left.c_{1}^{2} c_{2} c_{3}^{2}, c_{1} c_{2}^{3} c_{3}\right]
\end{array}
$$

is 10 -dimensional (the classes $c_{1}^{2} c_{2}^{4}, c_{2}^{5}$ are eliminated thanks to the relation in degree 8 containing c_{2}^{4}; the class $c_{1} c_{3}^{3}$ is eliminated thanks to the relation in degree 9 ; the class $c_{2}^{2} c_{3}^{2}$ is eliminated thanks to the relation in degree 10). Inspecting this description of $A^{10}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)$, we observe that the inclusion

$$
c_{1} \cdot A^{9}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \subset A^{10}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)
$$

is an equality. Since c_{1} is proportional to $c_{1}(\mathcal{L})$, this proves claim 3.4.
It remains to prove theorem 3.1:
Proof. (of theorem 3.1) Clearly, the Chern class is universally defined: for any $\sigma \in B$, we have

$$
c_{11}\left(T_{X_{\sigma}}\right)=\left.c_{11}\left(T_{\mathcal{X} / B}\right)\right|_{X_{\sigma}}
$$

Also, the image

$$
\operatorname{Im}\left(A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{11}\left(X_{\sigma}\right)\right)
$$

consists of universally defined cycles. (For a given $a \in A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right)$, the relative cycle

$$
(a \times B) \mid \mathcal{X} \in A^{11}(\mathcal{X})
$$

does the job.)

Likewise, for any $j<10$ the fact that $A_{h o m}^{j}\left(X_{\sigma}\right)=0$, combined with weak Lefschetz in cohomology, implies that

$$
A^{j}\left(X_{\sigma}\right)=\operatorname{Im}\left(A^{j}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \rightarrow A^{j}\left(X_{\sigma}\right)\right)
$$

and so $A^{j}\left(X_{\sigma}\right)$ consists of universally defined cycles for $j<10$. In particular, all intersections

$$
A^{j}\left(X_{\sigma}\right) \cdot A^{11-j}\left(X_{\sigma}\right) \subset A^{11}\left(X_{\sigma}\right), \quad 1<j<10
$$

consist of universally defined cycles.
It remains to make sense of intersections

$$
A^{10}\left(X_{\sigma}\right) \cdot A^{1}\left(X_{\sigma}\right) \subset A^{11}\left(X_{\sigma}\right)
$$

To this end, we note that $A^{1}\left(X_{\sigma}\right)$ is 1-dimensional, generated by the restriction g of the Plücker line bundle \mathcal{L}. Let $l: X_{\sigma} \rightarrow \operatorname{Gr}\left(3, V_{10}\right)$ denote the inclusion. The normal bundle formula implies that

$$
a \cdot g=\imath^{*} l_{*}(a) \quad \text { in } A^{11}\left(X_{\sigma}\right) \quad \forall a \in A^{10}\left(X_{\sigma}\right)
$$

It follows that

$$
A^{10}\left(X_{\sigma}\right) \cdot A^{1}\left(X_{\sigma}\right) \subset \operatorname{Im}\left(A^{11}\left(\operatorname{Gr}\left(3, V_{10}\right)\right) \xrightarrow{l^{*}} A^{11}\left(X_{\sigma}\right)\right)
$$

also consists of universally defined cycles.
In conclusion, we have shown that $R^{11}\left(X_{\sigma}\right)$ consists of universally defined cycles, and so theorem 3.1 is a corollary of theorem 3.2.

Remark 3.5. There are more cycle classes that can be put in the subgroup $R^{11}(X)$ of theorem 3.1. For instance, let Y_{σ} be the hyperkähler fourfold associated to $X=X_{\sigma}$, and assume Y_{σ} is smooth. Then (as we have seen above) the class

$$
\left(p_{\sigma}\right)_{*}\left(q_{\sigma}\right)^{*} c_{4}\left(T_{Y_{\sigma}}\right) \in A^{11}(X)
$$

is universally defined, hence it can be added to the subgroup $R^{11}(X)$ of theorem 3.1.

Remark 3.6. Theorem 3.1 is an indication that perhaps the hypersurfaces $X \subset$ $\operatorname{Gr}\left(3, V_{10}\right)$ have a multiplicative Chow-Künneth decomposition, in the sense of [14, Chapter 8]. Unfortunately, establishing this seems difficult; one would need something like theorem 3.2 for

$$
A^{40}\left(\mathcal{X} \times_{B} \mathcal{X} \times{ }_{B} \mathcal{X}\right)
$$

Acknowledgements. Thanks to my mythical colleague Gilberto Kiwi for inspiring conversations, and thanks to a zealous referee for constructive comments.

REFERENCES

[1] A. Beauville and R. Donagi, La variété des droites d'une hypersurface cubique de dimension 4, Comptes Rendus Acad. Sci. Paris Sér. 1 Math. 301 (1985), 703-706,
[2] A. Beauville and C. Voisin, On the Chow ring of a K3 surface, J. Alg. Geom. 13 (2004), 417-426,
[3] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, American Journal of Mathematics Vol. 105, No 5 (1983), 1235-1253,
[4] O. Debarre and C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. reine angew. Math. 649 (2010), 63-87,
[5] D. Eisenbud and J. Harris, 3264 and all that: a second course in algebraic geometry, Cambridge University Press, Cambridge 2016,
[6] L. Fu, R. Laterveer and Ch. Vial, The generalized Franchetta conjecture for some hyper-Kähler varieties (with an appendix joint with M. Shen), arXiv: 1708.02919 v 3 , to appear in Journal de Math. Pures et Appliquées,
[7] E. Fatighenti and G. Mongardi, A note on a Griffiths-type ring for complete intersections in Grassmannians, arXiv:1801.09586v1,
[8] A. Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, J. reine angew. Math.,
[9] R. Laterveer, Algebraic varieties with small Chow groups, Journal Math. Kyoto Univ. Vol. 38 no 4 (1998), 673-694,
[10] J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. University Lecture Series 61, Providence 2013,
[11] K. O'Grady, Moduli of sheaves and the Chow group of $K 3$ surfaces, Journal de Math. Pures et Appliquées 100 no. 5 (2013), 701-718,
[12] K. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. 139 no. 3 (1994), 641-660,
[13] N. Pavic, J. Shen and Q. Yin, On O'Grady's generalized Franchetta conjecture, Int. Math. Res. Notices (2016), 1—13,
[14] M. Shen and Ch. Vial, The Fourier transform for certain hyperKähler fourfolds, Memoirs of the AMS 240 (2016),
[15] B. Totaro, Chow groups, Chow cohomology, and linear varieties, Forum of Mathematics, Sigma (2014), vol. 1, e1,
[16] Ch. Vial, Remarks on motives of abelian type, Tohoku Math. J. 69 (2017), 195-220,
[17] C. Voisin, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, Ann. Sci. Ecole Norm. Sup. 46, fascicule 3 (2013), 449-475,
[18] C. Voisin, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, II, J. Math. Sci. Univ. Tokyo 22 (2015), 491-517,
[19] C. Voisin, Chow Rings, Decomposition of the Diagonal, and the Topology of Families, Princeton University Press, Princeton and Oxford, 2014.

ROBERT LATERVEER
Institut de Recherche Mathématique Avancée, CNRS - Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE. e-mail: robert.laterveer@math.unistra.fr

