
LE MATEMATICHE
Vol. LXXIV (2019) – Issue I, pp. 109–118
doi: 10.4418/2019.74.1.7

CHARACTERIZATION OF PERFECT ROMAN DOMINATION
EDGE CRITICAL TREES

M. DARKOOTI - A. ALHEVAZ - S. RAHIMI - H. RAHBANI

A perfect Roman dominating function on a graph G = (V,E) is a
function f : V −→ {0,1,2} satisfying the condition that every vertex u
with f (u) = 0 is adjacent to exactly one vertex v for which f (v) = 2.
The weight of a perfect Roman dominating function f is the sum of the
weights of the vertices. The perfect Roman domination number of G, de-
noted by γ

p
R(G), is the minimum weight of a perfect Roman dominating

function in G. In this paper, we study the graphs for which adding any
new edge decreases the perfect Roman domination number. We call these
graphs γ

p
R -edge critical. The purpose of this paper is to characterize the

class of γ
p
R -edge critical trees.

1. Introduction

Roman domination is a variation of domination introduced by ReVelle [12, 13].
Emperor Constantine had the requirement that an army or legion could be sent
from its home to defend a neighboring location only if there was a second army
which would stay and protect the home. Thus, there are two types of armies,
stationary and traveling. A vertex with no army must have a neighboring vertex
with a traveling army. Stationary armies then dominate their own vertices. A
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vertex with two armies is dominated by its stationary army, and its open neigh-
borhood is dominated by the traveling army. The concept of Roman domination
can be formulated in terms of graphs. In this paper, we continue the study of
a variant of Roman dominating functions, namely, perfect Roman dominating
functions introduced in [7]. We first present some necessary definitions and
notations. For notation and graph theory terminology not given here, we fol-
low [6]. We consider finite, undirected, and simple graphs G with vertex set
V = V (G) and edge set E = E(G). The number of vertices of a graph G is
called the order of G and is denoted by n = n(G). The open neighborhood of a
vertex v ∈V is N(v) = NG(v) = {u ∈V | uv ∈ E}, and the degree of v, denoted
by degG(v), is the cardinality of its open neighborhood. A leaf of a tree T is a
vertex of degree one, while a support vertex of T is a vertex adjacent to a leaf.
A strong support vertex is a support vertex adjacent to at least two leaves. In
this paper, we denote the set of all support vertices of T by S(T ) and the set of
leaves by L(T ). We denote `(T ) = |L(T )| and s(T ) = |S(T )|. We also denote
by L(x) the set of leaves adjacent to a support vertex x, and denote `x = |L(x)|.
If T is a rooted tree, then for any vertex v we denote by Tv the sub-rooted tree
rooted at v. A subset S⊆V is a dominating set of G if every vertex in V \S has
a neighbor in S. The domination number γ(G) is the minimum cardinality of a
dominating set of G. A perfect dominating set is a set S ⊆ V such that for all
v ∈V , |N[v]∩S|= 1. The minimum size of a perfect dominating set for a graph
G is the perfect domination number of G, denoted by γP(G). Perfect dominating
sets and several variations on perfect domination have received much attention
in the literature; for example, see some discussion in [6] or the survey in [11].

For a graph G, let f : V (G)→ {0,1,2} be a function, and let (V0,V1,V2) be
the ordered partition of V (G) induced by f , where Vi = {v ∈ V (G) : f (v) = i}
for i = 0,1,2. There is a one-by-one correspondence between the functions
f : V (G)→{0,1,2} and the ordered partitions (V0,V1,V2) of V (G). So, we will
write f = (V0,V1,V2). A function f : V (G)→ {0,1,2} is a Roman dominating
function (or briefly, RDF) if every vertex u for which f (u) = 0 is adjacent to
at least one vertex v for which f (v) = 2. The weight of an RDF f is w( f ) =
f (V (G))=∑u∈V (G) f (u). The Roman domination number of a graph G, denoted
by γR(G), is the minimum weight of an RDF on G. Roman dominating functions
with several further conditions have been studied, for example, among other
types, see [1–3, 10].

Recently, Henning, Klostermeyer and MacGillivray [7] introduced the con-
cept of perfect Roman domination in graphs. As defined in [7], an RDF f =
(V0,V1,V2) is called a perfect Roman dominating function (or just PRDF) if very
vertex u with f (u) = 0 is adjacent to exactly one vertex v for which f (v) = 2.
The perfect Roman domination number γP

R (G) is the minimum weight of a
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PRDF. Note that γP
R (G) is defined for any graph G, since ( /0,V (G), /0) is an

PRDF for G. We refer to a γP
R (G)-function as a PRDF of G with minimum

weight.
For many graph parameters, criticality is a fundamental question. The con-

cept of criticality with respect to various operations on graphs has been studied
for several domination parameters. Much has been written about graphs, where
a parameter increases or decreases whenever an edge or vertex is removed or
added. This concept has been considered for several domination parameters
such as domination, 2-rainbow domination and Roman domination, by several
authors and the concept is now well studied in domination theory. For refer-
ences on the criticality concept on various domination parameters see, for ex-
ample [4, 5, 8, 9]. In this paper, we consider this concept for perfect Roman
domination number.

Our aim is to study the graphs for which adding any new edge decreases the
perfect Roman domination number. We say that G is perfect Roman domination
edge critical, or just γP

R -edge critical, if for any e ∈ E(Ḡ), we get γP
R (G+ e) <

γP
R (G), where Ḡ is the complement of G. The purpose of this paper is to give a

descriptive characterization of the class of γP
R -edge critical trees.

2. Main Results

We first present some properties of the γP
R -edge critical graphs.

Lemma 2.1. For every edge e = xy in a graph Ḡ, we get γP
R (G)−1≤ γP

R (G+e).

Proof. Let e = xy ∈ E(Ḡ) and f = (V0,V1,V2) be a γ
p
R(G+ e)-function. If V2∩

{x,y} = /0 or {x,y} ⊆ V2 ∪V1, then f is a PRDF of graph G, as desired. Thus
we may assume that x ∈ V2 and y ∈ V0. Now we define function g by g(y) = 1
and g(u) = f (u), if u ∈ V −{y}. Then function g is a PRDF of graph G, and
therefore γP

R (G)≤ γP
R (G+ e)+1.

The next corollary is immediate from Lemma 2.1.

Corollary 2.2. For any edge e ∈ E(Ḡ) in a γP
R -edge critical graph G, we have

γP
R (G+ e)+1 = γP

R (G).

Next, we give a characterization of γP
R -edge critical graphs.

Theorem 2.3. A graph G is γP
R -edge critical if and only if for any two non-

adjacent vertices u,v, there exists a γP
R (G)-function f = (V0,V1,V2) such that

{ f (u), f (v)} = {1,2} and also if for x ∈ {u,v}, f (x) = 1, then for any vertex
y ∈ N(x), f (y) 6= 2.
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Proof. Let G be a graph and e = uv ∈ E(Ḡ). First, suppose that there exists
a γP

R -function f = (V0,V1,V2) such that { f (u), f (v)} = {1,2} and also if for
x ∈ {u,v}, f (x) = 1, then for any vertex y ∈ N(x), f (y) 6= 2. Suppose that
f (u) = 1 and f (v) = 2. We define g : V (G+uv) −→ {0,1,2} by g(u) = 0 and
g(z) = f (z) if z 6= u. Then g is a perfect Roman dominating function for G+uv,
and so γP

R (G+uv)≤ γP
R (G)−1. This implies that G is γP

R (G)-edge critical graph.
For the converse, suppose that G is γP

R (G)-edge critical graph. Then by
Corollary 2.2, we have γP

R (G + uv) = γP
R (G)− 1. Let g = (V0,V1,V2) be a

γP
R (G+ uv)-function. If {g(u),g(v)} 6= {0,2}, then g is a perfect Roman dom-

inating function for G, which implies that γP
R (G) ≤ γP

R (G+ uv) = γP
R (G)− 1, a

contradiction. Thus, {g(u),g(v)} = {0,2}. Let g(u) = 0, then for any vertex
w ∈ NG+uv(u)−{v}, g(w) 6= 2, since g is a perfect Roman dominating function.
We define h : V (G)−→{0,1,2} by h(u) = 1 and h(z) = g(z) if z 6= u. Then h is
a perfect Roman dominating function for G with weight γP

R (G+uv)+1 and also
any vertex w ∈ NG(u), h(w) 6= 2. On other hand, since γP

R (G) = γP
R (G+uv)+1,

it follows that h is a γP
R (G)-function, and the result follows.

Next, we give a characterization of the class of γP
R -edge critical trees. Let T1

be a tree obtained from two path P5 by joining central vertices which is depicted
in Fig. 1(a), and T2 be a tree obtained from a path P5 with central vertex u and a
path P4 with support vertex v by joining u to v illustrated in Fig. 1(b).

(a) T1 (b) T2

Figure 1: The trees T1 and T2.

Theorem 2.4. A tree T is γP
R -edge critical if and only if T ∈ {T1,T2}.

Proof. Let T be a γP
R -edge critical tree. If diam(T )∈ {2,3}, T is star or a double

star. It is straightforward to see that T is not γP
R -edge critical. Thus we assume

that diam(T ) ≥ 4. We root T at a leaf x0 of a diametrical path x0x1 . . .xd from
x0 to a leaf xd farthest from x0. Without loss of generality, we may assume that
for i ∈ {2,d−2}, deg(xi−1)≥ deg(u), where u is any child support vertex of xi.
We proceed with the following claims:
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Claim 1. T has no strong support vertex with exactly one adjacent non-leaf
vertex and degree at least 4.

Proof Assume, towards a contradiction, that u is a strong support vertex
of T with degree at least 4 such that deg(u) = `u + 1. Let w,z be two leaves
adjacent to u and x be non-leaf neighbors of u. It follows from Theorem 2.3, that
there exists a γP

R (T )-function f = (V0,V1,V2) such that { f (w), f (z)} = {1,2}
and f (u) 6= 2. Clearly, for each leaf v adjacent to u, f (v)≥ 1, f (u) = 0 and since
f is a γP

R (T )-function, (N(u)−{w,z})∩V2 = /0. Then, g : V (T ) −→ {0,1,2}
defined by g(u) = 2, g(v) = 0 if v ∈ L(u), g(x) = max{ f (x),1} and g(v) = f (v)
if v 6∈ L(u)∪{u,x}, is a perfect Roman dominating function for T with weight
less than γP

R (T ), a contradiction.
By Claim 1, we get max{deg(x1),deg(xd−1)} ≤ 3.
Claim 2. T has no two strong support vertices u and v such that |N(u)∪

N(v)|= `u + `v +1.
Proof Assume that u and v are two strong support vertex of tree T such

that |N(u)∪N(v)| = `u + `v + 1 and N(u)∩N(v) = {w}. By Claim 1, `u =
`v = 2. Let L(u) = {u1,u2} and L(v) = {v1,v2}. It follows from Theorem 2.3,
that there is a γP

R (T )-function f = (V0,V1,V2) such that { f (u1), f (v1)}= {1,2}.
Without loss of generality, we may assume that u1 ∈ V1 and v1 ∈ V2. Then,
f (u) 6= 2, f (v2) = 1 and f (v) = 0. Since f is a γP

R (T )-function, f (w) 6= 2 and so
f (u)+ f (u2) ≥ 2. Then, g : V (T ) −→ {0,1,2} defined by g(u) = 2, g(v) = 2,
g(u1) = g(u2) = g(v1) = g(v2) = 0, g(w) = max{1, f (w)} and g(z) = f (z) if
z 6∈ N[u]∪N[v], is a perfect Roman dominating function for T with weight less
than γP

R (T ), a contradiction.
Claim 2, implying that if x1 be a strong support vertex, then each vertex of

N(x2)−{x3} is a weak support vertex or a leaf.
We now assume that diam(T ) = 4. Without loss of generality, we may

assume that deg(x1) ≥ deg(x3). By Claim 1, deg(x3) ≤ deg(x1) ≤ 3. We first
assume that deg(x1) = 3. Then Claim 2, implying that every neighbor of x2 is
a leaf or a weak support vertex and so deg(x3) = 2. Let L(x1) = {x0,x′1}. It
follows from Theorem 2.3, that there is a γP

R (T )-function f = (V0,V1,V2) such
that { f (x0), f (x′1)} = {1,2}. Without loss of generality, we may assume that
x0 ∈V1 and x′1 ∈V2. Then f (x1) = 0, f (x2) 6= 2 and f (x3)+ f (x4) = 2. Then, g :
V (G)−→{0,1,2} defined by g(x1) = 2, g(x′1) = g(x0) = g(x2) = 0 and g(z) = 1
if z 6∈ {x0,x1,x2,x′1}, is a perfect Roman dominating function for T with weight
less than γP

R (T ), a contradiction. Thus, we assume that deg(x3) = deg(x1) = 2
and also any neighbor of x2 is a leaf or weak support vertex. If deg(x2) = 2, then
T = P5 and clearly T is not γP

R -edge critical. Hence, we assume that deg(x2)≥
3. It follows from Theorem 2.3, that there is a γP

R (T )-function f = (V0,V1,V2)
such that { f (x0), f (x4)} = {1,2}. Without loss of generality, we may assume
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that x0 ∈ V1 and x4 ∈ V2. Then f (x3) = 0, f (x2) 6= 2 and f (x1) = 1. Hence
if u ∈ L(x2), then f (u) = 1 and also if v ∈ N(x2) is a support vertex with leaf
neighbors v′, then f (v)+ f (v′) = 2. Therefore, w( f ) = 2deg(x2)−`x2 + f (x2)≥
2deg(x2)− `x2 . function g = (N(x2),L(T )− L(x2),{x2}) is a perfect Roman
dominating function for T with weight 2+deg(x2)− `x2 and so w(g)< γP

R (T ),
a contradiction. Thus, we may assume that diam(T )≥ 5.

Claim 3. diam(T ) = 5.
Proof Assume that diam(T )≥ 6. Then x2 6∈N[xd−2] and so by Theorem 2.3,

there is a γP
R (T )-function f = (V0,V1,V2) such that { f (x2), f (xd−2)} = {1,2}.

Without loss of generality, we may assume that x2 ∈ V1 and xd−2 ∈ V2. By
Theorem 2.3, for any u∈N(x2), f (u) 6= 2 and so f (x3) 6= 2. Since f (x2) = 1, we
have f (N[x1])≥ 3. Then, reassigning to each neighbor of x1 the weight 0 and to
x1 the weight 2 produces a PRDF with weight less than γP

R (T ), a contradiction.
Hence diam(T ) = 5.

Then Claim 1, implying that deg(x1) ≤ 3 and deg(x4) ≤ 3. Without loss of
generality, we may assume that deg(x4) ≤ deg(x1). We consider the following
cases:

Case 1. deg(x1) = deg(x4) = 3.
Suppose that N(x1) = {x0,x′1,x2} and also N(x4) = {x5,x′4,x3}. We first assume
that 5 ≤ max{deg(x2),deg(x3)}. Without loss of generality, we assume that
deg(x2) ≥ 5. By Claim 2, each neighbor of x2 other of x1 and x3 is a leaf or a
weak support vertex. Let Ki be the set of weak support neighbors of xi for i ∈
{2,3}. Then `x2 + |K2| ≥ 3. It follows from Theorem 2.3, that there is a γP

R (T )-
function f = (V0,V1,V2) such that f (x0) = 1, f (x′1) = 2. Then clearly f (x1) = 0,
f (x2) 6= 2, for u ∈ L(x2), f (u)≥ 1 and for any vertex v ∈ K2, f (v)+ f (v′) = 2,
where v′ is leaf neighbor of v. Hence γP

R (T ) = w( f )≥ w( f |Tx3
)+ `x2 +2|K2|+

3. We define function g : V (T ) −→ {0,1,2} defined by g(x2) = g(x1) = 2,
g(x0) = g(x′1) = 0, for each vertex u ∈ L(x2), g(u) = 0, for u ∈ K2 , g(u) = 0
and g(u′) = 1, g(x3) = max{1, f (x3)} and for w ∈V (Tx3)−{x3}, g(w) = f (w).
Then g is a perfect Roman dominating function with weight at most 5+ |K2|+
w( f |Tx3

) and so w(g)≤ 5+ |K2|+w( f |Tx3
)<w( f |Tx3

)+`x2 +2|K2|+3≤ γP
R (T ),

a contradiction. Thus, we assume that max{deg(x2),deg(x3)} ≤ 4.
Then by Theorem 2.3, there is a γP

R (T )-function f = (V0,V1,V2) such that
{ f (x1), f (x4)}= {1,2}. Without loss of generality, we may assume that x1 ∈V2
and x4 ∈V1. Clearly, f (x0) = f (x′1) = 0, f (x5) = f (x′4) = 1 and we can assume
that f (x3) = 0 and for each v ∈ L(x3), f (v) = 1. Let N(x3)∩V2 = {u}. If u ∈ K3
and L(u) = {u′}, then f (u′) = 0. Then, reassigning to x5 and x′4 the weight
0, to x4 the weight 2 and to each u ∈ K3 and u′ the weight 1, and leaving all
other weights unchanged produces a new PRDF with weight less than γP

R (T ),
a contradiction. Thus, we assume that u 6∈ K3 and so u = x2. Then for each
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vertex v ∈ L(x2), f (v) = 0 and for each vertex w ∈ K2, f (w) = 0 and f (w′) = 1,
that {w′} = L(w). Hence w( f ) = `x3 + 2|K3|+ |K2|+ 7. Then, reassigning to
x2 the weight 0, to x4 the weight 2, to x5 and x′4 the weight 0, to each u ∈
K2 the weight 1, to each u ∈ L(x2) the weight 1 and leaving all other weights
unchanged produces a new PRDF g with weight `x3 +2|K3|+2|K2|+`x2 +4 and
so w(g) = `x3 +2|K3|+2|K2|+`x2 +4 < `x3 +2|K3|+ |K2|+7 = w( f ) = γP

R (T ),
a contradiction.

Case 2. deg(x1) = 3 and deg(x4) = 2.
Without loss of generality, we may assume that any child of x3 is a weak support
or a leaf. We first assume that deg(x2) ≥ 4. Then any neighbors of x2 other
of x3 is a weak support or a leaf. By Theorem 2.3, there is a γP

R (T )-function
f = (V0,V1,V2) such that { f (x1), f (x3)} = {1,2}. We first assume that x1 ∈ V2
and x3 ∈ V1 and so by theorem 2.3, f (x2) 6= 2. Clearly f (x0) = f (x′1) = 0,
f (x5)+ f (x4) = 2 and we can assume that for each v ∈ L(x3), f (v) = 1. Then
reassigning to x5 and x3 the weight 0, to x4 the weight 2 and to each u ∈ K3 and
u′ ∈N(u)−{x3} the weight 1, and leaving all other weights unchanged produces
a new PRDF with weight less than γP

R (T ), a contradiction. Thus, we assume that
f (x1) = 1, f (x3) = 2 and f (x2) 6= 2. Let T ′ = T −Tx3 . Then, reassigning to x2
the weight 2, to u ∈ N(x2)−{x3} the weight 0 and to each other vertex of tree
T ′ the weight 1, and leaving all other weights unchanged produces a new PRDF
with weight less than γP

R (T ), a contradiction. Thus, we assume that deg(x2)≤ 3.

Assume that deg(x2) = 3 and N(x2) = {x1,x3,x′2}. Then Claim 2 implying
that x′2 is a leaf or a weak support vertex. We first assume that x2 is a support
vertex. By Theorem 2.3, there is a γP

R (T )-function f = (V0,V1,V2) such that
{ f (x2), f (x4)} = {1,2}. We first assume that f (x2) = 2 and f (x4) = 1 and so
f (x3) 6= 2. Clearly, f (x′2) = 0, f (x5) = 1 and f (x0)+ f (x1)+ f (x′1) = 2. We can
assume that f (x0) = f (x′1) = 0 and f (x1) = 2. If f (x3) = 1, then reassigning
to x2 the weight 0, reassigning to x′2 the weight 1 and leaving all other weights
unchanged produces a new PRDF with weight less than γP

R (T ), a contradiction.
Thus we may assume that f (x3) = 0. Then for u ∈ N(x3)−{x2}, f (u) 6= 2,
since f (x2) = 2 and f is a γP

R (T )-function. Then reassigning to x2 and x5 the
weight 0, reassigning to x′2 the weight 1, reassigning to x4 the weight 2 and
leaving all other weights unchanged produces a new PRDF with weight less
than γP

R (T ), a contradiction. Thus we assume that f (x2) = 1 and f (x4) = 2
and so f (x1) 6= 2. Then f (x1)+ f (x′1)+ f (x0) = 3 and so reassigning to x1 the
weight 2, reassigning to x′1 and x0 the weight 0 and leaving all other weights
unchanged produces a new PRDF with weight less than γP

R (T ), a contradiction.
Thus we assume that x′2 is a weak support vertex. Let x′′2 is leaf adjacent to
x′2. Then by Theorem 2.3, there is a γP

R (T )-function f = (V0,V1,V2) such that
{ f (x0), f (x4)}= {1,2}. We first assume that f (x0) = 2 and f (x4) = 1. Clearly
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f (x5) = f (x′1) = 1, f (x1) = 0, f (x3) 6= 2, and so we can assume that f (x′2) = 2
and f (x′′2) = f (x2) = 0. Then, reassigning to x1 the weight 2, reassigning to
x′1 and x0 the weight 0, reassigning to x′2 and x′′2 the weight 1 and leaving all
other weights unchanged produces a new PRDF with weight less than γP

R (T ), a
contradiction. Hence, we assume that f (x0) = 1 and f (x4) = 2. Clearly, f (x5) =
0, f (x3) 6= 2, f (x1) 6= 2. Then, f (x0)+ f (x1)+ f (x′1) = 3 and so as before we
can assume that f (x2) = 0 and f (x′2) = 2 and f (x′′2) = 0. Then, reassigning to x1
the weight 2, reassigning to x′1 and x0 the weight 0, reassigning to x′2 and x′′2 the
weight 1 and leaving all other weights unchanged produces a new PRDF with
weight less than γP

R (T ), a contradiction.

Case 3. deg(x1) = 2 and deg(x4) = 2.
Assume that deg(x2) = 2. Then by Theorem 2.3, there is a γP

R (T )-function
f =(V0,V1,V2) such that { f (x0), f (x2)}= {1,2}. We first assume that f (x0)= 2
and f (x2) = 1. Clearly f (x1) = 0 and f (x3) 6= 2. Then, reassigning to x1 the
weight 2, reassigning to x0 and x2 the weight 0 and leaving all other weights
unchanged produces a new PRDF with weight less than γP

R (T ), a contradiction.
Hence, we assume that f (x0) = 1 and f (x2) = 2. If f (x3) 6= 2, then reassign-
ing to x1 the weight 2, reassigning to x0 and x2 the weight 0 and leaving all
other weights unchanged produces a new PRDF with weight less than γP

R (T ),
a contradiction. Now assume that f (x3) = 2. Then, reassigning to x1 and x0
the weight 1, reassigning to x2 the weight 0, and leaving all other weights un-
changed produces a new PRDF with weight less than γP

R (T ), a contradiction.
Hence, deg(x2)≥ 3 and similarly deg(x3)≥ 3.

Assume that deg(x2) ≥ 4. We can assume that any vertex in N(x2)−{x3}
is a leaf or a weak support vertices. We first assume that x2 is a strong support
vertex. Let {x′2,x′′2} ⊆ L(x2). It follows from Theorem 2.3, that there is a γP

R (T )-
function f = (V0,V1,V2) such that f (x′2) = 1, f (x′′2) = 2. Then clearly f (x2) = 0,
f (x3) 6= 2. Also, we can assume that for u ∈ N(x2)− (L(x2)∪{x3}), f (u)+
f (u′) = 2, where u′ is leaf neighbor of u. Then, reassigning to x2 the weight 2,
reassigning to u ∈ N(x2)−{x3} the weight 0, reassigning to each leaf of tree
T − Tx3 the weight 1, reassigning to vertex x3 the weight max{1, f (x3)} and
leaving all other weights unchanged produces a new PRDF with weight less
than γP

R (T ), a contradiction. Next, assume that x2 is not a strong support vertex.
Then, there is weak support vertex x′2 ∈ N(x2)−{x1,x3}. Let x′′2 is leaf adjacent
to x′2. Then, by Theorem 2.3, there is a γP

R (T )-function f = (V0,V1,V2) such that
{ f (x0), f (x′′2)}= {1,2}. Without loss of generality, we may assume that x0 ∈V2
and x′′2 ∈ V1. Clearly, f (x1) = 0, f (x2) 6= 2. Hence, for each leaf u adjacent
to x2, f (u) ≥ 1 and for any support vertex u ∈ N(x2)−{x3}, f (u)+ f (u′) = 2,
where u′ is the leaf adjacent to u. If f (x3) = 0, then for each leaf v adjacent
to x3, f (v) ≥ 1 and for any support vertex v ∈ N(x3)− {x2}, f (v) + f (v′) =
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2, where v′ is the leaf adjacent to v. Hence w( f ) ≥ 2|K2|+ 2|K3|+ `x2 + `x3 .
Then, function g = (N(x2),V (T )−N[x2],x2) is a perfect Roman dominating
function with weight `x3 +2|K3|+ |K2|+2 and so w(g)= `x3 +2|K3|+ |K2|+2<
2|K2|+ 2|K3|+ `x2 + `x3 = w( f ) = γP

R (T ), a contradiction. Next, assume that
f (x3) 6= 0. Let T ′ = T −Tx3 . Then reassigning to x2 the weight 2, reassigning
to u ∈ N(x2)−{x3} the weight 0, reassigning to each leaf of tree T ′ the weight
1 and leaving all other weights unchanged produces a new PRDF with weight
less than γP

R (T ), a contradiction. Hence, deg(x2) = 3 and similarly deg(x3) = 3.
Let N(x2) = {x′2,x1,x3} and N(x3) = {x′3,x4,x2}. We first assume that x′2 is a
leaf. If x3 be a support vertex, then by Theorem 2.3, there is a γP

R (T )-function
f = (V0,V1,V2) such that { f (x′2), f (x′3)}= {1,2}. Without loss of generality, we
may assume that f (x′2)= 2 and f (x′3)= 1. Clearly, f (x2)= 0, f (x3) 6= 2, f (x0)+
f (x1) = 2, f (x4)+ f (x5) = 2 and so w( f ) ≥ 7 > γP

R (T ) = 6, a contradiction.
Hence, x′3 is a weak support vertex and so T = T1. Now, assume that x′2 is a
support vertex. Then T ∈ {T1,T2}. The converse part is obvious.
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