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FLAG-TRANSITIVE Lh.L∗-GEOMETRIES

ANTONIO PASINI

1. Introduction.

The classification of finite flag-transitive linear spaces, obtained by Bue-
kenhout, Delandtsheer, Doyen, Kleidman, Liebeck and Saxl [20] at the end of
the eighties, gave new impulse to the program of classifying various classes of
locally finite flag-transitive geometries belonging to diagrams obtained from a
Coxeter diagram by putting a label L or L∗ on some (possibly, all) of the single-
bond strokes for projective planes. (I recall that the symbols L and L∗ , when
used as labels in a diagram, denote the class of linear spaces and, respectively,
dual linear spaces). The reader may see Buekenhout and Pasini [23], Section 4
for a survey of results in this trend, updated to 1994. In this survey, we focus on
the following diagram:

(Lh .L∗
k• • • • • • •

0 1 h−2 h−1 h n−2 n−1L L L∗ L∗
. . . . . .

r0 r1 rh−2 s tk−2 t1 t0

where k := n + 1− h, the integers 0, 1, ..., n − 1 are the types, r0, r1, ..., rh−2 ,
s , tk−2, ..., t1, t0 are finite orders, 2 ≤ h ≤ n and n, which is the rank, is at least
3. Clearly, r0 ≤ r1 ≤ ... ≤ rh−2 ≤ s and s ≥ tk−2 ≥ ... ≥ t1 ≥ t0. In particular,
when h = n, we have the following:

(Ln) ......................................................................................................................................................................................................................................................... ...............................................................................................................................................• • • • •
0 1 2 n−2 n−1L L L

. . .
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and when h = k = 2 we have the following:

(L.L∗) ......................................................................................................................................................................................................................• • •
0 1 2L L∗

r s t

It is well known that locally finite Ln -geometries are finite. Finite flag-transitive
Ln -geometries have been classified byA. Delandtsheer soon after the publishing
of [20].

Theorem 1.1. (Delandtsheer [31], [32]) Let � be a finite flag-transitive geom-
etry for diagram Ln with n ≥ 3. Then � is one of the following:

(1) An n-dimensional simplex or the {n, n + 1, ...,m}-truncation of an m-
dimensional simplex, obtained by dropping all elements of dimension≥ n.

(2) An n-dimensional projective geometry or the {n, n + 1, ...,m}-truncation
of an m-dimensional projective geometry, m > n.

(3) An n-dimensional affine geometry or the {n, n+1, ...,m}-truncation of an
m-dimensional affine geometry.

(4) One of the Steiner systems S(24, 8, 5), S(23, 7, 4) or S(22, 6, 3) for M24 ,
M23 and M22 respectively, regarded as geometries of rank 5, 4 and, re-
spectively, 3.

(5) One of the Steiner systems S(12, 6, 5) or S(11, 5, 4) for M12 and M11 ,
regarded as geometries of rank 5 and, respectively, 4.

(6) A 1-point extension of the point-line system of AG(d, q), constructed as
follows: The 0-elements are the qd+1 points of PG(1, qd), the 1-elements
are the unordered pairs of points of PG(1, qd) and the 2-elements are the
images by P�L2(qd ) of a given copy of PG(1, q) naturally embedded in
PG(1, qd). (Note that, when d = 2, this construction yields the classical
Mőbius planes. When q = 2, we obtain a truncated simplex).

(7) A 1-point extension of a Netto triple system, constructed as follows: For
q ≡ 7 (mod 12), the points of PG(1, q) = {∞} ∪ GF(q) are taken as
0-elements and the unordered pairs of points of PG(1, q) as 1-elements.
The 2-elements are the images by P�L2(q) of {∞} ∪ K , where K is the
set of solutions of the equation x 3 = 1 in GF(q).

In view of the above, we may keep our Lh .L∗
k -diagram distinct from either

Ln and its dual L∗
n . So, we assume 2 ≤ h < n and r0, t0 < s . In particular,

when n = 3 then h = k = 2 and r, t < s .
The case of n = 3 is crucial for the project we are discussing. Indeed,

once we had classified locally finite flag-transitive L.L∗ -geometries, we could
combine that classification with Theorem 1.1 to finish the job, hopefullywithout
encountering too big obstacles. Some difficulties may arise at that latter
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stage mainly because, whereas locally finite L.L∗ -geometries are finite (Del
Fra and Ghinelli [35]), locally finite Lh .L∗

k -geometries of rank n > 3 are
infinite in general. However, the rank 3 case is the most difficult to cope
with. Indeed, a quick inspection of all possible combinations of two families
of linear and dual linear spaces in an L.L∗-diagram is sufficient to realize that
the classification we are dreaming of is probably too difficult to accomplish
in that general setting. Many cases can be ruled out but too many remain
(see Theorem 1.2). Furthermore, some combinations cover very wild areas,
for which a classification seems hard to achieve. On the other hand, the
existence of many interesting examples of Lh .L∗

k -geometries was too appealing
for people neglected this topic at all. Moreover, characterizations had earlier
been found for a few classes and exceptional examples of Lh .L∗

k -geometries
(Hughes [41], Sprague [69], [70], Lefevre and Van Nypelseer [52], [73], for
instance). So, authors interested in these geometries have focused on some
special cases regarded as more interesting or promising, and classifications
have been obtained for some of those cases. We will expose those results in
sections 8, 9, and 10, fusing them in a few theorems tailored as if a complete
classification were possible, sooner or later. Sections 2, 3,..., 7 are devoted to
examples.

In the rest of this introduction we recall some terminology for diagram
geometries (next subsection) and the list of finite flag-transitive linear spaces
(Subsection 1.2), also stating some notation for them. A preliminary reduction
theorem for flag-transitive L.L∗ -geometries is stated in Subsection 1.3.

1.1. Notation and terminology for diagram geometries

We follow [56] for basic notions of diagram geometry. In particular, as in
[56], all geometries are residually connected and firm by definition. However,
we make a few changes in the notation of [56]: We use the symbol Res to
denote residues and, for a proper subset J of the type-set I of �, we write
TrJ (�) to denote the J -truncation of �, namely the subgeometry of � obtained
by removing all elements of type j ∈ J . For distinct types i, j ∈ I , we put
Si, j (�) := TrI\{i, j}(�) and regard Si, j (�) as a point-linegeometry, its i-elements
being taken as points and the j -elements as lines. We call Si, j (�) the (i, j )-
space of �. We write Aut(�) instead of Auts(�) for the full group of type-
preserving automorphism of �, calling it the automorphism group of �.

Some of the geometries consider in this paper arise from buildings. As
many authors do, we allow a building to be non-thick. The thin buildings are
the Coxeter complexes.

Chamber systems will also be mentioned in this paper, at a few places. We
refer to [56], Chapter 12, and Ceccherini and Pasini [28], Section 7, (also [61],
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Section 2) for chamber systems and their relations with geometries.

1.2. Notation for linear spaces

According to Buekenhout et al. [20] (see also Beuekenhout, Delandtsheer
and Doyen [19]), finite flag-transitive linear spaces can be divided in seven main
classes:

(1) Projective spaces, namely point-line systems of projective geometries. In
particular, flag-transitive projective planes.

(2) Affine spaces, namely point-line systems of affine geometries. In particu-
lar, flag-transitive affine planes.

(3) Circular spaces, namely vertex-edge systems of complete graphs. We warn
that this class intersects (2) non-trivially. Indeed, affine spaces over GF(2)
are circular spaces.

(4) Hermitian and Ree unitals.
(5) Witt-Bose-Shrikande spaces (Witt spaces, for short).
(6) Hering spaces. This class only contains two examples, both of which have

orders (8,90).
(7) 1-dimensional spaces. We warn that, in [20], this class includes non-

desarguesian affine planes with 1-dimensional automorphism group, but
we will do differently. In this paper, a 1-dimensional linear space is a
non-affine flag-transitive linear space with q points (q a prime power) and
automorphism group contained in A�L1(q).

When writing a diagram, we will use the following labels for the above classes
and their duals:

class symbol dual class

Projective spaces PG PG∗
Affine spaces AG AG∗
Affine planes A f A f ∗
Circular spaces c c∗
Unitals U U ∗
Witt spaces W W ∗
Hering spaces H H ∗
1-dimensional spaces 1D 1D∗

Although projective planes are particular projective spaces, we will use the
symbol PG only for projective spaces of dimension at least 3, keeping the usual
convention of writing no label for the class of projective planes. On the other
hand, we will regard affine planes as included in the class named AG . We will
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use the label A f (or A f ∗) only when we want to recall that the (dual) affine
spaces we are referring to are 2-dimensional.

The symbol AG(d, q) usually denotes the d -dimensional affine geometry
over GF(q), which is a geometry of rank d . It is convenient to have a different
symbol for the corresponding affine space, namely the point-line system of
AG(d, q). We will denote it by AS(d, q). In view of this convention, PS
and AS would be more appropriate than PG and AG as labels for strokes
representing projective or affine spaces, but the latters are the symbols normally
used in the literature, so we will keep them here.

We state one more definition: Given a d -dimensional affine space � of
order q , we say that a flag-transitive subgroup G ≤ Aut(�) is 1-dimensional if
G ≤ A�L1(qd ).

1.3. A reduction theorem

The possiblities for a diagram of a flag-transitive locally finite L.L∗ -
geometry have been thoroughly analized by C. Huybrechts [42], Theorems
5.5.9 and 6.7.1. We list them in the next theorem, also giving each diagram
a conventional name for further reference. Names for diagrams dual of those
listed here can be formed according to an obvious rule: U.c∗ stands for the dual
of c.U ∗ , AG.c∗ is the dual of c.AG∗ , and so on.

Theorem 1.2. (Huybrechts) Up to dualities, the following are the only possible
diagrams for a flag-transitive locally finite L.L∗ -geometry �:

......................................................................................................................................................................................................................• • •
0 1 2c c∗

1 s 1
(c.c∗)

......................................................................................................................................................................................................................• • •
0 1 2c U ∗

1 q2 − 1 q
(c.U ∗)

......................................................................................................................................................................................................................• • •
0 1 2c AG∗

1 s q − 1
(c.U ∗)

(s = qd−1 + · · · + q2 + q, d ≥ 2)

......................................................................................................................................................................................................................• • •
0 1 2c 1D∗

1 s t
(c.1D∗)

......................................................................................................................................................................................................................• • •
0 1 2PG PG∗

q s q
(PG.PG∗)

(s = qd−1 + · · · + q2 + q, d ≥ 3)

......................................................................................................................................................................................................................• • •
0 1 2AG PG∗

q − 1 s q
(AG.PG∗)
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(s = qd−1 + · · · + q2 + q, d ≥ 3)

......................................................................................................................................................................................................................• • •
0 1 2AG AG∗

q1 − 1 s q2 − 1
(AG.AG∗)

(
s = qd11 − q1

q1 − 1
= qd22 − q2

q2 − 1

)

......................................................................................................................................................................................................................• • •
0 1 2AG 1D∗

q − 1 s t
(AG.1D∗)

(s = qd−1 + · · · + q2 + q, d ≥ 2)

......................................................................................................................................................................................................................• • •
0 1 2H H ∗

8 90 8
(H.H ∗)

......................................................................................................................................................................................................................• • •
0 1 2U U ∗

q q2 − 1 q
(U.U ∗)

......................................................................................................................................................................................................................• • •
0 1 2W W ∗

q/2− 1 q q/2− 1
(q = 2h, h ≥ 2)(W.W ∗)

......................................................................................................................................................................................................................• • •
0 1 2W A f ∗

q/2− 1 q q − 1
(q = 2h, h ≥ 2)(W.A f ∗)

......................................................................................................................................................................................................................• • •
0 1 2W 1D∗

q/2− 1 q r
(W.1D∗)

(
(q + 1)r + 1 ≤2= 22h, h ≥ 2

)

......................................................................................................................................................................................................................• • •
0 1 21D 1D∗

r s t
(1D.1D∗)

Moreover:

(1) If � belongs to H.H ∗ , W.W ∗ or U.U ∗ , then the {1, 2}-residues of � are
dually isomorphic to the {0, 1}-residues.

(2) In case c.AG∗ with d > 2, either (q, d) = (4, 3) or the stabilizer in Aut(�)
of a {1, 2}-residue induces a 1-dimensional group on that residue.

(3) In case AG.AG∗ with q1 	= q2, the stabilizers in Aut(�) of the residues of
type {0, 1} and {1, 2} induce 1-dimensional groups on those residues.

(4) In case AG.1D∗ the stabilizer in Aut(�) of a {0, 1}-residue induces a 1-
dimensional group on that residue.
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Remark 1.1. Diagrams c.AG∗ with q = 2 and AG.AG∗ with q1 = q2 = 2
are special cases of c.c∗ . Diagrams c.AG∗ with s = q and AG.AG∗ with
d1 = d2 = 2 (hence s = q1 = q2 = q , say) are usually written as follows:

......................................................................................................................................................................................................................• • •
c A f ∗

1 q q − 1
(c.A f ∗)

......................................................................................................................................................................................................................• • •
A f A f ∗

q − 1 q q − 1
(A f.A f ∗)

Remark 1.2. The equation

(∗) q1 + q21 + ... + qd1−11 = q2 + q22 + ... + qd2−12

to be satisfied in case AG.AG∗ is the famous Goormaghtigh equation (see
Makowski and Schinzel [53]). Trivially, (∗) holds for q1 = q2 and d1 =
d2. Apart from that, assuming q1 < q2, the only solution I know for (∗)
is (q1, d1, q2, d2) = (2, 5, 5, 3). Flag-transitive AG.AG∗ -geometries with
(q1, d1, q2, d2) = (2, 5, 5, 3) actually exist (see Example 4.1).

Remark 1.3. Comparing the classification of 2-transitive groups one can see
that, in case of c.AG∗ with a 1-dimensional group induced on {1, 2}-residues,
1-dimensional groups are also induced on {0, 1}-residues. This forces

(∗∗) 2+ q + q2 + ... + qd−1 = pn

for a prime p and a positive integer n. This equation is also unsolved in general.
When d is odd, then p = 2 and we are back to (∗) of Remark 1.2. When d is
even, p must be odd.

We warn that the c.AG∗ -case with (q, d) = (4, 3) and non-1-dimensional
groups induced on {1, 2}-residues is missing in [42], Theorem 6.7.1. That error
has been corrected later [48].

Remark 1.4. Flag-transitive examples are known for all diagrams listed in
Theorem 1.2 but U.U ∗ , c.1D∗ , AG.1D∗ and 1D.1D∗ (but non-flag-transitive
examples for U.U ∗ are easy to construct, by the gluing procedure described in
Section 4). For the diagrams for which examples are known, we indicate below
where in this paper those examples are described or mentioned:

c.c∗ Subsections 2.1, 2.3, 2.4, 3.4, 3.8, 4.3, 6.2, 6.4 and Section 7.
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c.U ∗ Example 6.7.
c.AG∗ Examples 3.1, 3.2, 4.1 and Subsection 6.1.

PG.PG∗ Subsection 2.1.
AG.PG∗ Subsections 2.2 and 3.2.
AG.AG∗ Subsections 2.3, 2.4, 3.2, 4.3.

H.H ∗ Subsection 4.4.
W.W ∗ Subsection 5.1.
W.A f ∗ Subsections 3.5 and 4.4.

1.4. Property Tki, j , IP and flatness

We finish this introduction recalling some terminology to be used in the
sequel. Given a geometry � and three types i, j, k, we say that � satisfies
the (i, j, k)-triangular property (Tki, j , for short) if any three mutually collinear
points of the (i, j )-space Si, j (�) are incident with a common k-element.

Turning to L.L∗-geometries, we say that an L.L∗ -geometry � is flat if
S0,2(�) is a generalized digon. In the situation opposite to the above, � satisfies
the Intersection Property (IP, for short) which in this context amounts to say
that S0,1(�) is semi-linear. (See [56, Chapter 6] for formulations of IP in more
general situations.)

We recall that the c.c∗-geometries that satisfy IP are called semibiplanes.
The semibiplanes where any two 0-elements are incident to a common 1-
element are called biplanes.
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Part I

A survey of examples

In the next six sections we shall describe all examples of flag-transitive
Lh .L∗

k -geometries known to us. As the reader will see, most of those geometries
arise from general constructions, as truncations of a building of type DN ,
EN or similar, possibly after having removed one or two hyperplanes from it
(Section 2), or as affine expansions (Section 3) or gluings (Section 4). Different
constructions are described in Section 5 and Section 7 (paragraph on projective
semibiplanes). Many non-flag-transitive examples can also be obtained by some
of those constructions, but we are not going to insist on them. Exceptional
examples will be described in Section 6. Most (but not all) of them are somehow
related to Mathieu groups. Section 7 is only devoted to c.c∗-geometries.

Group-free characterizations are known for a few of the examples we are
going to describe. When that is the case, we will mention that characterization
just after the description of the example.

2. Lh.L∗
k -geometries from buildings.

Henceforth we denote by Dh,k
N the following Coxeter diagram of rank N ,

where h, k are positive integers with h + k ≤ N + 1, and n = h + k − 1:

(Dh,k
N )

............................................................................................................................................... ............................................................................................................................................................................................................................................................................................. ......................................................................................................................................................
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
........
.......
.......
......

.......

........

.......

.......

.......

........

.......

.......

.......

.......

........

.......

.......

.......

.......

......

• • • • • • •

•

•

•

0 1 h−2 h−1 h n−2 n−1

n

N−2

N−1

. . . . . .

...

The diagram Dh,k
N is spherical for quite a few choices of h, k and N . For

instance, D2,2N , DN−2,2
N and D2,N−2

N are the same as the Lie diagram DN . For
N = 6, 7, 8, the diagrams DN−3,3

N , D3,N−3
N , DN−3,2

N , D2,N−3
N , D3,2N and D2,3N are

the same as the Lie diagram EN . When h = 1 or k = 1 or h + k = N + 1, then
Dh,k
N = AN . Diagram Dh,k

N is non-spherical for all other choices of the triple
(h, k, N ).
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As in this paper we are only interested in locally finite flag-transitive
geometries, we put a finite order q at all nodes of diagram Dh,k

N , calling q the
order of Dh,k

N .

2.1. Truncations

Let � be a building belonging to Dh,k
N with order q , possibly q =

1. Assuming that h, k ≥ 2 and h + k ≤ N , we denote by Tr↑(�) the
{h + k − 1, h+ k, ..., N − 1}-truncation of �. If q > 1 then Tr↑(�) belongs to
the following diagram, which we will denote by Tr↑(Dh,k

N )q :

• • • • • • •
0 h−3 h−2 h−1 h h+1 n−1PG PG∗

. . . . . .
q q q s q q q

(s = qd−1 + ... + q2 + q and d = N − h − k + 3). In particular, for h = k = 2,
Tr↑(�) is a PG.PG∗-geometry. If q = 1, then Tr↑(�) belongs to the following
diagram Tr↑(Dh.k

N )1 , where s = N − h − k + 2:

• • • • • • •
0 h−3 h−2 h−1 h h+1 n−1c c∗

. . . . . .
1 1 1 s 1 1 1

In particular, when h = k = 2, Tr↑(�) is a c.c∗-geometry. In any case, Tr↑(�)
is flag-transitive. Furthermore, by the 2-simple connectedness of buildings and
[28], Theorem 7.19,

Proposition 2.1. Tr↑(�) is 2-simply connected.

By exploiting a lemma of Brouwer and Cohen [14], Lemma 5, on automor-
phisms of regular graphs, one can also prove the following:

Proposition 2.2. If Dh,k
N is spherical and q > 1, then Tr↑(�) does not admit

any proper 2-quotient.

Proper flag-transitive 2-quotients exist in all remaining cases.

Proposition 2.3. Let � be a geometry for diagramTr ↑(Dh,k
N )q , where h > 2 or

k > 2. Put m := N −h−k+4 and suppose that every {h−2, h−1, h}-residue
� of � is 2-covered by Tr↑(�) for a D2,2m -building � (when q > 1, � ∼=
Tr↑(�) by Proposition 2.2). Then � is 2-covered by Tr↑(�) for a Dh,k

N -building
�. Moreover, if q > 1 and Dh,k

N is spherical, then � ∼=Tr↑(�).
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Proof. We can define a Dh,k
N -sheaf S for the chamber system of the (h − 1)-

truncation of �, as in [61, Theorem 5.1]. As in the proof of [61], Theorem
5.1, one can show that all rank 3 residues of the completion C(S) of S are 2-
covered by buildings. Hence, by a celebrated theorem of Tits [72], the chamber
system C(S) is 2-covered by the chamber system C(�) of a Dh,k

N -building �.
However, the {h + k − 1, h + k, ..., N − 1}-truncation of C(S) is isomorphic
to the chamber system of �. Hence � is 2-covered by Tr↑(�). The last claim
follows from Proposition 2.2. �

Finally, let h = k = 2. It is well known that every D2,2N building
satisfies the Intersection Property IP and both triangular properties T20,1 and T

0
2,1.

Conversely,

Proposition 2.4. (Baumeister and Pasini [11]) Let � be a locally finite L.L∗ -
geometry satisfying IP, T20,1 and T

0
2,1. Then � is 2-covered by Tr↑(�) for a

building� of type D2,2N = DN . In particular, if � is thick, then � ∼=Tr↑(�).
2.2. Removing a hyperplane

Let � and q be as in the previous subsection, but assume q > 1. Let H be
a geometric hyperplane of the (0, 1)-space S := S0,1(�) of �, namely a proper
subspace of S meeting every line of S non-trivially. (Proper subspaces of S with
these properties always exist when Dh,k

N is spherical). The complement � \ H
of H in � is the substructure of� defined as follows: The complement S\H of
H in S is taken as set of 0-elements for � \ H and, for i > 0, the i-elements of
� \ H are the i-elements of � that are incident to some element of S \ H . Two
elements x , y of � \ H are declared to be incident when they are incident in �

and the flag {x , y} is incident to an element of S \ H . Suppose the following:
(∗) S induces a connected point-line geometry on S \ H and on (S \ H ) ∩

Res�(F), for every flag F of � with t(F) ∩ {0, 1} = ∅.
(For instance, this happens when Dh,k

N = DN ; see Shult [67], [68].) Then
�\H is residually connected, hence it is a geometry. It belongs to the following
diagram of rank N :


.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
........
.....

.......

.......

.......

.......

.

• • • • • • •

•

•

0 1 h−2 h−1 h n−2 n−1

n

N−1

A f
. . . . . .

...(A f.Dh−1,k
N−1 )
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The {h+k−1, h+k, ..., N −1}-truncation Tr↑(�\H ) of�\H belongs to one
of the following diagrams, where s = qd−1 + ... + q2 + q , d = N − h − k + 3:

............................................................................................................................................... ............................................................................................................................................................................................................................................................................................. ....................................• • • • • •
0 1 h−2 h−1 h n−1A f PG PG∗

. . . . . .
q−1 q q s q q

(if h > 2)

• • • • • •
0 1 2 3 n−2 n−1AG PG∗

. . .
q−1 s q s q q

(if h = 2)

We will denote the above diagrams by Tr↑(A f.Dh−1,k
N−1 ). In particular, if h =

k = 2 then Tr↑(� \ H ) is an AG.PG∗-geometry. Note that Tr↑(� \ H ) is not
flag-transitive, in general.

Proposition 2.5. Suppose that Dh,k
N is DN , namely either

(1) N = h + k with k = 2, or
(2) N = h + k, k > 2 but h = 2, or
(3) N > h + k but h = k = 2.

In case (1) the geometry Tr↑(� \ H ) is flag-transitive. In the remaining two
cases, Tr↑(� \ H ) is flag-transitive if and only if H is the set of points of S at
non-maximal distance from a given element p of � where p is a 0-element if
N is even, an (N − 1)-element in case (2) with N odd, and a 2-element in case
(3) with N odd.

Proof. In case (1), � \ H is an affine polar space. Affine polar spaces are well
known to be flag-transitive. We refer to [62, Proposition 3.6] for cases (2) and
(3). �
Notation. When H is the set of points of S at non-maximal distance from an
element p as in Proposition 2.5, then the elements of � \ H are precisely the
elements of � that, compatibly with their type, have maximal distance from p
in the incidence graph of �. This subgeometry is also denoted by Far�(p) and
it is called the subgeometry of � far from p.

Proposition 2.6. Let � \ H be as in Proposition 2.5, with � \ H = Far�(p) in
cases (2) and (3). Then Tr↑(� \ H ) is 2-simply connected.
Proof. By the 2-simple connectedness of buildings and affine geometries
and [28], Theorem 7.19, Tr↑(� \ H ) is 2-simply connected precisely when
� \ H is simply connected. The latter is indeed 2-simply connected (see [56],
Proposition 12.51, for case (1) of Proposition 2.5 and [60] for the other two
cases). �

The following is straightforward:
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Proposition 2.7. Let � \ H be as in Proposition 2.6. Then Tr↑(� \ H ) does
not admit any flag-transitive proper 2-quotient.

We are not aware of any example for a spherical Dh,k
N where (∗) fails to

hold for some hyperplane H of S. On the other hand, when Dh,k
N is non-

spherical, I do not even know if S admits any hyperplane at all. However,
suppose that H is a hyperplane of S such that (∗) fails to hold in � \ H . Then
we can do as follows: Let C(�\H ) be the graph induced by the chamber system
C(�) of � on the set of chambers of � that are contained in � \ H . As � \ H
is supposed not to be a geometry, C(� \ H ) is disconnected. However, as the
chambers and the cells of a connected componentX of C(� \ H ) are chambers
and residues of flags of �, the incidence structure � = �(X) associated to
X is a geometry and belongs to A f.Dh−1,k

N−1 . Its truncation Tr↑(�) belongs to
Tr↑(A f.Dh−1,k

N−1 ).

2.3. Removing two hyperplanes

Take Dh,k
N , � and q as in Subsection 2.2, with the same restrictions

on the triple (h, k, N ). With S and H as in that subsection, let H ∗ be a
geometric hyperplane of S∗ := Sn−1,n−2(�) and put H := {H, H ∗} and
� \H := (� \ H )∩ (� \H ∗). The structure� \H might be disconnected even
if � \ H and � \ H ∗ were residually connected. However, we can apply a trick
similar to that described at the end of Subsection 2.2: Denoting by C(� \ H)
the graph induced by C(�) on the set of chambers of � contained in � \ H,
the incidence structure � = �(X) associated to a connected component X of
C(� \ H) is a geometry and belongs to the following diagram:


........
.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
......

.......

.......

.......

.......

.

• • • • • • •

•

•

0 1 h−2 h−1 h n−2 n−1

n

N−1

A f A f ∗
. . . . . .

...(A f.Dh−1,k−1
N−1 .A f ∗)

When (h, k) 	= (2, 2), the diagram of Tr↑(�) is as follows, according to whether
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h, k > 2, h > 2 = k or h = 2 < k:

• • • • • • •
0 1 h−2 h−1 h n−2 n−1A f PG PG∗ A f ∗

. . . . . .
q−1 q q s q q q−1

......................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................• • • • • •
0 1 2 n−3 n−2 n−1A f PG AG∗

. . .
q−1 q q q s q−1

......................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................• • • • • •
0 1 2 n−3 n−2 n−1AG PG∗ A f ∗

. . .
q−1 q q q q q−1

We will denote these diagram by Tr↑(A f.Dh−1,k−1
N−2 .A f ∗). When h = k = 2,

Tr↑(�) is an AG.AG∗ -geometry (a c.c∗-geometry when q = 2). A special case
of the latter situation is considered in the next proposition:

Proposition 2.8. Let h = k = 2 (so, Dh,k
N = DN ) and, given a {0, 2}-flag

{p, p∗} of �, consider the following hyperplanes H and H ∗ of S and S∗:

(1) if N is even, H is the set of 0-elements at maximal distance from p and
H ∗ is the set of 2-elements at maximal distance from p∗;

(2) if N is odd, H is the set of 0-elements at maximal distance from p∗ and
H ∗ is the set of 2-elements at maximal distance from p.

Put H = {H, H ∗}. Then � \ H is residually connected and Tr↑(� \ H) is
flag-transitive. If q > 2, then Tr↑(� \ H) is 2-simply connected. If q = 2, then
the universal 2-cover of Tr↑(� \ H) is Tr↑(C), where C is the Coxeter complex
of type Dh,k

M = DM , M = 2N .

Proof. The residual connectedness of � \ H follows from Blok and Brouwer
[13]. The flag-transitivity of Tr↑(� \ H) is straightforward. As for the rest, see
Baumeister, Meixner and Pasini [7] and Baumeister and Stroth [12] (also Pasini
[60]). �

Flag-transitive proper 2-quotients of Tr↑(� \H) exist even in the hypothe-
ses of the above proposition. Minimal ones are obtained by factorizing by the
elementwise stabilizer of Res�(p, p∗) in Aut(�).

Notation. For H , H ∗, p, p∗ andH as in Proposition 2.8,�\H is the geometry
formed the elements of � at maximal distance from the flag {p, p∗}. This
geometry is also denoted by Far�(p, p∗).

2.4. Biaffine geometries and their quotients

Biaffine geometries arise from the same construction of the previous sub-
section, but with N = n = h + k − 1. So, Dh,k

N is the Coxeter diagram An
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and � = PG(n, q). The hyperplanes of S are the (n − 1)-elements of � and
every hyperplane of S∗ can be regarded as the set H (p) of (n − 1)-elements
incident to a given point p of S. Let H = {H, H ∗} where H is a hyperplane of
S and H ∗ = H (p). Then � \ H is a flag-transitive geometry belonging to the
following diagram, usually denoted by A f.An−2 .A f ∗:

(A f.An−2 .A f ∗• • • • • •
0 1 1 n−3 n−2 n−1A f A f ∗

. . .
q−1 q q q q q−1

In particular, when n = 3, � \ H is an A f.A f ∗-geometry. We call � \ H a
biaffine geometry of order q and rank n. If p ∈ H (equivalently, H ∈ H ∗) we
say that � \ H is of incident type. Otherwise, � \ H is of non-incident type.
The elements of � \ H are precisely the elements of � that, compatibly with
their type, have maximal distance from both p and H . Accordingly, we will
denote � \ H by Far�(p, H ).

Note that, when p ∈ H (case of incident type) the geometry Far�(p, H )
can also be obtained as an affine expansion of the dual of AG(n − 1, q) (see
Subsection 3.3).

Flag-transitive proper 2-quotients of Far�(p, H ) also exist, except when
q = 2 and p /∈ H . Minimal ones are obtained by factorizing by the group Z
of homologies (if p /∈ H ) or elations (when p ∈ H ) with p as the center and
H as the axis. When p ∈ H then Far�(p, H )/Z is isomorphic to a (twisted)
gluing of two copies of AG(n−1, q) (Buekenhout, Huybrechts and Pasini [21],
6.1; also Del Fra, Pasini and Shpectorov [37]). In particular, when p ∈ H and
n = 3 then Far�(p, H )/Z is the canonical gluing of two copies of AG(2, q)
(see Subsection 4.3). On the other hand, let p /∈ H . Then Far�(p, H )/Z can
be recovered as follows from �0 := H ∼= PG(n − 1, q) (Del Fra, Pasini and
Shpectorov [37]): for i = 0, 1, ..., n − 1, the i-elements are the pairs (X, Y )
where X and Y are subspaces of �0 of respective dimension i − 1 and i and
X ⊂ Y , with the convention that dim(∅) = −1; two elements (X, Y ) and
(X ′, Y ′) of type i and j respectively, with i < j , are incident if and only if
X ⊂ X ′, Y ⊂ Y ′ but Y 	⊆ X ′. In particular, a 0-element (∅, x ) and an (n − 1)-
elements (X, �0) are incident if and only if x /∈ X .

Proposition 2.9. Let � be a geometry of rank n ≥ 3 belonging to diagram
A f.An−2 .A f ∗ . If n > 3 then � is a (possibly non-proper) quotient of a biaffine
geometry. In any case, � is biaffine if and only if it satisfies the Intersection
Property IP (which, in this contexts, amount to say that the (0, 1)-space S0,1(�)
is semilinear).
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The first claim of the above proposition has been proved by Del Fra, Pasini
and Shpectorov [37], the second one by Levefre and Van Nypelseer [52], [73].
Not so much is known on A f.A f ∗-geometries without IP. The reader is referred
to Del Fra and Pasini [36] for some partial results on that case. The next
corollary is a trivial consequence of Proposition 2.9:

Corollary 2.10. All biaffine geometries are 2-simply connected.

3. Lh.L∗
k -geometries obtained as affine expansions.

We will firstly define affine expansions in general. Next, we will show how
they can be exploited to produce Lh .L∗

k -geometries.

3.1. Definitions

We define affine expansions in a setting as general as we need in this paper
(but see Buekenhout, Huybrechts and Pasini [21], Section 4, for a more abstract
approach.) In the sequel D is a diagram of rank N ≥ 2, 0 is a distinguished
type and � is a geometry belonging to D. We assume that � satisfies the
Intersection Property IP with respect to 0. We firstly suppose that D is a string
with 0 as its leftmost node, next we will consider a more general situation.

Case 1. Assume thatD is a string, with types 0, 1, ..., N−1 labelling the nodes
of D from left to right. Thus, 0 corresponds to the leftmost node of D and 1
to the node next to it. We denote the set of 0-elements of � by P and, for an
element x of � , we denote by P(x ) the set of 0-elements incident to x . For a
vector space V , suppose that an injective mapping e is given from P to the set
of points of the projective geometry PG(V ) of linear subspaces of V , in such a
way that:

(E1) e(P) spans PG(V );
(E2) for a given d > 0 and every 1-element x of � , e(P(x )) is the full point-

set of a d -dimensional projective subspace e(x ) of PG(V ).

In particular, if d = 1 then e is a full projective embedding of the point-line
geometry S0,1(�). Accordingly, we call e a full d -projective embedding of � .
We can extend e to a mapping from the whole of � to the set of projective
subspaces of PG(V ) by sending every element x to the span e(x ) := 〈e(P(x ))〉
of e(P(x )) in PG(V ). When N > 2 we also assume this:

(E3) For p ∈ P and an element x of � of type t(x ) > 0, we have e(p) ∈ e(x )
only if p ∈ P(x ).

By (E3) on e and IP on � we immediately obtain the following:
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(E4) For two elements x , y of � of type t(x ), t(y) > 0, we have e(x ) ⊆ e(y)
if and only if x and y are incident and t(x ) ≤ t(y). In particular,
e(x ) = e(y) only if x = y .

We can now define the affine expansion of � by e. We shall denote it by Afe(�)
(also by Af(�), when the embedding e is implicit in the definition of �). We
take {0, 1, ..., N} as type-set for Afe(�). The 0-elements of Afe(�) are the
points of the affine geometry AG(V ). Regarding PG(V ) as the geometry at
infinity of AG(V ), the 1-elements of Afe(�) are the lines L of AG(V ) with
point at infinity L∞ ∈ e(P). For i > 1, the i-elements of Afe(�) are the affine
subspaces X of AG(V ) with space at infinity X∞ = e(x ) for an (i−1)-element
x of �. The incidence relation is the natural one, namely inclusion. Exploiting
(E1), (E3) and (E4), it is easy to prove that Afe(�) is indeed a geometry (namely,
it is residually connected) and that the residues of its 0-elements are isomorphic
to � . In view of (E2), the residues of the 2-elements of Afe(�) are (d + 1)-
dimensional affine spaces. Thus, a diagram for Afe(�) can be obtained by
attaching a stroke labelled by AG to D. For instance,

from ...........................................................................................................• •
0 c∗

we get ......................................................................................................................................................................................................................• • •
AG c∗

Let Ge be the setwise stabilizer in �L(V ) of the image e(�) of � and T be the
translation group of AG(V ). Then the subgroup TGe of A�L(V ) is contained
in Aut(Afe(�)). If Ge acts flag-transitively on e(�), then T Ge is flag-transitive
on Afe(�).

Case 2. Suppose that D has the shape of a tree. Note that D might still be
a string, but now we do not assume that 0 is its leftmost node. Let Sh0(�)
be the 0-shadow geometry of � (called 0-Grassmann geometry in [56]). We
recall that the elements of Sh0(�) are the elements of � and the flags of � of
0-reduced type. In particular, Sh0(�) and � have the same 0-elements, but the
1-elements of Sh0(�) are the flags of � of typeD(0), where D(0) is the set of
types joined to 0 in D. We refer to [56, Chapter 5] for more details. We only
recall that Sh0(�) inherits IP from � and belongs to a string diagram with 0 as
the leftmost node.

Suppose that a full d -projective embedding e satisfying (E3) exists for
Sh0(�), as in Case 1. Then we can consider the affine expansion Afe (Sh0(�)).
Suppose furthermore that � is thick at all types but possibly those that are end-
nodes of the tree D. Then, as D is a tree, we can distinguish the elements of
Sh0(�) that are elements of � from the other ones, thus recovering � from
Sh0(�) (see [57]). In the same way, a geometry � of rank n + 1 such that
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Sh0(�) = Afe (Sh0(�)) can be recovered inside Afe (Sh0(�)). We call � the
affine expansion of � by e and we denote it by Afe(�). To obtain a diagram for
Afe(�) we must only attach a stroke labelled by AG to D at the node 0. For
instance,

from
..................................................................................................................................................................................................................................

•
•

•

0
we get ..................................................................................................................................

......................
.......................

......................
.......................

.................................................................................................................

• •
•

•

AG

The group induced on e(Sh0(�)) by the stabilizer of e(Sh0(�)) in �L(V ),
regarded as a subgroup of Aut(Sh0(�)) (as is possible, in view of (E4)) induces
on � a subgroup of Aut(�). If that subgroup is flag-transitive, then Afe(�) is
flag-transitive.

3.2. Affine expansions of Dh,kN -buildings

Let Dh,k
N , � and q be as in Subsection 2.2, with the same restrictions on the

triple (h, k, N ) (in particular, N ≥ h+k), but allowing h = 1. Thus, Dh,k
N might

be any of the spherical diagrams AN , DN or EN , but 0 is neither the leftmost nor
the rightmost node when Dh,k

N = AN . Let e be a full 1-projective embedding
e of Sh0(�) satisfying (E3). The affine expansion Afe(�) belongs to diagram
A f.Dh,k

N . Diagrams for Tr↑(Afe(�)) are as for Tr↑(�\H ) in Subsection 2.2. In
particular, if h = 1 and k = 2 then Tr↑ (Afe(�)) is an AG.PG∗-geometry.

In a few cases, Afe(�) is a (possibly non-proper) quotient of the geometry
�̂ \ H obtained by removing a hyperplane H from a Dh+1,k

N+1 -building �̂ (see
Subsection 2.2). For instance, this happens when k = 2 and N = h + k, or
h = 1 and either N = h + k or k = 2. However, the diagram Dh+1,k

N+1 is non-
spherical for most choices of h, k and N . In those cases, it is very unlikely that
Afe(�) can be obtained from a D

h+1,k
N+1 -building as said above.

A variation of the previous construction can also be considered. Let �

belong to diagram A f.Dh−1,k
N−1 of Subsection 2.2, but allow k = 1 and take

n − 1 instead of 0 as distinguished type for the expansion. Suppose that
Shn−1(�) admits a full 1-projective embedding e satisfying (E3). (For instance,
if � = � \ H as in Subsection 2.2, e might be induced by an embedding of
Shn−1(�).) Then Afe(�) belongs to diagram A f.Dh−1,k

N−1 .A f ∗ . Diagrams for
Tr↑(Afe(�)) are as for the geometry Tr↑(�) of Subsection 2.3. In particular, if
h = 1 and k = 2 then Tr↑(Afe(�)) is an AG.AG∗ -geometry.

3.3. Affine expansions of L∗
n-geometries. Generalities

In this and the next four subsections � is the dual of an Ln -geometry and
e : � → PG(m, q) a full d -projective embedding of � . Accordingly, the affine
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expansion Afe(�) is an L2.L∗
n -geometry with {0, 1}-residues isomorphic to the

affine space AS(d + 1, q) and {1, 2, ..., n}-residues isomorphic to � :

......................................................................................................................................................................................................................................................... ...............................................................................................................................................• • • • •
0 1 2 n−1 nAG L∗ L∗

. . .
q−1 s

(s = qd + qd−1 + . . . + q)

For instance, let � be the dual of AG(n, q) and e be its natural embedding in
PG(n, q). Then Afe(�) is isomorphic to a biaffine geometry of incident type
and rank n + 1. Examples less trivial than this will be considered in the next
subsections.

3.4. Affine expansions of dimensional dual hyperovals

Let� be a circular space, with point-setL and line-set P , and� = (P, L)
be its dual. Let e be a full d -embedding of � in PG(m, q). As the 1-elements
of � are sent by e to d -dimensional subspaces of PG(m, q), condition (E2)
forces |P(x )| = qd + ... + q + 1 for every 1-element x ∈ L of � . Hence
|L| = qd + ... + q + 2 and e(L) is a d -dimensional dual hyperoval in the sense
of Huybrechts and Pasini [48], namely:

(1) any two members of e(S) meet in exactly one point,
(2) every point of PG(m, q) belongs to either 2 or 0 members of e(S).

We have 2d ≤ m, by (1). In particular, if m = 2 then d = 1 and e(L) is a dual
hyperoval of PG(2, q) in the usual sense. In that case, q is even. We refer the
interested reader to the following papers for more information on dimensional
dual hyperovals: Cooperstein and Thas [29], Del Fra [34], Huybrechts [45],
Pasini and Yoshiara [65], [66], Taniguchi [71], Yoshiara [74], [75], Buratti and
Del Fra [24], Del Fra and Yoshiara [38].

The expansion Afe(�) belongs to diagram AG.c∗ , with {0, 1}-residues
isomorphic to AG(d + 1, q). In particular, when m = 2 the dual of Afe(�)
is a special Laguerre plane. When q = 2 then Afe(�) is a semibiplane. The
following is sufficient for Afe(�) to be flag-transitive:

(3) the stabilizer Ge of e(L) in P�Lm+1(q) acts two-transitively on e(L).

Condition (3) is fairly easy to satisfy when q = 2 (see Yoshiara [74] for a
large family of examples; also Pasini and Yoshiara [65]). When q > 2, only
two examples are known where (3) holds. We discuss them in the next two
paragraphs.

Example 3.1. [The special Laguerre plane of order 4]. Let L be the dual
hyperoval of PG(2, 4), P be the set of points contained in lines of L and put
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� := (P, L). ThenL statisfies (3) and Af(�) is the dual of the classical special
Laguerre plane of order 4, hence it is an A f.c∗ -geometry with orders (3, 4, 1):

(A f.c∗) ......................................................................................................................................................................................................................• • •
0 1 2A f c∗

3 4 1

Clearly, G := Aut(Af(�)) = 26 : 3·Sym(6). The geometry Af(�) admits two
flag-transitive proper quotients Af(�)/X and Af(�)/Y , where Y < X < G ,
|X | = 2 with NG (X )/X = 25 : Sym(5) and |Y | = 22 with NG (Y )/Y = 24

: (Z3× Sym(5)) (see Baumeister et al. [6]). We will denote Af(�), Af(�)/X
and Af(�)/Y by �L(263S6), �L(25S5) and �L(243S5), respectively. (The index
L is a reminder for ‘Laguerre’ and we write S5 and S6 instead of Sym(6) and
Sym(5) to make our notation less clumsy.)

Example 3.2. [An exceptional family of 22 planes of PG(5, 4)]. It is well
known (Conway et al. [30], page 39) that PG(5, 4) contains a 2-dimensional
dual hyperoval L with the following properties: The 22 planes of L are totally
singular for a given non-singular hermitian form; the stabilizer of L in �L6(4)
is contained in �U6(22), is isomorphic to the non-split extension 3·Aut(M22)
and acts on L just as Aut(M22) does on the 22 points of the Steiner system
S(22, 6, 3). The kernel of that action is the center of GL6(4).

Denoting by P the set of points of PG(4, 4) contained in members of L,
we can consider the affine expansion Af(�) of the dual circular space Sigma
= (P, L). The geometry Af(�) is flag-transitive with Aut(Af(�)) = 212 : 3·
Aut(M22), but 212 : 3·M22 also acts flag-transitively on it. We shall denote this
geometry by �(2123M22). It has diagram and orders as follows:

(AG.c∗) ......................................................................................................................................................................................................................• • •
0 1 2AG c∗

3 20 1

The geometry �(2123M22) is not simply connected. Its universal cover, say �̃ ,
is a double cover and can be constructed inside the affine polar space obtained
by removing a singular hyperplane from the non-singular hermitian variety
H(7, 22) of PG(7, 4). (We refer to Hybrechts and Pasini [48] for the details
of that construction). We have Aut(�̃) = 21+12+ : 3· Aut(M22) with center
Z = Z2, and �̃/Z = �(2123M22) = �̃/Z . (We warn that this group was
negligently described as 213 : 3· Aut(M22) in [48]). Henceforth we shall denote
�̃ by �(2133M22).
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3.5. Affine expansions of dual Witt spaces

Given a hyperoval O of the projective plane PG(2, q), q even, let � be
the dual Witt space formed by the points and the lines of PG(2, q) exterior to
O . Then Af(�) is an A f.W ∗ -geometry. If O is classical, then its stabilizer GO

in P�L3(q) acts flag-transitively on � and Af(�) is flag-transitive. Moreover,
denoting by p0 the nucleus of O and regarding the linear subspace T0 of V (3, q)
corresponding to p0 as a group of translations of AG(3, q), T0 defines a flag-
transitive quotient of Af(�), which is flat. When q = 4, then Af(�) is an
A f.c∗ -geometry, isomorphic to the dual of the special Laguerre plane of order
4 (Example 3.1).

3.6. Affine expansions of dual Möbius planes

Let � be an embeddable Möbius plane of order q , realized as an L3-
subgeometry of PG(3, q), and � be its dual. Namely, the 2-elements of �

(points of �) form an ovoid O of PG(3, q), the 1-elements of � are the pairs
of points of O and the 0-elements of � (circles of�) are the planes of PG(3, q)
that meet O in a conic. By applying a correlation of PG(3, q) (a polarity, for
instance), we obtain a full 1-embedding e of � in PG(3, q). The expansion
Afe(�) has diagram and orders as follows:

.................................................................................................................................................................................................................................................................................................................................• • • •
0 1 2 3A f A f ∗ c∗

q−1 q q−1 1

The geometry � = Afe(�) is flag-transitive if and only if O is classical. If that is
the case, then Aut(�) = V : �L2(q2) where V is the additive group of V (4, q)
and �L2(q2) is the stabilizer of O in �L4(q), acting on V according to the
adjoint action of �L4(q). The {0, 1, 2}-residues of � are biaffine geometries of
incident type. When q = 2, Afe(�) is a truncation of the Coxeter complex of
type D5. The case of q = 3 is also interesting. We will turn back to it at the end
of the next subsection.

3.7. A series for 362M12, 35M11 and 34�L2(9)

For i = 0, 1, 2, let �i be the the Steiner system S(10 + i, 4 + i, 3 + i),
regarded as an L3+i -geometry. So, �0 is the Möbius plane of order 3, �1 is
the Steiner system for M11 and �2 that for M12. As recalled in the previous
subsection,�0 is (laxly) embeddable in PG(3, 3). The Steiner systems �1 and
�2 also admit a lax embedding in PG(4, 3) and PG(5, 3) respectively. To show
this, we need to recall some properties of the 6-dimensional ternary Golay code
C6(3) and its dual C∗

6(3).
Regarding C∗

6(3) as a vector space V = V (6, 3) equipped with a suitable
weight function, let S be the set of 1-dimensional linear subspaces of V spanned



292 ANTONIO PASINI

by vectors that have weight 1 as words of C∗
6(3). Then S is a set of 12 points

of PG(5, 3) with the following properties: Any 5 of them span a hyperplane of
PG(5, 3) and every hyperplane of PG(5, 3) meets S in 6, 3 or 0 points (see
[63]). The dual V ∗ of V can be regarded as a copy of C6(3). More explicitly,
let B = {bp}p∈S be the natural basis of V̂ := V (12, 3) and pick a representative
vp ∈ V for every point p ∈ S . Then the codewords of C6(3) are the vectors∑

p∈S〈vp, v∗〉bp for v∗ ∈ V ∗ (where the symbol 〈., .〉 stands for scalar product)
and we may regard V ∗ as a 6-dimensional subspace of V̂ . A vector

∑
p∈S λpbp

of V̂ belongs to V ∗ if and only if
∑

p∈S λpvp = 0 (see [63]). The natural

isomorphism V̂ /V ∗ ∼= V obtained in this way makes it clear that C6(3) is just
V ∗ , equipped with the weight function relative to B .

Turning to�2, and with S as above, we can take S as the set of 0-elements
of �2. The lines, planes, 3-spaces and hyperplanes of PG(5, 3) that meet S in
2, 3, 4 and, respectively, 6 points will be taken as elements of type 1, 2, 3 and 4,
respectively. Thus, we obtain a lax 1-embedding δ2 : �2 → PG(5, 3). Clearly,
δ2 induces lax 1-embeddings δ1 : �1 → PG(4, 3) and δ0 : �0 → PG(3, 3),
and δ0 is the same as considered in Subsection 3.6.

For i = 0, 1, 2, let Vi = V (4+ i, 3) be the underlying vector space of the
projective space PG(Vi) = PG(3 + i, 3) in which �i is embedded by δi and
let V ∗

i be its dual. (In particular, V2 and V
∗
2 are the spaces previously called

V and V ∗ .) let �i be the dual of �i . The embedding δi : �i → PG(Vi)
induces a full 1-embedding ei of �i in PG(V ∗

i ) and we can consider the affine
expansion Afei (�i). We have described the diagram of Afe0 (�0) in Example
3.6. For i = 1, 2, the expansion Afei (�i ) has diagram and orders as follows:

...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
A f A f ∗ c∗

2 3 2 1 1
(i = 1)

• • • • • •
A f A f ∗ c∗

2 3 2 1 1 1
(i = 2)

Clearly, Afe0 (�0) is a residue of Afe1 (�1) and the latter is a residue of Afe2 (�2).
We recall that Aut(Afe0 (�0)) = 34 : �L2(9). Both Afe1 (�1) and Afe2 (�2) are
flag-transitive, too, with Aut(Afe1 (�1)) = 35 : M11 and Aut(Afe2 (�2)) = 36 :
2·M12. In view of this, we will denote Afe1 (�1) and Afe2 (�2) by �(35M11) and
�(362M12), respectively. We also denote Afe0 (�0) by �(34�L2(9)).

3.8. Intersecting an affine expansion with its dual

Suppose that � is a geometry with string diagram of rank n and let e
be a full embedding of � in 
0 = PG(n, q), satisfying (E3). So, e(x ) is
i-dimensional for every i-element x of � . Let δ be a correlation of 
 :=
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PG(n + 1, q) (e.g., a polarity). Then, regarding 
0 as a hyperplane of 
, the
composition δe is a lax embedding of the dual of � in the star Res
(p0) of the
point p0 := δ(
0). We may also assume that the affine geometry AG(n + 1, q)
in which Afe(�) is realized, is just the complement of 
0 in
. Accordingly, δ
induces a dual isomorphism from Afe(�) to a subgeometry Af∗δe(�) of the dual
affine space 
\Res
(p0). So, both Afe(�) and its dual Af∗δe(�) live inside

. The intersection Af∗δe(�)∩Afe (�), regarded as an induced substructure of

, is not a geometry in general. However, for certain choices of � , e and δ

we do get a geometry. For instance, all biaffine geometries arise in this way.
This construction has also been exploited by Del Fra [33] to create two infinite
families of semibiplanes. However, apart from biaffine geometries, only one
flag-transitive geometry is known that can be obtained by this construction. It is
a semibiplane and belongs to one of the two families of Del Fra [33], but Janko
and Van Trung [50] are those who discovered it first.

Example 3.3. [The Janko-Van Trung semibiplane] Let � = (P, L) be the dual
of the circular space with 6 points embedded in 
0 := PG(2, 4) in such a
way that e(L) is a dual hyperoval. Choose the correlation δ of 
 = PG(3, 4)
in such a way that the point p0 = δ(
0) is exterior to the plane 
0 of 


and {δe(l) ∩ 
0}l∈L is the hyperoval formed by the six points of 
0 exterior
to the dual hyperoval e(L). Then � := Af∗δe(�)∩ Afe(�) is a flag-transitive
semibiplane of order 4 and Aut(�) = 3·Sym(6) is the stabilizer of e(L) in
�L3(4), the latter being regarded as the stabilizer in P�L4(4) of the antiflag
{p0, 
0}. The multiplier 3 of Sym(6) in 3·Sym(6) is the center Z of GL3(4)
and defines a quotient of �. Note that �/Z is flat and Aut(�/Z ) = Sym(6).

4. Gluings.

Gluings can be defined in a very general way (Buekenhout, Huybrechts and
Pasini [21], Section 3), but we will only consider gluings of linear spaces here.
We firstly recall a few basics on parallelisms of linear spaces, next we define
gluings and, finally, we will survey examples of flag-transitive L.L∗-geometries
obtained as gluings.

4.1. Parallelisms in linear spaces

Given a linear space � = (P, L) with point-set P and line-set L, a
parallelism of � is a partition π of L in spreads. We denote by �/π the set of
classes of π and, for a line l ∈ L, lπ is the class of π containing l . We denote
by Aut(�, π ) the group of all automorphisms of � that permute the classes of
π , by Kπ the kernel of the action of Aut(�, π ) on �/π and, for an element
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g ∈ Aut(�, π ) (a subgroup X ≤Aut(�, π )) we denote by gπ (resp. Xπ ) the
permutation (the group) induced on �/π by g (resp. X ). If Aut(�, π ) acts
flag-transitively on � , then we say that (�, π ) is flag-transitive, also that π is
flag-transitive, for short. A sufficient condition for (�, π ) to be flag-transitive is
the following: Kπ and (Aut(�, π ))π are transitive on P and �/π respectively.

Obviously, the natural parallelism of an affine space is flag-transitive. Each
of the two Hering spaces admit a flag-transitive parallelism. Classical Witt
spaces also admit flag-transitive parallelisms. Indeed, Let W (O) be the Witt
space of lines and points of PG(2, 2h) (h ≥ 2) exterior to a given classical
hyperoval O = C ∪ {p}, for a conic C with nucleus p. The lines of PG(2, 2h)
through p form a partition of the set of points exterior to O , which are the
lines of W (O). That partition is in fact a flag-transitive parallelism of W (O).
We call it the natural parallelism of W (O). Note that, when h > 2, every
classical hyperoval of PG(2, 2h) can be regarded in a unique way as a conic
plus its nucleus. In that case W (O) admits a unique natural parallelism. When
h = 2, every hyperoval O of PG(2, 4) is classical and C := O \ {p} is a
conic for every p ∈ O . In that case, W (O) admits six different flag-transitive
parallelisms, but they are pairwise isomorphic. However, when h = 2, W (O)
is in fact isomorphic to the circular space C6 with six points.

The circular spaces C12 and C28 with respectively 12 and 28 points also ad-
mit a flag-transitive parallelism. In either of them the flag-transitive parallelism
is unique. Its automorphism group is isomorphic to L2(11) and R(3) = 2G2(3),
respectively (see Cameron and Korchmaros [26]).

We recall that the n-dimensional affine space AS(n, 2) over GF(2) is
a circular space Cv with v = 2n points. When n > 2, Cv admits many
parallelisms different from the natural parallelism of AS(n, 2), but the latter
is the unique flag-transitive parallelism of Cv (Cameron and Korchmaros [26]).
The circular spaces C6, C12 and C28 and Cv with v = 2n are the only circular
spaces admitting a flag-transitive parallelism (Cameron and Korchmaros [26]).

As noticed by Buekenhout, Huybrechts and Pasini [21], many projective
spaces of odd dimension and all hermitian and Ree unitals admit a parallelism
but, if � is such a space, every flag-transitive subgroup of Aut(�) acts prim-
itively on the line-set of � , hence none of the parallelisms of � can be flag-
transitive. I do not know if any 1-dimensional linear space exists that admits a
flag-transitive parallelism.

4.2. Gluing two linear spaces

Given two linear spaces �1 = (P1, L1) and �2 = (P2, L2), equipped with
parallelisms π1 and π2, suppose that |�1/π1| = |�2/π2| and let α be a bijection
from �1/π1 to �2/π2. The gluing of (�1, π1) with (�2, π2) by α is the rank 3
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geometry Glα(�1, �2) defined as follows: P1 is the set of 0-elements and P2 is
the set of 2-elements. The 1-elements are the pairs (l1, l2) with l1 ∈L1, l2 ∈L2

and α(lπ11 ) = lπ22 . All 0-elements are declared to be incident to all 2-elements
(so, this geometry is flat). A 0-element (a 2-element) p and a 1-element (l1, l2)
are incident precisely when p ∈ l1 (resp. p ∈ l2). The residues of the 2-elements
of Glα(�1, �2) are isomorphic to �1 and the residues of the 0-elements are
isomorphic to the dual of �2. So, Glα(�1, �2) is an L.L∗ -geometry.

For i = 1, 2, put Gi := Aut(�i, πi ). Then Aut(Glα(�1, �2)) is the
sugroup of G1 × G2 formed by the pairs (g1, g2) such that αgπ1

1 α−1 = gπ2
2 .

Put L1 := Gπ1
1 ∩ α−1Gπ2

2 α and L2 := αGπ1
1 α−1 ∩ Gπ2

2 . Clearly, α induces an
isomorphism from the action of L1 on �1/π1 to the action of L2 on �2/π2 ,
and Aut(Glα(�1, �2)) is a (possibly non-split) extension of Kπ1 × Kπ2 by a
copy L of L1 ∼= L2. The geometry Glα(�1, �2) is flag-transitive if and only
if the permutation group Li acts transitively on the set �i/πi and the extension
Kπi · Li ≤ Gi acts flag-transitively on (�i , πi ), for i = 1, 2. In particular, if Kπi

is transitive on Pi for i = 1, 2 and Li is transitive on �i/πi , then Glα(�1, �2)
is flag-transitive.

When (�1, π1) = (�2, π2) = (�, π ), we write Glα(�) for short instead
of Glα(�, �). The bijection α is now a permutation of �/π and, putting
G := Aut(�, π ), we can consider the double coset GπαGπ in the group of
all permutations of �/π . The following has been proved by Buekenhout,
Huybrechts and Pasini [21], Theorem 3.9:

Proposition 4.1. Two gluings Glα(�) and Glβ (�) are isomorphic if and only
GπαGπ = GπβGπ .

We say that Glα(�) is a canonical gluing if α ∈ Gπ (in particular, if α is
the identity permutation). By Proposition 4.1, canonical gluings are mutually
isomorphic. This allows us to freely use the determinate article the when
speaking of the canonical gluing.

4.3. Gluing affine spaces with affine or circular spaces

We firstly consider gluings of two copies of the n-dimensional affine space
AS(n, q) over GF(q).

Proposition 4.2. (Baumeister and Stroth [12]) Let � := AS(n, q) and π be its
parallelism (the natural one, when q = 2). Given a permutation α of �/π , put
L := Gπ ∩ αGπα−1, where G := Aut(�, π ). Suppose that the gluing Glα(�)
is flag-transitive non-canonical. Then one of the following holds:

(1) n = 2, q ∈ {5, 7, 11, 19, 23, 29, 59} and L is as follows:
if q ∈ {5, 7, 23}, then L ∼=Sym(4);
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if q ∈ {19, 29, 59}, then L ∼= Alt(5);
if q = 11, then L ∼= Sym(4),Alt(4) or Alt(5).

(2) q = 3, n = 4 and L ∼= L2(13).
(3) q = 3, n = 6, O2(L) = 24 and Z5 ≤ L/O2(L) ≤ Frob(5 : 2).
(4) L is the normalizer of a Singer cycle in �Ln(q) and either n > 2 or n = 2

with q = 7 or q > 9.
(5) L is embedded in �L1(qn) and, for r = |Aut(GF(q))|, the numbers nr

and qn−1 + ... + q + 1 are non-coprime.

In cases (1), (2) and (3), Glα(�) is simply connected. In the remaining two
cases, if n = 2 and q is an odd prime, then Glα(�) is simply connected.

Not so much is known on the universal cover of Glα(�) in cases (4) and (5)
with n > 2 or q even or non-prime. Actually, only the case of q = 2 has been
investigated: infinitely many non-canonical gluings of two copies of AS(n, 2)
exist that admit a proper cover (Pasini and Yoshiara [65], Proposition 3.5), but it
is likely that infinitely many simply connected examples also exist (Pasini and
Yoshiara [66], Section 4).

Proposition 4.3. Let � be the canonical gluing of two copies of AS(n, q) and
define �̂ as follows: if n = 2, then �̂ is the biaffine geometry of rank 3, order
q and incident type; if n > 2, then �̂ = Tr↑(Far�(p, p∗)), where � is the
building of type D2,2n+1 = Dn+1 over GF(q) and {p, p∗} is a {0, 2}-flag of �, as
in Proposition 2.8. Then � is a quotient of �̂ . If q > 2, then �̂ is the universal
cover of �. If q = 2, then the universal cover of � is Tr↑(C), where C is the
Coxeter complex of type D2,2N = DN , N = 2n .

Proof. See [59] for the first claim. The rest follows from that claim and either
Proposition 2.8 (when n > 2) or Proposition 2.9 (when n = 2). As for the case
of n = 2 with q = 2, note that the biaffine geometry of incident type, order 2
and rank 3 is isomorphic to the truncation Tr↑(C) of the Coxeter complex C of
type D2,24 = D4. �

Flag-transitive A f.A f ∗-geometries can also be obtained by gluing two
copies of a non-desarguesian affine plane or even two non-isomorphic affine
planes, but no thoroughful investigation of these gluings can be found in the
literature. The case of two affine spaces of different orders and dimensions is
discussed below.

Example 4.1. Let �1 = AS(n1, q1) and �2 = AS(n2, q2) with q1 < q2. A
gluing of �1 with �2 exists if and only if (q1, n1, q2, n2) is a solution of the
Goormaghtigh equation (∗) of Remark 1.2. Take (q1, n1, q2, n2) = (2, 5, 5, 3).
Only two flag-transitive gluings exist of AS(5, 2) with AS(3, 5) (Huybrechts
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and Pasini [48], Section 4.2). They are simply connected. Their automorphism
groups are extensions of 25 × 53 by Z31.

We now turn to gluings where at least one circular space is involved. We
firstly recall the following:

Proposition 4.4. (Baumeister and Pasini [10]). Let � be a flat flag-transitive
c.c∗-geometry. Then � is either the flat quotient of the Janko-Van Trung
semibiplane (Example 3.3), or a gluing of two copies of AS(n, 2).

The flat quotient of the Janko-Van Trung semibiplane is not a gluing. So,
all flag-transitive gluings of two circular spaces are in fact gluings of two affine
spaces. Let now � be a flag-transitive gluing of a circular space Cv with v points
with an affine space � of order q > 2 and dimension n. Then

v = 2+ q + q2 + ... + qn−1.

If v is a power of 2, we are back to Example 4.1. Suppose v = 6, 12 or 28.
No solution (v, q, n) exists for the above equation with v = 12 or 28. Hence
v = 6, q = 4 and n = 2. A flag-transitive gluing of C6 with AS(2, 4) actually
exists: it is isomorphic to the flat quotient �L (243S5) of the geometry �L(263S6)
of Example 3.1.

4.4. Gluings involvingWitt or Hering spaces

Let W be the classical Witt space of order (2h−1 − 1, 2h). We can glue
W with the affine plane � := AG(2, 2h). If the gluing bijection α is well
chosen, then Glα(�,W ) is flag-transitive. However, it is not difficult to check
that, in that case, Glα(�, W) is in fact isomorphic to the flat quotient of the
affine expansion of the dual of W , discussed in Subsection 3.5.

We can also glue W with itself, but a straightforward computation shows
that there is no way to choose α in such a way that Glα(W ) is flag-transitive.
On the other hand, let H be one of the two Hering spaces. Comparing the
information given on Hering spaces by Huybrechts [42, 2.6] one can see that
we can only glue H with itself or with AS(3, 9). The latter gluing is not flag-
transitive, but the canonical gluing of H with itself is flag-transitive. Thus, we
obtain two flag-transitive H.H ∗-geometries, one for each Hering space.

5. More constructions.

5.1. A family of flag-transitiveW.W ∗-geometries
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An infinite family of flag-transitiveW.W ∗-geometries has been discovered
by C. Huybrechts [44]. Two equivalent constructions are given for those
geometries in [44]. We will describe only one of them.

Given a non-singular quadric Q of PG(4, q), q even, let p be a point
of PG(4, q) exterior to Q but different from the nucleus of Q. Let � be the
induced subgeometry of PG(4, q) defined as follows: The secant lines of Q
passing through p are the 0-elements, the 1-elements are the planes through
p that meet Q in a non-singular conic with nucleus different from p, and the
2-elements are the hyperplanes through p intersecting Q in an elliptic quadric.
Then � is a W.W ∗-geometry with {0, 1}-residues ({1, 2}-residues) isomorphic
to (the dual of) a Witt space. The stabilizer G of p and Q in P�L5(q) acts flag-
transitively on �. It contains a normal subroup of order q/2 every subgroup of
which defines a quotient of �.

We guess that � is simply connected, but nothing is said about this in [44].
The reader might also wonder what happens if, in the above construction, we
take exterior instead of secant lines and hyperplanes meeting Q in a hyperbolic
quadric rather than an elliptic one: the geometry obtained in that way is
isomorphic to � (Huybrechts [44]).

5.2. A family of flag-transitive c.Af.W ∗-geometries
For q = 2h with h ≥ 2, let Q be a non-singular quadric of PG(4, q) and

H be the family of 3-spaces of PG(4, q) that meet Q in an elliptic quadric.
We can form a geometry of rank 4 as follows: H is the set of 3-elements, the
0-elements are the points of Q, the 1-elements are the non-collinear pairs of
points of Q and the 2-elements are the planes of PG(4, q) that meet Q in a
non-singular conic. The incidence relation is inclusion. This geometry is flag-
transitive and has diagram and orders as follows:

.................................................................................................................................................................................................................................................................................................................................• • • •
c A f W ∗

0 1 2 3

1 q−1 q q/2−1

The {0, 1, 2}-residues are Möbius planes and the {1, 2, 3}-residues are isomor-
phic to affine expansions of dual Witt spaces, as in Subsection 3.5. In particular,
when q = 4 we obtain the following:

.................................................................................................................................................................................................................................................................................................................................• • • •
c A f c∗

0 1 2 3

1 3 4 1

In this case, the {1, 2, 3}-residues are dual special Laguerre planes of order 4,
as in Example 3.1.
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6. Exceptional and sporadic examples.

A few exceptional geometries have already been met in Section 4, namely
the AG.c∗ -geometry �(2133M22) and its quotient �(2123M22) (Example 3.2)
and the geometries �(35M11) and �(362M12) (Subsection 3.7). The following
examples may also be added to that list, even if no sporadic group is involved
in them: the dual Laguerre plane �L(263S6) and its quotients �L (25S5) and
�L(243S5) (Example 3.1), the Janko-Van Trung semibiplane and its flat quo-
tient (Example 3.3), and the exceptional gluings mentioned in Proposition 4.2
((1),(2),(3)) and in Example 4.1. More examples are gathered in this section.

6.1. Flag-transitive ci .Af ∗-geometries

Example 6.1. [A c.A f ∗-geometry for L2(17)] Denoting by V the natural 18-
dimensional GF(2)-module for the linear group L = L2(17), V contains
two non-isomorphic 9-dimensional submodules V1 and V2, permuted by an
outer automorphism of L2(17) and intersecting in the 1-dimensional submodule
Z := CV (L) (see Ivanov and Praeger [49], (1.4) ). Let U be V1 or V2. A flag-
transitive c.A f ∗-geometry � with orders as follows can be constructed over U .

......................................................................................................................................................................................................................• • •
c A f ∗

0 1 2

1 16 15

The vectors of U , regarded as functions from PG(1, 17) to GF(2), are taken
as 2-elements of � and the pairs (i, ε) ∈ PG(1, 17) × GF(2) are the 0-
elements. A pair (i, ε) and a vector v : PG(1, 17) → GF(2) are declared
to be incident precisely when v(i) = ε . Consider the 0-elements p∞ = (∞, 0)
and p0 = (0, 0). There exist 27 2-elements incident with both p∞ and p0.
Denoting by L{∞,0} the stabilizer of {∞, 0} in L , we have L{∞,0} = D16. Pick
an element a ∈ L{∞,0} of order 8. Then |CU (a)| = 25 and the set, say l0 , of
vectors of CU (a) incident to both p∞ and p0 is a subgroup of CU (a) of index
2. The 1-elements of � are the images of l0 by elements of the group UL , in
its affine action on the vector space U . A 1-element l and a 2-element v (a
0-element p) are declared to be incident when v ∈ l (when p is incident to all
2-elements v ∈ l). The geometry � is flag-transitive, with Aut(�) = UL = 29 :
L2(17). The subgroup Z < U defines a flag-transitive quotient �/Z of �. We
will denote � and �/Z by �(29L2(17)) and �(28L2(17)), respectively.

Note that IP fails to hold in �(29L2(17)) and �(28L2(17)) is non-flat. We
refer to Baumeister et al. [6] for more information on these geometries.

Example 6.2. [Three geometries for M23, M22 L3(4) · 2] For i = 0, 1, 2, let �i

be the Steiner system S(22+ i, 6+ i, 3+ i), regarded as an L3+i -geometry. So,
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0, 1, ..., 2+i are the types, the 0-elements are the points of S(22+i, 6+i, 3+i),
the 1-elements are the duads, and so on. Pick a 0-element p of �i and let �i

be the induced subgeometry of �i formed by the elements that are not incident
to p. (In particular, the 0-elements of �i are the points of �i different from p.)
Then �i has diagram and orders as follows:

......................................................................................................................................................................................................................• • •
c A f ∗

0 1 2

1 4 3
(for �0)(c.A f ∗)

.................................................................................................................................................................................................................................................................................................................................• • • •
c A f ∗

0 1 2 3

1 1 4 3
(for �1)(c2.A f ∗)

...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
c A f ∗

0 1 2 3 4

1 1 1 4 3
(for �2)(c3.A f ∗)

For i = 0, 1, the residues of the 0-elements of �i+1 are isomorphic to �i .
The automorphism group of �i is the stabilizer of p in Aut(�i) and acts flag-
transitively on �i . Explicitly, Aut(�0) = P�L3(4), Aut(�1) = M22 and
Aut(�2) = M23. We will use the following notation: �far(L3(4)) for �0,
�far(M22) for �1 and �far(M23) for �2, where the subscript ‘far’ should remind
us that the elements of �i are those that are non-incident to p (namely, far from
p).

Proposition 6.1. (Sprague [69], [70]). All but two of the c.A f ∗-geometries
satisfying IP are special Laguerre planes. �far(L3(4)) and the biaffine geometry
of order 2, rank 3 and non-incident type are the two exceptions and are
characterized by the fact that T20,1 does not hold in them.

Proposition 6.2. ([58]). The geometries�far(M22) and �far(M23) are the unique
ci .A f ∗-geometries of rank n = i + 2 ≥ 4 with c.A f ∗-residues isomorphic to
�far(L3(4)).

Example 6.3. [Geometries of type c.A f ∗ , c2.A f ∗ and c3.A f ∗ for 24 : Sym(6),
24 : Alt(7) and 24 : Alt(8)] With �i = S(22+ i, 6 + i, 3 + i) as in Example
6.2, pick a block ((i + 2)-element) A of �i , namely a hexad when i = 0, a
heptad if i = 1, an octad if i = 2. Define a geometry �i as follows: The
0-elements of �i are the points of A and the (i + 2)-elements are the points of
�i exterior to A. For 1 ≤ j ≤ i , the j -elements are the subsets of A of size
j +1. The (i +1)-elements of�i are the blocks X of �i with |X ∩ A| = i +2.
All (i + 2)-elements of �i are declared to be incident to all j -elements for
any j ≤ i (in particular, �0 is flat). The incidence relation between (i + 1)-
elements and the remaining elements of �i , or between elements of type less
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then i + 1, is inherited from �i . Then �0, �1 and �2 belong to c.A f ∗ , c2.A f ∗
and c3.A f ∗ with orders (1, 4, 3), (1, 1, 4, 3) and (1, 1, 1, 4, 3) respectively, just
as the geometries �far(L3(4)), �far(M22) and �far(M23) of Example 6.2.

For i = 0, 1, the residues of the 0-elements of �i+1 are isomorphic to
�i . The automorphism group of �i is flag-transitive and isomorphic to the
stabilizer of A in Aut(�i). That is, Aut(�0) = 24 : Sym(6), Aut(�1) = 24 :
Alt(7) and Aut(�2) = 24 : Alt(8). We will denote�0, �1 and �2 by �cl(24S6),
�cl(24A7) and �cl(24A8) respectively, where the subscript ‘cl’ stands for ‘close’
and should remind us that �i is formed by the elements of �i different from A
but as close as possible to A.

Proposition 6.3. ([58]) The geometries �cl(24A8) and �cl(24A7) are the unique
ci .A f ∗-geometries of rank n = i + 2 ≥ 4 with c.A f ∗-residues isomorphic to
�cl(24S6).

6.2. Exceptional ci .c∗ j -geometries

Example 6.4. [A c2.c∗-geometry of order 3 for M11 and a semibiplane for
L2(11)] (Buekenhout [18], (27), Meixner [54]). It is known that M12 admits
two conjugacy classes of subgroups isomorphic to M11. One class contains the
stabilizers of the points of the Steiner system� = S(12, 6, 5). If G is a member
of the other class, then G is 3-transitive on the point-set A of � and has an orbit
O of length 22 on the set of blocks of � . Regarding � as a geometry of rank
5, let � be the induced subgeometry of � obtained by removing the blocks (4-
elements) that do not belong to O and all 3-elements of � (namely, 4-subsets of
A). Then � is a flag-transitive geometry with Aut(�) = G ∼= M11 and diagram
and orders as follows:

(c2.c∗) .................................................................................................................................................................................................................................................................................................................................• • • •
c c∗

0 1 2 3

1 1 3 1

We will denote this geometry by �12(M11), where the index 12 reminds us of
the number of its 0-elements. The geometry �12(M11) is simply connected
(Meixner [54]). The residues of the 0-elements of �12(M11) are isomorphic to a
well known biplane for L2(11). We refer to Buekenhout [17] (also Baumeister
and Buekenhout [5], 3,(3)(i)) for alternative descriptions of this biplane.

Example 6.5. [Some ci .c∗-geometries of order 7 related to M12, M11 and M10]
(Meixner [54], Ceccherini and Pasini [28], 3.3). The construction we describe
here is essentially taken from [28], but for a few corrections. (Indeed, the
elements of type 2 of the geometry we are going to describe are defined in
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[28] in an erroneous way). We firstly state some terminology and recall a few
properties of the 6-dimensional ternary Golay code C3(6). Let V = V (12, 3)
be the vector space of all functions from I = {1, 2, ..., 12} to GF(3). For a
vector v ∈ V , the support of v is the set σ (v) := {i ∈ I |v(i) 	= 0}. The size
λ(v) = |σ (v)| of σ (v) is the weight of v. It is well known [30] that the non-
trivial words of C6(3) (⊂ V ) have weight 6, 9 or 12. In particular, C3(6) admits
264 words of weight 6, 440 words of weight 9 and 24 words of weight 12.
Moreover, if u and x are words of weight 9 and 6, then 3 ≤ |σ (u) ∩ σ (x )| ≤ 6.
In the following table, we list all possibilities for λ(u+x ), for u and x as above.
In the last column of the table we write the number of words x of weight 6 that,
for a given u of weight 9, have |σ (x ) ∩ σ (u)| and λ(x + u) as in the considered
row of the table.

|σ (x ) ∩ σ (u)| λ(x + u) number of words

(1) 6 6 24
(2) 5 6 54
(3) 5 9 54
(4) 4 9 108
(5) 3 9 12

For 1 ≤ i ≤ 6, let Wi (u) be the set of words x of weight 6 as in case (i) of the
table. Note that the function sending every word to its opposite stabilizesW1(u)
and W4(u) and permutes W2(u) with W3(u) and W5(u) withW6(u). We are now
ready to define our geometry.

Let � be the geometry of rank 5 defined as follows: The 4-elements of �

are the vectors of V of weight 1. The 3-elements are the pairs (v1, v2) where
v1 and v2 are vectors of weight 4 and 2 respectively and v1 + v2 is a word of
C6(3) of weight 6. The 2-elements are the words of C6(3) of weight 9. The 1-
and 0-elements are the unordered pairs of elements of I and the elements of I ,
respectively.

Let v be a 4-element. We say that a 3-element (v1, v2) (a 2-element u) is
incident with v when λ(v2 − v) = 1 (respectively, λ(u − v) = 8). A 1-element
J (a 0-element i) is incident to v when σ (v) /∈ J (resp. σ (v) 	= i). Let (v1, v2)
be a 3-element. A 2-element u is incident to (v1, v2) when v1 + v2 ∈ W6(u)
and λ(u − v2) = 7. A 1-element J (a 0-element i) is said to be incident to
(v1, v2) when J ⊂ σ (v1) (resp. i ∈ σ (v1)). A 2-element u and a 1-element J
(a 0-element i) are incident if and only if J ∩ σ (u) = ∅ (resp. i /∈ σ (u)). A
1-element J and a 0-element i are incident if and only if i ∈ J .

The structure � defined as above is a flag-transitive geometry with
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Aut(�) = 2·M12 (central non-split extension) and diagram and orders as fol-
lows:

(c3.c∗) ...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
c c∗

0 1 2 3 4

1 1 1 7 1

Moreover, � is simply connected (Ceccherini and Pasini [28]). The center Z =
Z2 of Aut(�) defines a flag-transitive quotient �/Z of �, with Aut(�/Z ) =
M12. We will denote � by �Gol(2M12) and �/Z by �12(M12). (Needless to
say, the subscript ‘Gol’ stands for ‘Golay’.) Note that �12(M12) can also be
recovered from the Steiner system � = S(12, 6, 5). The points of � are taken
both as 0- and as 4-elements, the elements of �12(M12) of type 1 and 2 are the
duads and the complements of triads of� ; the 3-elements are hexads partitioned
in a tetrad and a duad. The incidence relation of �12(M12) is implicit in the
description of �Gol(2M12). In fact, the projection of �Gol(2M12) onto �12(M12)
is induced by the function mapping every vector v ∈ V onto σ (u).

The residue of a 0-element of �Gol(2M12) is a simply connected flag-
transitive c2.c∗-geometry with orders (1, 1, 7, 1) and automorphism group iso-
morphic to Z2 × M11. We will denote it by �Gol(2M11). The factor Z2 of the
product Z2 × M11 defines a flag-transitive quotient of �Gol(2M11), which we
will denote by �11(M11). Clearly, �11(M11) is isomorphic to the residues of the
0-elements of �12(M12).

�11(M11) can be recovered from S(11, 5, 4) just like �12(M12) from
S(12, 6, 5). We refer to Meixner [54] for that description of �11(M11). A de-
scription of �Gol(2M11) by means of the 5-dimensional ternary Golay code for
M11 is implicit in the above description of �Gol(2M12).

The residues of the 0-elements of �Gol(2M11) are c.c∗-geometries with
orders (1, 7, 1) and automorphism group isomorphic to Z2 × M10. (We warn
that these c.c∗-geometries are not semibiplanes.) The residues of the 0-elements
of �11(M11) are c.c∗-geometries for M10 = L2(9)23.

Example 6.6. [Geometries of type c2.c∗2 for M12 and 2·M12] (Meixner [54],
Leemans [51]). The geometry �12(M11) is isomorphic to the residues of the
4-elements of a c2.c∗2-geometry �1 for M12 (Meixner [54], Leemans [51]):

(c3.c∗2 ) ...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
c c∗

0 1 2 3 4

1 1 s 1 1

where s = 3. The geometry �1 is not simply connected. Its universal 2-cover
�̃1 is a double cover, with automorphism group isomorphic to the central non-
split extension 2·M12 (see Meixner [54], where a group-theoretic construction
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of �̃1 is given, by generators and relations). The outer automorphisms of M12

induce non-type-preserving automorphisms on �1. The same holds for �̃1.

�Gol(2M11) is isomorphic to the residues of the 4-elements of a 2-simply
connected c2.c∗2-geometry �̃2 with s = 7 and automorphism group isomorphic
to 2·M12, constructed group-theoretically by Meixner [54]. The center Z = Z2
of Aut(�̃2) defines a flag-transitive quotient�2 = �̃2/Z , with Aut(�2) = M12.
Clearly, the residues of the 4-elements of �2 are isomorphic to �12(M12).

Geometric constructions of�1 and �2 are given by Leemans [51], starting
from a partition of the Steiner system S(24, 8, 5) in two disjoint dodecads. We
refer to [51] for details. No combinatorial construction of �̃1 or �̃2 can be
found in the literature.

6.3. Geometries for J2 and HS

Example 6.7. [A c.U ∗-geometry for J2] (Buekenhout [18], (104), Buekenhout
and Huybrechts [22]). For k ∈ {100, 280}, the Hall-Janko group J2 admits a
unique conjugacy class Ck of subgroups of index k (see Conway et al. [30];
the members of C100 are isomorphic to U3(3) and those of C280 are non-
split extensions 3·PGL2(9)). Put S0 := C100. If X ∈ C280, then X has
two orbits O10(X ) and O90(X ) on S0, of length 10 and 90 respectively. Put
S2 := {O10(X )}X∈C280 and let S1 be the set of pairs of elements of S0. Then
the triple � = (S0, S1, S2) with symmetrized inclusion as incidence relation is
a flag-transitive c.U ∗-geometry with orders (1, 8, 3) and {1, 2}-residues dually
isomorphic to the hermitian unital of PG(2, 9). We have Aut(�) = J22, but J2
also acts flag-transitively on �. We will denote � by �(J2).

Example 6.8. [A c.A2 .c∗-geometry for HS] (Buekenhout [16] and [18], (49))
Let H = (V , ∼) be the graph with 100 vertices and valency 22 on which the
Higman-Sims group HS acts as a rank 3 group (see [30]). A geometry � of
rank 4 can be defined as follows: For x ∈ V , the pairs (x , 1) and (x , 2) are
taken as elements of type 0 and 3 respectively; for i = 1, 2, the i-elements
of � are the pairs {(x , i), (y, i)} with x 	= y and {x , y} a non-edge of H. A
0-element (x , 1) and a 3-element (y, 2) are declared to be incident when {x , y}
is an edge of H. For {i, j } = {1, 2}, the elements of type 1 or 2 incident to
(x , i) are the i-elements {(x , i), (y, i)} and the j -elements {(y, j ), (z, j )} such
that both {x , y} and {x , z} are edges ofH. Finally, a 1-element {(x1, 1), (y1, 1)}
and a 2-element {(x2, 2), (y2, 2)} are declared to be incident if each of the pairs
{x1, x2}, {y1, y2}, {x1, y2} and {y1, x2} is an edge ofH. The geometry � defined
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in this way is flag-transitive, with Aut(�) = Aut(HS) (but HS is also flag-
transitive on it). It has diagram and orders as follows:

(c.A2 .c∗) .................................................................................................................................................................................................................................................................................................................................• • • •
c c∗

0 1 2 3

1 4 4 1

We will denote this geometry by �(HS).

Proposition 6.4. (Hughes [41]) The geometry �(HS) and the two biaffine
geometries of rank 4 and order 2 are the unique c.A2 .c∗-geometries that satisfy
IP (which, in this context, amounts to say that S0,1(�) is semi-linear).

6.4. Exceptional c.c∗ -geometries

A few flag-transitive c.c∗-geometries which may be regarded as excep-
tional in some respect have already been mentioned in this paper: the Janko-Van
Trung geometry and its flat quotient (Example 3.3), the biplane for L2(11) (see
Example 6.4), a c.c∗-geometry for Z2 × M10 with orders (1, 7, 1) and its 2-fold
quotient for M10 (see Example 6.5). We list in the following table the remaining
exceptional examples we are aware of. All of them are semibiplanes. We are not
going to describe their constructions; we refer to Baumeister and Buekenhout
[5] for them (also Baumeister [3]). We will only mention the significant order
(namely the order at the mid-node of the diagram) and the automorphism group,
and we give one or two additional references.

order group more references

(1) 10 M12 Brouwer, Cohen and Neumaier [15], 11.4.F
(2) 9 M12 Buekenhout [17]
(3) 13 M22 Baumeister [2]
(4) 13 2·M22 Baumeister [2]
(5) 8 L3(4) Baumeister [3], Grams and Meixner [39]
(6) 8 2·L3(4) Baumeister [3], Grams and Meixner [39]
(7) 5 U3(3) Neumaier [55]

All the above semibiplanes but (3) and (5) are simply connected (Baumeister
and Pasechnik [8]). (3) and (5) are quotients of (4) and (6) respectively. (5) and
(6) are subgeometries of (3) and (4).
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7. Non-sporadic flag-transitive c.c∗-geometries.

Only four infinite families of c.c∗-geometries are known were infinitely
many (possibly, all) of the members are flag-transitive.

Truncated Coxeter complexes and quotients. As noticed in Subsection 2.1,
if � is the Coxeter complex of type D2,2N = DN , then Tr↑(�) is a 2-simply
connected flag-transitive semibiplane with orders (1, N − 2, 1). Although
� does not admit any proper quotient, Tr↑(�) admits many flag-transitive
quotients.

Affine expansions of dimensional dual hyperovals of PG(n, 2). We have
mentioned these semibiplanes in Subsection 3,4. Some but not all of them are
quotients of truncated Coxeter complexes of type DN (see Pasini and Yoshiara
[65], [66]).

Projective semibiplanes. This family of semibiplanes has been discovered by
Hughes [40]. Given an involution σ of PG(2, q), take as 0- and 2-elements the
orbits of σ of size 2 on the set of points and, respectively, lines of PG(2, q),
declaring a 0-element {p1, p2} and a 2-element {l1, l2} to be incident when each
of the points p1, p2 belongs to one of the lines l1, l2. The 1-elements are the
pairs of 0-elements incident to the same 2-element. The geometry, say �(σ ),
defined in this way is a semibiplane. We call it a projective semibiplane; more
explicitly, an elation, homology or Baer semibiplane according to whether σ is
an elation (in which case q is even) a homology (q odd) or a Baer involution (q
is a square). The order of �(σ ) at the mid-node of the diagram is q/2 when σ is
an elation, (q − 1)/2 when σ is a homology and (q − √

q)/2 when σ is a Baer
involution.

Elation and homology semibiplanes are simply connected (Baumeister and
Pasechnik [9]). On the other hand, a Baer semibiplane of order (q − √

q)/2
admits a flag-transitive (

√
q − 1)-fold cover (Baumeister [3], Example (6); also

[1], pp. 83-86). I don’t know if that cover is simply connected.
All elation semibiplanes can also be obtained as affine expansions from

suitable dual hyperovals (see Pasini and Yoshiara [65]).

Non-canonical gluings of two copies of AS(n, 2). These geometries corre-
spond to cases (4) and (5) of Proposition 4.2, with q = 2 in either case.
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Part II

Classifications

In the next three sections we gather all classification theorems for classes of
flag-transitive locally finite Lh .L∗

k -geometries that can be found in the literature.
We will consider geometries of rank 3 first, fusing in one long statement all
results that have been obtained for them. Next we will turn to geometries of
larger rank. In most cases, the theorems we can state contain gaps, namely
cases for which no classification has been found so far, or even no example is
known. We will point out them by writing open case at the beginning of the
item where those cases are mentioned.

8. The rank 3 case.

Theorem 8.1. Let � be a flag-transitive locally finite L.L∗-geometry. Then,
possibly up to a permutation of the types 0 and 2, one of the following occurs:

(1) � belongs to diagram PG.PG∗ and it is isomorphic to Tr↑(�) for a
building� of type D2,2N = DN , N ≥ 4 (notation as in Section 2)

(2) � belongs to diagram AG.PG∗ and it is isomorphic to Tr↑(� \ H ) for
a thick building � of type D2,2N = DN , N ≥ 4, and a hyperplane H of
S0,1(�) as in Subsection 2.2. Moreover, if N > 4 then � \ H = Far�(p)
for an element p of � of type 0 (if N is even) or 2 (if N is odd).

(3) � is the c.U ∗-geometry �(J2) of Example 6.7.

(4) � is one the following c.AG∗ -geometries:

name orders reference notes

(4.1) �L (263S6) 1, 4, 3 Example 3.1
(4.2) �L (25S5) 1, 4, 3 Example 3.1 quotient of (4.1)
(4.3) �L (243S5) 1, 4, 3 Example 3.1 quotient of (4.2)
(4.4) �(29L2(17)) 1, 16, 15 Example 6.1
(4.5) �(28L2(17)) 1, 16, 15 Example 6.1 quotient of (4.4)
(4.6) �far(L3(4)) 1, 4, 3 Example 6.2
(4.7) �cl(24S6) 1, 4, 3 Example 6.3
(4.8) �(2133M22) 1, 20, 3 Example 3.2
(4.9) �(2123M22) 1, 20, 3 Example 3.2 quotient of (4.8)

(5) [open case] � belongs to c.AG∗ with orders 1, s, q − 1 where q > 2,
s = qd−1 + ... + q2 + q for d > 2, and the stabilizer in Aut(�) of a
0-element p induces a 1-dimensional group on Res�(p).
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(6) [open case] � belongs to one of the following diagrams: c.c∗ , AG.AG∗ ,
H.H ∗ , W.W ∗ , A f.W ∗ .

(7) [open case] � is an unknown flag-transitive geometry for one of the
following diagrams: U.U ∗ , c.1D∗ , W.1D∗ , AG.1D∗ , 1D.1D∗ .

Proof. The proof is entirely contained in the literature. Firstly, in view of
Theorem 1.2, we have 14 cases to consider, namely: PG.PG∗, AG.PG∗ ,
c.U ∗ , c.AG∗ , c.c∗ , AG.AG∗ , H.H ∗, W.W ∗ , A f.W ∗ , U.U ∗ , c.1D∗ , W.1D∗ ,
AG.1D∗ , 1D.1D∗ . Cardinali and Pasini [27] have proved that in case PG.PG∗
we have (1). By [62] (see also Huybrechts and Pasini [47]), (2) holds in case
AG.PG∗ . In the c.U ∗-case Huybrechts and Pasini [46] have proved that �(J2)
is the unique possibility.

The special case c.A f ∗ of c.AG∗ has been classified by Baumeister et al.
[6]: the only possibilities are those mentioned in (4) (items (4.1), (4.2),..., (4.7))
and, besides them, the two biaffine geometries of rank 3 and order 2 and the
flat quotient of the one of incident type. We have not mentioned the latters in
(4) as they are c.c∗-geometries, hence included in (6). The c.AG∗-case with
{1, 2}-residues of dimension d > 2 is considered by Huybrechts and Pasini
[48], where it is proved that either we have (4.8) or (4.9), or � is as in (5), or
q = 2 and � is a c.c∗-geometry. No classification is known for the remaining
diagrams. �
Remark 8.1. The two gluings of AS(5, 2) with AS(3, 5) mentioned in Example
4.1 are the only two examples we know for case (5) of Theorem 8.1. We
conjecture that no more example exists for that case.

Remark 8.2. Examples have been described in the previous sections for each
of the diagrams mentioned in case (6) of Theorem 8.1.

In view of the variety of examples known for the c.c∗-case, I don’t
believe that a complete detailed classification will ever be reached for that
case. However, something like a classification, group-theoretically tailored, has
been obtained. We refer the reader to Baumeister [3], [4] and Baumeister and
Buekenhout [5] for it.

Not so much is known on flag-transitive AG.AG∗ -geometries. Only those
obtained as gluings are classified (Propositions 4.2 and 4.3). Partial results on
flag-transitive A f.A f ∗-geometries where IP fails to hold have been obtained by
Del Fra and Pasini [36], but they are not sufficient for a classification. (We recall
that, by Proposition 2.9, A f.A f ∗-geometries with IP are biaffine).

No attempt at all has ever been done to classify flag-transitive geometries of
type H.H ∗ , W.W ∗ and A f.W ∗ . Even less is known on the diagrams mentioned
in (7): we do not even know any example for any of them.
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9. Cases of rank n ≥ 4.
In this section we consider those families of Lh .L∗-diagrams for which

something can be said without leaving too many gaps. The remaining cases will
be considered in the next section. Henceforth, � is a flag-transitive locally finite
Lh .Lk -geometry of rank n ≥ 4.

Theorem 9.1. Suppose that � has diagram as follows, where i + j + 2 = n
and r0, t0 < s:

• • • • • • • •
0 1 i−1 i i+1 i+2 n−2 n−1L L L∗ L∗

. . . . . .
r0 r1 ri−1 q q tj−1 t1 t0

Then � is either a (possibly non-proper) quotient of a biaffine geometry or an
isomorphic copy of the exceptional geometry �(HS) of Example 6.8.

Proof. In view of Theorem 1.1, either � is an A f.An−2 .A f ∗-geometry or it
belongs to one of the following diagrams:

.................................... ....................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 i−1 i i+1 i+2c A f ∗

. . .
1 1 4 4 3

(ci .A2 .A f ∗)

.................................... ........................................................................................................................................................................................................................................................................................................................................................................................................ ....................................• • • • • •
0 i−1 i i+1 i+2 n−1c c∗

. . . . . .
1 1 4 4 1 1

(ci .A2 .c∗ j )

with 1 ≤ i, j ≤ 3. If � is an A f.An−2 .A f ∗-geometry then the conclusion
follows from Proposition 2.9. Suppose � is not of type A f.An−2 .A f ∗ . As
proved by Del Fra, Pasini and Shpectorov [37], � cannot belong to ci .A2 .A f ∗ .
Hence � belongs to ci .A2 .c∗ j .

Claim 1. If � belongs to c.A2 .c∗ , then � ∼= �(HS).

Indeed, if � belongs to c.A2 .c∗ , then IP holds in it (Pasini and Yoshiara
[64], Theorem 8.4). The conclusion follows from Proposition 2.9. The follow-
ing, combined with Claim 1, is sufficient to finish the proof of the theorem.

Claim 2. No flag-transitive geometry exists for c2.A2 .c.

Suppose the contrary: Let � be a flag-transitive geometry belonging to
c2.A2 .c∗ . By Claim 1, Res�(a) ∼= �(HS) for every 0-element a of �. We
firstly prove that � satisfies IP. Indeed, if not, by [56], Lemma 7.25, and the
fact that the residues of the 0-elements of � are isomorphic to �(HS), where
IP holds, � admits pairs of distinct 1-elements incident with the same pair of
0-elements. Accordingly, the relation ‘being incident with the same pair of 0-
elements’ is a non-trivial equivalence relation on the set of 1-elements of �.
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Hence the stabilizer Ga in Aut(�) of a 0-element a acts imprimitively on the
set of 1-elements of Res�(a). However, this is a contradiction. Indeed Ga

induces HS or Aut(HS) on Res�(a) ∼= �(HS), and either of these groups acts
primitively on the set of 0-elements of �(HS). Therefore, � satisfies IP.

Let G be the (0, 1)-space S0,1(�) of �, but regarded as a graph. The graph
G is regular of valency 100, as 100 is the number of 0-elements of �(HS).
We shall now prove that G has diameter δ ≤ 2. Assume the contrary and
let (a1, b1, b2, a2) be a path of G with d(a1, a2) = 3. Let l be the 1-element
incident to {b1, b2} and, for i = 1, 2, let li be the 1-element incident to {ai, bi}.
Put Gi := S1,2 (Res�(bi )), which can also be regarded as a graph. It is clear from
the description of �(HS) (∼= Res�(bi )) that the graph Gi is strongly regular and
the vertices of Gi at distance 2 from li are the 22 1-elements of Res� (bi , ui), for
a 4-element ui ∈Res� (bi ) uniquely determined by li . As d(ai , bj ) = 2 in G for
{i, j } = {1, 2}, we have d(l, li ) = 2 in Gi . Hence l is one of the 22 1-elements
of Res�(bi ) incident to ui . Pick a 4-element u on l different from either of u1
and u2. At most 6 of the 22 1-elements incident to bi and u are also incident to
ui . Therefore, at least 16 of those 1-elements, say li,1, li,2, ..., li,si (si ≥ 16) are
non-incident with ui , whence adjacent to li in Gi . However, u is incident with
exactly 23 0-elements. Therefore, l1, j1 and l2, j2 are incident with a common
0-element c, for some choice of j1 ≤ s1 and j2 ≤ s2. As li, ji is adjacent to li in
Gi , c and ai are adjacent in G. This forces d(a1, a2) ≤ 2.

Next, let (a, b, c) be a path of G and, denoted by l and m the 1-elements
incident to {a, b} and, respectively, {b, c}, suppose that d(l,m) = 2 in Gb :=
S1,2(Res� (b)). Let X be the group induced on Res� (b) by the stabilizer of a and
b in Aut(�) and u be the 4-element of Res� (b) incident to the 22 1-elements of
Res� (b) at distance 2 from l in Gb . Then X is isomorphic to M22 or Aut(M22),
it stabilizes l and u and permutes the 22 1-elements of Res�(b, u) transitively. It
follows from this remark that G is either a complete graph with 101 = 1+ 100
vertices or a strongly regular graph with parameters k = 100, λ = 77 and a
divisor of 2200 as μ.

For i = 0, 1, 2, 3, 4, let Ni be the number of i-elements of �. By
elementary counting one can see that 100N0 = 23N4 and 3850N0 = 3N2 .
Hence N0 is a multiple of 69 = 3 · 23. As 69 does not divide 101, G is not a
complete graph. Hence it is strongly regular, with N0 = 101+2200/μ vertices.
However, no divisor μ of 2200 exists such that 101+ 2200/μ is a multiple of
69. We have reached a final contradiction. �
Theorem 9.2. Suppose that � belongs to diagramTr↑(Dh,k

N )q of Subsection2.1:

• • • • • • •
0 h−3 h−2 h−1 h h+1 n−1PG PG∗

. . . . . .
q q q s q q q

(q > 1)
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• • • • • • •
0 h−3 h−2 h−1 h h+1 n−1c c∗

. . . . . .
1 1 1 s 1 1 1

(q = 1)

(We recall that h + k + 1 = n and h, k ≥ 2.) Assume h ≥ k, as we may. Then
one of the following holds:

(1) � is 2-covered by Tr↑(�) for a Dh,k
N -building � (and, if Dh,k

N is spherical
and q > 1, then � = Trr ↑ (�)).

(2) We have q = 1 and � is one of the following exceptional ci .c∗-geometries:

name n s reference notes

(2.1) �12(M11) 4 3 Example 6.4
(2.2) �Gol(2M11) 4 7 Example 6.5
(2.3) �Gol(2M12) 5 7 Example 6.5
(2.4) �11(M11) 4 7 Example 6.5 quotient of (2.2)
(2.5) �12(M12) 5 7 Example 6.5 quotient of (2.3)

(3) [open case] � belongs to one of the following diagrams:

...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 1 2 3 4c c∗

1 1 s 1 1
(s is 3 or 7)(3.1)

• • • • • •
0 1 2 3 4 5c c∗

1 1 1 7 1 1
(3.2)

• • • • • • •
0 1 2 3 4 5 6c c∗

1 1 1 7 1 1 1
(3.3)

Residues of type c2.c∗ , c.c∗2 , c3, c∗ (in (3.2) and (3, 3)) and c.c∗3 (in (3.3))
are as in (2).

Proof. If the {h−2, h−1, h}-residues of � are 2-covered by a truncated D2,2m -
building (m = N −h−k+4) then we have (1) by Proposition 2.3. By Theorem
8.1(1) this is always the case when q > 1. Suppose q = 1. If k = 2 then, by
Meixner [54] and Ceccherini and Pasini [28], if (1) does not hold then (2) holds.
Accordingly, if k > 2 and (1) does not hold, then we have (3). �

Remark 9.1. The four c2.c∗2-geometries mentioned in Example 6.6 are the
only examples we know for (3) of Theorem 9.2.
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Remark 9.2. Diagrams Tr↑(A f.Dh−1,k
N−1 ) and Tr↑(A f.D

h−1.k−1
N−2 .A f ∗) of subsec-

tions 2.2 and 2.3 would naturally come after Tr↑(Dh,k
N )q . We recall them here:

............................................................................................................................................... ............................................................................................................................................................................................................................................................................................. ....................................• • • • • •
0 1 h−2 h−1 h n−1A f PG PG∗

. . . . . .

• • • • • •
0 1 2 3 n−2 n−1AG PG∗

. . .

• • • • • • •
0 1 h−2 h−1 h n−2 n−1A f PG PG∗ A f ∗

. . . . . .

......................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................• • • • • •
0 1 2 n−3 n−2 n−1A f PG AG∗

. . .

......................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................• • • • • •
0 1 2 n−3 n−2 n−1AG PG∗ A f ∗

. . .

(Note that the last diagram is the dual of the fourth one.) By exploiting
Theorem 8.1(1),(2) and imitating the proof of Proposition 2.3, one can prove
that, if � belongs to Tr↑(A f.Dh−1,k

N−1 ) or Tr↑(A f.D
h−1.k−1
N−2 .A f ∗), then its chamber

system is the {n, n+ 1, ..., N − 1}-truncation of a chamber system C belonging
to A f.Dh−1,k

N−1 or A f.Dh−1,k−1
N−2 .A f ∗ . However, the world of A f.Dh−1,k

N−1 - and
A f.Dh−1,k−1

N−2 .A f ∗-geometries is apparently too wild for we can obtain sharper
conclusions in general. (Compare subsections 2.2, 2.3 and 3.2).

Theorem 9.3. Suppose that � has diagram and orders as follows

............................................................................................................................................... .........................................................................................................................................................................................................................................................• • • • •
0 1 n−3 n−2 n−1c L∗

. . .
1 1 1 s t

(We assume 1 < t so that to keep the cases covered by the above diagram
distinct from the special case cn−1.c∗ of Tr↑(Dh,k

N ), considered in Theorem 9.2).
Then one of the following holds:

(1) n ≤ 5, (s, t) = (4, 3) and � is one of the exceptional ci .A f ∗-geometries
�far(M22), �far(M23), �cl(24A7), �cl(24A8) described in examples 6.2 and
6.3.

(2) [open case] n = 4 and the {3, 2}-residues of � are 1-dimensional linear
spaces or affine spaces of dimension d > 2. In the latter case, the stabilizer
in Aut (�) of a {0, 1}-flag F induces a 1-dimensional group of Res� (F)
(as in (5) of Theorem 8.1).
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Proof. In view of Theorem 1.2 and the assumption t > 1, the label L∗ on
rightmost stroke of the diagram can only stand for PG∗ (in which case t = 2),
AG∗ (in particular, A f ∗), U ∗ or 1D∗ . If L∗ = A f ∗ , then we have (1) by [58].
Suppose L∗ 	= A f ∗ . The following are sufficient to finish the proof of the
theorem:

Claim 1. If L∗ = AG∗ with s > t + 1, then � is as in (2).

Claim 2. No flag-transitive c3.L∗-geometry exists where the residues of the
0-elements are as in (2).

Claim 3. L∗ 	= PG∗.

Claim 4. L∗ 	= U ∗ .

We shall prove the following property of flag-transitive cn−2.L∗-geometries
before to turn to the proof of Claims 1, 2, 3 and 4.

Claim 5. The stabilizer Gp in Aut(�) of a 0-element p acts faithfully on
Res� (p).

If n = 3 then the above statement is Lemma 2.8 of Hybrechts and Pasini
[46]. When n > 3 (as we have assumed since the beginning of this subsection)
we can prove Claim 5 by induction: Given a 0-element a, let l be a 1-element
incident to a, and b be the 0-element of l different from a. For x = a, b, l , let
Kx be the kernel of the action of Gx on Res�(x ). Clearly, Ka is a normal
subgroup of Kl and KaKb/Ka ≤ Kl/Ka . However, Kl/Ka = 1 by the
inductive hypothesis on Res�(a). Therefore Kb ≤ Ka . By symmetry, Ka = Kb .
By the connectedness of S0,1(�), Ka = Kx for every 0-element x . Hence
Ka = 1. Claim 5 is proved.

We are ready to prove Claim 1. Let � be as in the hypotheses of Claim
1 but assume that, for a {0, 1}-flag F = {a, l} of �, the group induced on
Res� (F) by the stabilizer GF of F in G = Aut(�) is not 1-dimensional. Then,
by Theorem 8.1, Res� (a) is isomorphic to either �(2123M22) or �(2133M22)
(cases (4.8) and (4.9) of Theorem 8.1). For a 3-element u ∈ Res� (a), Gu,a/Ka

is a non-split extension Z ·
3X with X isomorphic to either M22 or Aut(M22) and

Z3 = Ka,u/Ka , kernel of the action of Ga,u/Ka on Res�(a, u) (Huybrechts and
Pasini [48]). However, Ka = 1 by Claim 5. Hence Gu = Z ·

3X with Z3 = Ku .
Therefore, as Res� (u) contains exactly 23 elements of type 0, Gu can only be
a non-split extension of M23 by Z3. This is a contradiction, as M23 has trivial
Schur multiplier [30]. So, Claim 1 is proved. We now turn to Claim 2. Suppose
� is a flag-transitive c3.L∗ -geometry where the residues of the 0-elements are
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as in (3). Then, given a 4-element u, Gu/Ku acts 4-transitively on the s + 4
elements of Res�(u) of type 0, with two-points stabilizer involved in Zqd−1Z f ,
where f = dr , q = pr , p prime. No 4-transitive permutation group exists with
these properties. Claim 2 is proved.

Turning to Claim 3, assume that L∗ = PG∗ . We may assume n = 4. By
Theorem 1.2, t = 2 and s = 2d − 2 for some d > 2. Therefore, for a 3-element
u of �, Gu/Ku acts a 3-transitive permutation group of degree 2d +1 on the set
of 0-elements incident to u. However, if a is one of those 0-elements, Ga,u/Ku

is isomorphic to AG(n, 2) (Huypbrechts and Pasini [47]). No 3-transitive
group exists with that degree and point-stabilizer like that. Claim 3 is proved.
Finally, if � is a c2.U ∗-geometry then, given a {0, 3}-flag F = {a, u}, we have
Res� (a) ∼= �(J2) and Ga,u

∼= Z ·
3X , where Z3 = Ku and X is isomorphic

to either PGL2(9) or P�L2(9), acting on the 10 elements of Res� (F) of type
1 as on the 10 points of PG(1, 9) (Huybrechts and Pasini [46]). Consequently,
Gu/Ku is a 3-transitive group of degree 11 with point-stabilizer X as above. The
group that gets closest to those requirements is M11 on 11 points, but the point-
stabilizer of shuch a group is M10, which is different from either of PGL2(9)
and P�L2(9) (although it is a subgroup of P�L2(9)). Thus, Claim 4 is proved,
too. �
Remark 9.3. Suppose that, as conjectured in Remark 8.1, the two gluings of
AS(5, 2) with AS(3, 5) are the only possibilities for case (5) of Theorem 8.1. If
so, it is not difficult to prove that L∗ 	= AG∗ in case (2) of Theorem 9.3.

Theorem 9.4. Suppose that at least one of the residues of � of rank 2 is
isomorphic to AG(2, 3) or its dual and that � does not belong to any of the
diagrams A f.An−2 .A f ∗ , Tr↑(A f.Dh−1,k

N−1 ) or Tr↑(A f.D
h−1,k−1
N−2 .A f ∗), already

considered in Theorem 9.1 and Remark 9.2. Then n ≤ 6 and � is isomorphic
to �(34�L2(9)), �(35M11) or �(362M12) (see Subsection 3.7), or to the dual of
one of these geometries.

Proof. By combining Theorem 1.1 with theorems 1.2, 8.1 and 9.3, we can see
that the diagram of � or its dual can only be as in one of the following two
pictures:

.................................... ....................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 n−4 n−3 n−2 n−1c A f A f ∗

. . .
1 1 2 3 2

(4 ≤ n ≤ 6)(∗)

• • • • • • •
0 i−2 i−1 i i+1 i+2 n−1c A f A f ∗ c∗

. . . . . .
1 1 2 3 2 1 1

(∗∗)

with 5 ≤ n ≤ 9 in (∗∗). It is proved in [63] that, in case (∗), � or its dual are
isomorphic to �(34�L2(9)), �(35M11) or �(362M12). It remains to prove that
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case (∗∗) is empty. By way of contradiction, let � be a flag-transitive geometry
with diagram and orders as follows:

...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 1 2 3 4c A f A f ∗ c∗

1 2 3 2 1

We state the following conventions: For a type i and an element x of type
t(x ) 	= i , σi (x ) is the set of i-elements incident with x , and we put σi (x , y) :=
σi (x )∩σi (y). We denote by G(�) the graph with the 0-elements of � as vertices,
two 0-elements x , y being adjacent in G(�) precisely when σ1(x , y) 	= ∅. The
adjacency relation of G(�) will be denoted by ∼. The neighbourhood in G(�)
of a 0-element x will be denoted by x⊥. Given two 0-elements x , y , we put
{x , y}⊥ := x⊥ ∩ y⊥.

In view of what we know on case (∗), the residue Res(x ) of a 0-element x
is a subgeometry of an affine geometryA(x ) ∼= AG(4, 3). We denote byA∞(x )
the geometry at infinity of A(x ) and by A∞∗(x ) the dual of A∞(x ). The set of
lines of A(x ) that (do not) correspond to elements of σ2(x ) will be denoted by
L+(x ) (respectively,L−(x )). For every line L ofA(x ), L∞ stands for the point
at infinity of L . Similarly, if X is an affine subspace ofA(x ) of dimension> 1,
we denote by X∞ its space at infinity. Thus, the set O(x ) := {X∞}X∈σ4(x) is
an elliptic quadric of A∞∗(x ) and O∗(x ) := {L∞}L∈L−(x) is the set of tangent
planes of O(x ).

Claim 1. The graph G(�) has diameter d ≤ 2.

Suppose to the contrary that d > 2 and let x , y be 0-elements at distance 3 in
G(�). Let x = x0 ∼ x1 ∼ x2 ∼ x3 = y be a 3-path of G(�) from x to y .
For i = 1, 2, 3, choose vi ∈ σ1(xi−1, xi) and, for i = 1, 2, let Li be the line
of A(xi ) through vi and vi+1 . As d(xi−1, xi+1) = 2, Li ∈ L−(xi ). Let Xi be
the unique 4-element of σ4(vi , vi+1). This element is uniquely determined by
the following condition: Xi is a 3-space of A(xi ) and regarded L∞

i and X∞
i

as a plane and a point of A∞∗(xi ), we have X∞
i = L∞

i ∩ O(xi ). (Recall that
L∞
i is a tangent plane of O(xi ).) The 3-space Xi contains 33(3 + 1) lines of

L+(xi ). For j ∈ {i, i+1}, let L+(Xi , vj ) be the set of lines ofL+(xi ) contained
in Xi and passing through vj . Then |L+(Xi , vj )| = 32 + 3 and every line of
L+(Xi , vi+1) is concurrent with exactly 2 lines of L+(Xi, vi ). More explicitly,
for j ∈ {i, i + 1} we can partition L+(Xi , vj ) in 4 mutually disjoint subsets
L0, j , L1, j, L2, j, L3, j , each of size 3, in such a way that, for k = 0, 1, 2, 3,
Lk,i and Lk,i+1 are two bundles of lines (with centers vi and vi+1) contained in
the same plane πk of A(xi ). The line at infinity π∞

k of πk , regarded as a line
of A∞∗(xi ), is tangent to O(xi ) in X∞

i and the q planes of A∞∗(xi) on π∞
k
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different from L∞
i are secant for O(xi ) (whence, regarded as points of A∞(xi ),

they are points at infinity of lines of L+(xi )).
We now consider X1 and X2. As v2 ∈ σ1(X1, X2), σ3(X1, X2) 	= ∅.

Indeed, an element Y ∈ σ3(X1, X2) can be found in Res(x2, v2) ( = Res(x1, v2);
recall also that Res(x2, v2) is a dual inversive plane.) Choose a 2-element
L ∈ σ2(v2, Y ). By the previous paragraph, L meets 2 lines of |L+(X1, v1)| in
A(x1). Similarly, L meets 2 lines of |L+(X2, v3)| in A(x2). Accordingly, there
exist 2 elements v1,1, v2,1 ∈ σ1(x1, L) such that σ2(vi,1, v1) 	= ∅ for i = 1, 2, and
2 elements v1,2, v2,2 ∈ σ1(x2, L) such that σ2(vi,2, v3) 	= ∅ for i = 1, 2. We now
turn to Res(L). The 0- and 1-elements incident with L form a circular space
with 4 points. Clearly, σ0(vi,1, vj,2) 	= ∅ for at least one pair (i, j ). Assume
that σ0(v1,1, v1,2) 	= ∅, to fix ideas. Let z ∈ σ0(v1,1, v1,2), M1 ∈ σ2(v1,1, v1) and
M2 ∈ σ2(v1,2, v3). In Res(M1) we see that z ∼ x0 (= x ) and in Res(M2) we see
that z ∼ x3 (= y). Therefore, x and y have distance d(x , y) ≤ 2. Claim 1 is
proved.

Claim 2. |σ1(x , y)| = 1 for every edge {x , y} of G(�).

For an edge {x , y} of G(�), put λ := |σ1(x , y)|. By the flag-transitivity of �,
the number λ does not depend on the choice of the edge {x , y}. Suppose λ > 1.
Then the λ elements of σ1(x , y) are contained in a unique line of L−(x ). Let
Gx be the stabilzer of x in Aut(�) and, given a 1-element v ∈ σ1(x , y), let Gx,v

be the stabilizer of v in Gx . Then Gx,v stabilizes σ1(x , y), hence the group
Gx,v induced by Gx,v on A(x ) stabilizes L . However L∞ , regarded as a plane
of A∞∗(x ), is tangent to O(x ). Hence the group G∞

x,v induced by Gx,v on A∞∗
stabilizes the point p∞ := L∞ ∩ O(x ). On the other hand, the points of O(x ),
regarded as planes of A∞(x ), are the planes at infinity of the 3-spaces of A(x )
corresponding to the elements of σ4(x ). Therefore Gx,v stabilizes the unique 4-
element of σ4(v) which, regarded as a 3-space of A(x ), contains v and has p∞
as the plane at infinity. This contradicts the flag-transitivity of Aut(�). Claim 2
is proved.

Claim 3. The 4-truncation of �, obtained by removing all elements of � of
type 4, satisfies the Intersection Property. In particular, for a 1-element u and a
2-element X , if σ0(u) ⊂ σ0(X ) then u ∈ σ1(X ).

This follows from Claim 2 and [56, Lemma 7.25].

Claim 4. The graph G(�) is regular with valency 81.

This also follows from Claim 2.

Claim 5. |{x , y}⊥| = 2(33 + 3) + ω for every edge {x , y} of �, where
ω ∈ {0, 1, 2} does not depend on the particular choice of the edge {x , y} and



FLAG-TRANSITIVE Lh .L∗ -GEOMETRIES 317

it is equal to the number of 0-elements z ∈ {x , y}⊥ such that z /∈ σ0(X ) for any
X ∈ σ2(x , y).

By Claim 3, for a 0-element z ∈ x⊥ we have σ2(x , y, z) 	= ∅ if and only
if the 1-elements xy and x z incident with {x , y} and {x , z}, regarded as points
of A(x ), belong to a common line of L+(x ). Hence 2(33 + 3) is the number of
elements z ∈ {x , y}⊥ such that σ0(x , y, z) 	= ∅. On the other hand, the stabilizer
Gx,y of x and xy in Aut(�) induces a transitive action on O(x ). Accordingly, it
acts transitively on the set of lines of L−(x ) through xy . (Recall that the points
at infinity of these lines, regarded as planes of A∞∗(x ), are the 32 + 1 tangent
planes of O(x ).) Therefore, each of those lines contains the same number ω < 2
of points u = x z ofA(x ) with z ∈ {x , y}⊥ (possibly, ω = 0). Claim 5 is proved,
too.

We can now finish the proof of the theorem. Given a 0-element x , let Gx

be its stabilizer in Aut(�) and Gx be the group induced by Gx in A(x ). Then
Gx contains the full translation group T of A(x ). Given a line L ∈ L−(x ), the
stabilizer TL of L in T acts transitively on the triple of unordered pairs of points
of L . It follows that Gx is transitive on the set of unorderd pairs {u, v} of 1-
elements of σ1(x ) such that σ2(u) ∩ σ2(v) = ∅. Therefore, with ω as in Claim
5, one of the following holds:

(A) ω = 2 and G(�) is a complete graph;
(B) ω = 0, G(�) has diameter d = 2 and Aut(�) acts transitively on the set of

pairs (y, {x , z}) where {x , y} and {y, z} are edges of G(�) but z /∈ x⊥.

We shall prove that either of the above leads to a contradiction.

Case A. In this case � has 34 + 1 = 82 elements of type 0 and the group
G := Aut(�) acts faithfully on them as a 2-transitive group. The stabilizer
Gx of a 0-element x is a subgroup of the stabilizer of O(x ) in Aut(A(x )) and
contains a split extension T : L , where T is the translation group of A(x ) and
L ∼= SO−(4, 3). So, 34:SO−(4, 3) ≤ Gx ≤ 34:�O−(4, 3). However, there
is no 2-transitive group of degree 82 with point-stabilizer as above (compare
Cameron [25]). So, Case A is impossible.

Case B. Assume that case B holds. Then G(�) is strongly regular with valency
k = 34 and λ = (33 + 3)2 = 60, where λ := |{x , y}⊥| for an edge {x , y} of
G(�). Put μ := |{x , z}⊥|, for two 0-elements x , z at distance 2 in G(�). Then

(1) μ divides k(k − λ − 1) = 34(34 − 61) = 34 · 20.
Clearly,

(2) μ ≤ 34 = k.
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Given two 0-elements x , z at distance 2 and y ∈ {x , y}⊥, let yx and yz be the
1-elements incident with {y, x} and {y, z} respectively. Regarded yx and yz as
points of A(y), by the same argument used in the first part of the proof of Claim
1 we see that exactly (3+1)3(3−1) = 24 points of A(y) are joined with either
of yx and yz by lines of L+(y). Therefore,

(3) 25 ≤ μ.

By comparing (3) with (1) we see that

(4) 3 divides μ.

By a well known condition on strongly regular graphs, the equation

(◦) t2 + (μ − 60)t + (μ − 81) = 0

has integral solutions. (Recall that k = 81 and λ = 60.) Let t be a solution of
equation (◦). By (4) and the fact that t is integral, 3 divides t . Hence 32 divides
μ − 81. Therefore:

(5) 32 divides μ.

By (1), (2), (3) and (5) we obtain the following possibilities for μ:

32 · 2 = 18, 32 · 4 = 36, 32 · 5 = 45, 33 · 2 = 54, 34 = 81.

It is easily seen that (◦) admits integral solutions only if μ = 34 (and 0, −21 are
its solutions in that case). So, μ = 34 = k. Hence G(�) is a complete N -partite
graph with 1+ 81+ 20 = 102 vertices and classes of size 1+ 34 · 20/μ = 21.
Needless to say, N = 102/21. However, 21 des not divide 102. We have
reached a final contradiction. �
Remark 9.4. It is likely that all flag-transitive geometries belonging to the
following diagram

.................................................................................................................................................................................................................................................................................................................................• • • •
c A f A f ∗

1 q−1 q q−1

are dually isomorphic to affine expansions of classical inversive planes. Some
partial results pointing at that conjecture can be found in [63]. It is also likely
that no flag-transitive geometry exists with diagram as follows where q > 2:

...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
c A f A f ∗ c∗

1 q−1 q q−1 1
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10. Remaining open cases.

Proposition 10.1. Suppose that neither � nor its dual belong to any of the
diagrams considered in theorems 9.1, 9.2, 9.3, 9.4 or Remark 9.2. Then �

belongs to one of the following diagrams or its dual, where the symbol N is
a specialization of 1D and denotes the class of Netto triple systems.

(1) .................................................................................................................................................................................................................................................................................................................................• • • •
0 1 2 3c AG X ∗

1 q−1 s t

where X ∗ stands for AG∗,W ∗, c∗ or 1D∗ and s = q when X ∗ = W ∗ .
Moreover, if X ∗ = c∗ then the duals of the {1, 2, 3}-residues are as in (4.1),
(4, 2),..., (4.7) or (5) of Theorem 8.1. In any case, the residues of type {0, 1, 2}
are as in Theorem 1.1(6).

(2) .................................................................................................................................................................................................................................................................................................................................• • • •
0 1 2 3c N X ∗

1 2 s t

where X ∗ stands for AG∗ , W ∗ , c∗ or 1D∗ . Residues of type {0, 1, 2} are as in
Theorem 1.1(7).

(3) ...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 1 2 3 4c X Y ∗ c∗

1 r s t 1

where X stands for AG or N and Y ∗ stands for AG∗ or the dual N∗ of N .
Residues of type {0, 1, 2} and {2, 3, 4} are as in cases (6) or (7) of Theorem
1.1.

(4) ...........................................................................................................................................................................................................................................................................................................................................................................................................................................• • • • •
0 1 2 3 4c X ∗ c∗

1 1 s t 1

where X ∗ stands for AG∗ or N∗ . Residues of type {0, 1, 2} are as in Theorem
9.3(3) and those of type {2, 3, 4} are as in cases (6) or (7) of Theorem 1.1.
Proof. We obtain a list of feasible diagrams by combining Theorem 1.1 with
theorems 1.2 and 9.3. According to our hypotheses, � belongs neither to
Tr↑(A f.Dh−1,k

N−1 ) nor Tr↑(A f.D
h−1,k−1
N−1 .A f ∗). Therefore, if the diagram of �

contains a piece as follows

.............................................................................................................................................................................................................................................................................................• • •
i−1 i i+1AG PG∗

. . . . . .

(or dual of this), then that piece can only occur in the following context (or its
dual):

........................................................................................................................................................................................................................................................................................................................................................................................................• • • •
i−2 i−1 i i+1c AG PG∗

. . . . . .
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Accordingly, and in view of Theorem 1.1(6), if X is an {i − 1, i}-residue of
� and Gi−1,i is the group induced on it by its stabilizer in Aut(�), Gi−1,i is
1-dimensional. On the other hand, by Theorem 8.1(2), if q and s = qd−1+ ...+
q2 + q are the order of � at i + 1 and i , then Gi−1,i induces at least Ld (q) on
the i-panels of X. We have reached a contradiction. Therefore, the diagram
of � does not contain any piece of the form AG.PG∗ . By assumption, it
neither contains a stroke corresponding to AG(2, 3) or its dual, as this situation
is considered in Theorem 9.4. Accordingly the diagram of � can only be as said
in the proposition. �

Remark 10.1. Examples are known for the diagrams gathered in picture (1) of
Proposition 10.1, but only with X ∗ 	= 1D∗ and s = q = 4 when X ∗ = c∗ (see
Subsections 3.6 and 5.2). No example is known for any of the remaining cases
of Proposition 10.1.
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