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MAXIMAL SETS OF FACTORS

CHRIS A. RODGER

In this paper, a survey is presented of results concerning maximal sets
of factors in graphs. These factors at times satisfy additional structural
constraints, such as being connected, or such as requiring each component of
each factor to be isomorphic. Each set of factors occurs in some natural family
of graphs, including complete graphs and complete multipartite graphs.

1. Introduction.

In this survey we consider some of the progress made in studyingmaximal
sets of edge-disjoint factors in graphs of various types.

A set S(G) of objects satisfying some property P defined on a graph G is
said to be maximal if there exists no set T (G) defined on G satisfying P such
that S(G) is a strict subset of T (G). That is not to say S(G) is necessarily the
largest set of objects satisfying P in G ; indeed if |S(G)| ≥ |S ′(G)| for all sets of
objects S ′(G) satisfying P then S(G) is said to be a maximum set (with respect
to P ).

For example, if P is the property that S(G) is a maximum matching M
in G , then it is well known that this implies that G contains no M -augmenting
path (i.e. a path in G beginning and ending with edges not in M in which every
second edge is in M ). Conversely, if M ′ is a maximal matching that is not
maximum then G does contain an M ′-augmenting path. Furthermore such a
path can be used to form a matching in G that is bigger than M ′ (but of course
does not contain M ′, since M ′ is maximal).
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From an algorithmic point of view, maximal sets naturally arise as sets
satisfying P that can be found using a greedy algorithm: form S by recursively
looking for another object in G that can be added to S so that the resulting set
also satisfies property P . Continuing our matching example, we can simply
form S by recursively adding to S another edge in G that is not adjacent to any
edge currently in S .

If one is really looking for a maximum set, then decisions made in greedily
forming a maximal set may easily lead one astray! So a natural question arises: “
What are the sizes of the maximal sets in G that satisfy property P? ” Another
way of thinking of this question is one more restricted view: “If we adopt a
greedy approach, just how far away from a maximum set might be our result?”
In the matching example, by using the observations about M -augmenting paths,
it is easy to show that if M ′ is a maximal matching and M is a maximum
matching, both in G , then |M | ≤ 2|M ′|. Furthermore, examples exist where
equality holds, such as where each component of G is a path of length 3.

In this survey, we focus on this problem in the special case where property
P requires at least that S be a set of edge-disjoint i-factors. Sometimes each
i-factor will be required to be connected, so this takes us into the realm of
hamilton cycles. The actual graphs G of interest will also vary. Most commonly
G is considered to be either complete, or a complete multipartite graph. (We use
Kp(n) to denote the graph on np vertices, partitioned into p sets of size n each,
where two vertices are joined if and only if they are in different parts of the
partition. So Kp(1) = Kp .)

The methods used to study this problem are also of interest. There are two
quite distinct phases leading to a complete solution. One is to construct maximal
sets for various values, and this has been done using direct constructions,
embeddings and amalgamations. The second phase is to show that no other
sizes of maximal sets are possible. Sometimes this requires ad hoc arguments –
otherwise known as “ fiddling around with graphs ”! Other times high powered
graph theory must be involved, such as Tutte’s f -factor theorem. This diversity
of approaches makes the problem especially interesting, and hopefully makes
this worth reading!

Let K (s1, . . . , sp) denote the complete p-partite graph with partition
{V1, . . . , Vp} of the vertex set in which |Vi| = si for 1 ≤ i ≤ p. As noted
above, if all parts have the same size n, then we denote this by Kp(n). If S is a
set of edge-disjoint factors in G , then define the deficiency of S in G to be the
graph formed from G by removing all edges of factors in S . If G is regular then
the deficiency is regular of some degree, which we denote by d .
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2. 1-Factors.

In this section we take a brief look at the possible sizes of S in the case
where S is a set of maximal sets of edge-disjoint 1-factors in K2m .

Of course, the classic 1-factorization of Kn , namely {{∞, i}, {i − 1, i +
1}, {i − 2, i + 2}, . . . , {i − (m − 1), i + (m − 1)}|i ∈ Z2m−1} (reducing all
calculations modulo 2m−1) on the vertex set Z2m−1∪{∞} produces the largest
possible size of S , namely |S| = 2m − 1.

At the other extreme, one can use the theorems of Dirac, and then Tutte to
show the values of |S| which are too small for S to be maximal [7], [24].
Theorem 2.1. ([7]) If G has n vertices and minimum degree at least n/2, then
G is hamiltonian.

Of course, if G has an even number of vertices and is hamiltonian, then
taking every second edge of a hamilton cycle forms a 1-factor. So any set of
at most m − 1 1-factors in K2m cannot be maximal, since removing these 1-
factors leaves an m-regular graph which is necessarily hamiltonian. It turns out
that one can also show that the complement of 2r edge-disjoint 1-factors in K4r
must contain a 1-factor. So

(1) |S| ≥ 2�m/2	 + 1.

Theorem 2.2. ([24]) H contains a 1-factor if and only if there is no subset of
vertices W in H whose removal leaves more than w = |W | components of odd
size.

We can obtain a stronger bound on |S| in the case where the deficiency
H of S on K2m has odd degree, d = 2m − 1 − |S|. Since S is maximal, H
has no 1-factor, so contains a set W of w ≥ 1 vertices described in Theorem
2.2; of the odd components in G − W , say γ have size more than d , and β

have size at most d . Since G has an even number of vertices, γ + β 
= w + 1,
so G − W has γ + β ≥ w + 2 odd components. Being d -regular, each of
the β small components must be joined to W by at least d edges (if such a
component contains x vertices, with 1 ≤ x ≤ d − 1, then it is joined to W by
at least xd − x (x − 1) = d + (x − 1)(d − x ) ≥ d edges) and each of the γ

big components is joined to W by an edge (assuming G is connected: we can
consider each component of G in turn to apply this argument); so γ +βd ≤ wd .
Therefore β ≤ w, with strict inequality if γ > 0. But we observed that
γ + β ≥ w + 2, so in fact γ ≥ 2, so we actually get β ≤ w − 1, and thus
γ ≥ 3! Finally, there are 2m ≥ w + (d + 2)γ + β vertices altogether, (since
d + 1 is even, each large component of G must actually have at least d + 2
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vertices) so 2m ≥ 3d + 7. So this leads us to the realization that S being
maximal implies that if d = 2m − 1− |S| is odd then

(2) |S| = 2m − 1− d ≥ 4(m + 1)/3.

Rees and Wallis [21] not only established these necessary conditions (1-2), but
also showed that they are sufficient. The proof of the sufficiency follows both
from some specific constructions, and from some recursive constructions when
|S| is large.

In particular, if d = 2m − 1 − |S| is even then for all |S| ≥ 2�m/2	 + 1
it is straightforward to construct a set S of edge-disjoint 1-factors for which
the deficiency contains a component that is K2m−|S|. This clearly contains no
1-factor since 2m − |S| is odd, so S is maximal. (S = {{{∞i , i + j }|1 ≤ i ≤
2m− |S|} ∪ {{1− i + j, 2m− |S|+ i + j }|1 ≤ i ≤ |S|−m} | 0 ≤ j ≤ |S|− 1}
will suffice).

On the other hand, if d is odd then S can be constructed in the smallest
case, namely 2m = 3d+7 (by 2), such that the deficiency contains a cut-vertex
whose removal leaves 3 odd components; so S is maximal. An embedding
result then settles the problem whenever 2m ≥ 6d + 14 in the following
way. Any 1-factorization {F ′

1, . . . , F ′
3d+6} of K3d+7 can be embedded in a 1-

factorization {F1, . . . , F2m−1} of K2m ; so F ′
i ⊆ Fi for 1 ≤ i ≤ 3d + 6.

This is equivalent to embedding a unipotent symmetric latin square of order
t = 3d + 7 in a unipotent symmetric latin square of order 2m, which is
possible since 2m ≥ 2t [23], [22]. Let S ′ = { f1, . . . , f2d+6} be a maximal
set of 1-factors in K3d+7 (so the deficiency G ′ of S ′ has degree d ). Then
S = {F1 ∪ f1 \ F ′

1, . . . , F2d+6 ∪ f2d+6 \ F2d+6, F3d+7, . . . , F2m−1} is a maximal
set (since one component in the deficiency of S is G ′) of 1-factors in K2m with
deficiency of S having degree d .

The remaining cases to consider, namely when 3d + 9 ≤ 2m ≤ 6d + 12,
can be solved using a mixture of edge-coloring techniques that are applied to
specific graph decompositions. The interested reader is directed to [21] for
details. Together, these observations produce the following result.

Theorem 2.3. ([21]) There exists a maximal set of k 1-factors in K2m if and
only if

(1) 2�m/2	 + 1 ≤ k ≤ 2m − 1 if 2m − k is odd, and
(2) 4(m + 1)/3 ≤ k ≤ 2m − 4 if 2m − k is even.
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3. 2-Factors with no restrictions.

Next we turn to considering the possible sizes of S in the case where S is
a maximal set of 2-factors in Kn . The following result of Petersen immediately
handles half the cases.

Theorem 3.1. ([14]) If G is regular of even degree then G has a 2-factorization.

If n is odd, then the deficiency of any set S of edge-disjoint 2-factors is
regular of even degree d , so by Theorem 3.1 contains a 2-factor unless d = 0.
So if n is odd, |S| = (n − 1)/2 and S is a 2-factorization of Kn .

So now suppose that n = 2m. If S is a maximal set of 2-factors in K2m ,
then the deficiency G is regular of odd degree, d , containing no 2-factor. But it
therefore follows that G cannot contain any factor: if G contained an i-factor,
then it also contains a (d − i)-factor, and since one of i and d − i must be even,
G would also contain a 2-factor by Petersen’s Theorem. So the first thing to do
to settle this problem is to find the orders of d -regular graphs that contain no
2-factors. As in the last section, we again turn to Tutte, this time to his f -factor.
Following a similar but more complicated approach to that used in Section 2,
one can obtain the following result. The graph G(d) is the unique simple graph
on d + 2 vertices in which one vertex has degree d − 1 and the rest have degree
d (so d is odd).

Theorem 3.2. ([11]) Let G be a simple regular graph of degree d that has no
d ′-factor, where 1 ≤ d ′ < d . Then d is odd and G has at least (d+1)2 vertices,
with equality if and only if G is the graph H (d) in Figure 1.
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Figure 1: The unique smallest d -regular graph H (d) that has no proper factors

Clearly each component C1, . . . ,Cd in H (d) − α has an odd number of
vertices. This makes it easy to see why H (d) has no proper factor. For if such
a factor F existed, two of C1, . . . ,Cd would exist, say C1 and C2 , such that
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F contains the edge joining C1 to α but does not contain the edge joining C2
to α (because d ′ < d ). But then in F − α, the number of vertices of odd
degree in the components induced by V (C1) and V (C2) would differ by 1, a
contradiction. This same argument applies to the family of graphs formed by
replacing one copy of G(d) in H (d) by any graph on d + 2x vertices (x ≥ 1)
in which one vertex has degree d − 1 and the rest have degree d . Therefore we
have the following result (since d is odd, there are no d -regular graphs on an
odd number of vertices).

Theorem 3.3. ([11]) There exists a d-regular simple graph on n vertices that
contains no proper factor if and only if n ≥ (d + 1)2 , n is even and d is odd.

So now, since by Petersen’s Theorem the complement of such a graph has
a 2-factorization, we have the following complete answer to our problem.

Theorem 3.4. There exists a maximal set of k 2-factors in Kn if and only if

(a) k = (n − 1/2) when n is odd, and
(b) (n − √

n)/2 ≤ k ≤ (n − 2)/2 when n is even.

4. 2-Factors, each is connected: hamilton cycles.

In this section we focus on a restricted type of 2-factor, namely we require
that S be a maximal set of connected 2-factors. So now each 2-factor in S
must be a hamilton cycle, and the deficiency G(S) of S in Kn must contain no
hamilton cycles.

As in Section 2, we can again turn to Dirac to guide us on a lower bound on
the size of S . By Theorem 2.1, if G(S) has minimum degree at least n/2 then it
must contain a hamilton cycle, and so S would not be maximal as defined in this
section. So we immediately see that |S| ≥ (n − 1)/4. However, it turns out that
if n ≡ 1 (mod 4) then G(S) still necessarily contains a hamilton cycle: Nash-
Williams (for example, see Exercise 4.2.10 in [2]) showed that G(S) contains
so many edges that any cycle of length less than n can still be slightly altered
to form a longer cycle in G(S). So through the vagaries of modular arithmetic,
removing this possibility forces |S| ≥ �(n + 3)/4	.

This turns out to be the right lower bound, and in fact any integer greater
than this up to �(n − 1)/2	 is the order of a maximal set of hamilton cycles in
Kn .

Theorem 4.1. ([11]) There exists a maximal set of k hamilton cycles in Kn if
and only if �(n + 3)/4	 ≤ k ≤ �(n − 1)/2	.
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The construction of k suitable hamilton cycles follows closely the embed-
ding ideas of Hilton developed in [9]. Hilton used amalgamation techniques,
described below, to obtain a beautiful result that gave necessary and sufficient
conditions for an edge-colored complete graph Ks to be embedded in an edge-
colored copy of Kt in such a way that each color class induces a hamilton cycle
(so the colors on the edges in the Ks cannot be altered; all one is free to do is
to color the edges in Kt that are not in the given Ks ). This result was one of
the true “ breakthroughs ” in graph decompositions, opening many interesting
questions and providing a powerful new construction technique.

To get a feel for Hilton’s result, the necessary conditions pave the way.
Clearly t must be odd for a hamilton decomposition to exist. Also, each color
class in Ks must consist of vertex disjoint paths, since all the embedding process
can do is to join the paths together to create a hamilton cycle. But then each
color class in Ks cannot contain too many components (including possible
isolated vertices as a component), because the most efficient use of the added
t − s vertices can each only join 2 such components – take one end from each
of two paths of some color in Ks , and join each of them to a “ new ” vertex in
Kt with an edge of the same color. So each color class can have at most t − s
components if they are to be eventually all hooked up to form a single hamilton
cycle.

So how are the hamilton cycles constructed, and what are amalgamations?
One starts by adding a single vertex α, joining it with t − s edges to each vertex

in Ks , and adding

(
t − s
2

)
loops to α. These edges are then colored so that

each vertex in Ks is incident with exactly 2 edges of each color, then the loops
are colored so that α is incident with exactly 2(t − s) “ edge ends ” (loops
have 2 edge ends) of each color. (The necessary conditions guarantee that this
manoeuvre is possible). The beauty of the technique is then revealed as, one
by one, vertices are “ peeled out ” from α. This involves selecting exactly one
edge incident with each vertex v 
= α that joins v to α, detaching it from α and
then reattaching it to the new “ peeled out ” vertex instead. Notice that each
vertex in Ks is originally joined to α with t − s edges, so potentially t − s
vertices can be peeled out; just the right number to form a Kt containing the
Ks ! Also, if i vertices have been peeled out from α so far, then exactly t− s− i
of the loops on α are chosen to have one end detached from α and joined to
the new vetex instead; so all vertices other than α are joined to α with exactly
t − s − i edges after step i . Notice that the number of loops on α to begin is(
t − s
2

)
= (t − s − 1)+ (t − s − 2)+ . . . + 1; just the right number! Finally,

it must be noted that great care must be exercised in deciding which edges to
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detach in this process, because afterwards we need to check that

(a) the new vertex is incident with exactly two edges of each color, and
(b) each color class is still connected.

It turns out that the first property can be achieved easily by using edge-
coloring of bipartite multigraphs that satisfy several notions of balance. More
work is required to maintain color classes that are connected, but the vital
observation Hilton made was to see that the method could guarantee that if
the edge ends incident with α were paired up in any way, then it was possible
to ensure that at most one edge end from each pair would be detached from α.
Disconnecting a color class would require selecting both of the only 2 edges
joining some component of some color class to detach from α, so pairing up
such edges made sure that it is never the case that both are selected. This paper
of Hilton’s is a gem, and certainly worth the read!

So how does that idea fit in here?

Whenever 2s ≥ t ≥ 1, it is not too hard to find a (2s− t)-regular subgraph
G of K2s , the edges of which can be partitioned into s sets S1, . . . , Ss , each of
size 2s − t and each of which induces a subgraph consisting of vertex-disjoint
paths. (Using the classic hamilton decomposition of K2s is one approach that
works well). Using the Hilton embedding approach, each such subgraph is then
incorporated into a hamilton decomposition of G ∨ K c

t as follows. (K
c
t is the

complement of Kt , and ∨ is the join operation where each vertex in G is joined
to each vertex in K c

t ).
Name the s subgraphs G1, . . . ,Gs , and color the edges of Gi with color

i for 1 ≤ i ≤ s . Add one new vertex α, and for each vertex v ∈ V (G) and for
1 ≤ i ≤ s , join v to α with 2− yi,v edges colored i , where yi,v is the number
of edges in G colored i incident with v.

Notice that since Gi is acyclic, it contains 2s − (2s − t) = t components,
so α is incident with exactly 2t edges colored i . So as α is peeled out into t
vertices, it is conceivable that each such vertex is incident with exactly 2 edges
of each color – that is a good thing if we expect each color class to be a hamilton
cycle!

Notice also that since the t vertices peeled out from α in our case are
intended to induce a copy of K c

t , we do not want any loops on α. This, as you
might guess, makes the choice of edge ends to detach from α at each step easier
then in Hilton’s result. It also points out the flexibility in his technique in that
starting with a complete graph is by no means necessary for the procedure to
work.
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Returning to our problem, one can see that the hamilton cycles that each
color class form must together be a maximal set, because their complement
in K2s+t is the disjoint union of Gc and Kt , a disconnected graph (Gc is the
complement of G in K2s ). So a proof of Theorem 4.1 is obtained.

5. Hamilton cycles in Kp(n).

Here we consider the situation where again S is a set of hamilton cycles,
but each is in the complete multipartite graph Kp(n); so S is maximal in the
sense that Kp(n) − E(S) contains no hamilton cycles (E(S) is the set of edges
occurring in the hamilton cycles in S).

So what is the lower bound on |S|? If p = 2, so Kp(n) is bipartite,
we use the fact that every connected subgraph of Kn,n with minimum degree
at least n/2 is hamiltonian (see [4], for example). This means that if E(S)
induces a graph that is regular of degree at most n/2, then the complement in
Kn,n would be regular of degree at least n/2; all such graphs except one are
clearly connected, so are hamiltonian implying that S is not maximal. The
one exception is the disjoint union of two copies of Kn/2,n/2 ; but this cannot
arise in our case since clearly its complement in Kn,n is also disconnected, an
impossibility since we know it has a hamilton decomposition.

If p ≥ 3, then another beautiful theorem kicks in. Bill Jackson proved the
following result, and it is exactly what is needed here.

Theorem 5.1. If G is a 2-connected d-regular graph on v vertices with d ≥
v/3 then G is hamiltonian.

Notice that requiring G to be 2-connected is not surprising since the result
looks for hamilton cycles; this, together with the regularity condition, permits
the improvement of the lower bound on the minimum degree from n/2 in
Theorem 2.1 to n/3 in this result.

Applying Theorem 5.1 to our situation shows that if |S| is small enough
such that each vertex is joined to at most half the vertices in the other parts, and
if the deficiency H of S in Kp(n) is 2-connected, then H is hamiltonian and S
is not maximal. Notice that when p > 3 (or p = 3), being joined to at most
half the vertices in the other (two) parts is equivalent to saying the degree in the
deficiency is at least d > v/3 (or d = v/3 respectively), so Theorem 5.1 is
the perfect tool. Of course, there is the issue of making sure the deficiency is
2-connected before the lower bound is finalized. With one exception this can be
shown using arguments showing that the degree of regularity is too high for a
cut-vertex or two components to exist. (The one exception is when each vertex
is joined to exactly half the vertices in the other parts and n is even. In this case
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a maximal set of size |S| = n(p − 1)/4 always seems to exist). So we have the
following start.

Lemma 5.1. ([6]) Let p ≥ 3. If k ≤ n(p − 1)/4, with n being even if equality
holds, then there does not exist a maximal set of k hamilton cycles in Kp(n).

Proving the sufficiency of the condition in Lemma 5.2 is not quite done
yet! A series of three papers [6], [8], [13] has whittled the myriad of cases left
to consider down to just the single smallest possible value of |S| for each odd
value of p when n = 3.

The first paper [6] completely settled the case where the maximal set S
of hamilton cycles used every edge joining a vertex among the “ Top ” �n/2	
vertices in each part to a vertex among the “ Bottom ” �n/2� vertices in each
other part, thinking of the vertices in each part depicted in vertical columns.
More formally, for 1 ≤ i ≤ p, Vi is partitioned into two sets Vi,T and Vi,B with
|Vi,T | = �n/2	 and |Vi,B| = �n/2�. Then for 1 ≤ i, j ≤ p with i 
= j , each
edge joining a vertex in Vi,T to a vertex in Vj,B occurs in a hamilton cycle in
S . Therefore S is clearly maximal, since the complement is disconnected: it
contains no path joining vertices in Vi,T to vertices on Vi,B . This result turns
out to prove that the condition described in Lemma 5.2 is also sufficient for S
to exist, except possibly if n = 2, or if all three of the following are satisfied:

n is odd, pis odd, and |S| ≤ ((n + 1)(p − 1)− 2)/4.

You’ll notice that this last number is close to n(p − 1)/4, the lower bound in
Lemma 5.1. Considering these possible exceptional cases in the size of |S|
must involve a different approach. We now consider how almost all of these
cases were handled.

Next to be settled was the case when n = 2. Notice that in this case
Kp(n) is just a complete graph with a 1-factor removed. It turns out that in
a paper by Fu, Logan and Rodger [8], two very different proofs are presented
that characterize when maximal sets of hamilton cycles exist in this graph. The
first method is no surprise: amalgamations! Still, there is something new and
interesting in its application here, because for the first time it was possible to
amalgamate vertices from the different parts into one vertex, and still prove that
the disentangling of the vertices could be accomplished. This advance made the
initial amalgamated decomposition much easier to find. The second approach
was more direct, using difference methods and doubling procedures in a clever
way. Carefully selected and very carefully named hamilton decompositions of
Kp were used to find maximal sets of hamilton decompositions of G = K2p−F ,
where F is a 1-factor of G .
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This case when n ≥ 5 (see [13]) was dealt with in an interesting way
because, for the first time, the edge-coloring was handled in a much better
fashion. Excellent use was made of evenly-equitable edge-colorings; that is,
edge-colorings with the properties that:

1. each vertex in each color-class has even degree, and
2. at each vertex, the number of edges of each color differs by at most two
from the number of edges of each other color.

Hilton proved [10] that for every m ≥ 1 and for every Eulerian graph G ,
there exists an evenly-equitable m-edge coloring of G . This approach made
the construction of the amalgamated graph much easier than in any previous
related paper. Even so, there were several cases of careful counting required
to prove that the constructed graph indeed satisfied the conditions for being an
amalgamated hamilton decomposition of Kp(n).

The case when n ≥ 5 is also interesting for another reason, namely that
some assymetry had to be introduced into the partition of the vertices. So, the
set of Top vertices VT = ∪p

i=1Vi,T had to be partitioned into two sets: the “ Left
” set VT,L = ∪(p−1)/2i=1 Vi,T and the “ Right ” set VT,R = ∪p

i=(p+1)/2Vi,T . Similarly
the set of Bottom vertices is partitioned into the “ Left ” set VB,L = ∪(p−1)/2i=1 Vi,B
and the “ Right ” set VB,R = ∪p

i=(p+1)/2Vi,B . Then VT,L and VB,R each contained
exactly (n + 1)/2 vertices from each part, and VT,R and VB,L each contained
exactly (n − 1)/2 vertices from each part. This reduced the number of edges
joining Top vertices to Bottom vertices to a low enough number that all could
be included in the k hamilton cycles, even when k was at its lowest.

When n = 3, the edge-coloring approach used when n = 5 did not
work well because it did not ensure that each color class was connected in the
amalgamation. But there was an approach that did work well for the required
edge-coloring to be obtained, namely by rotating the edge-cut in the deficiency
by 90◦. That is, the edges used in hamilton cycles included all the edges
joining Left vertices to Right vertices. Of course this ensured that the deficiency
was disconnected, thus ensuring that the set of hamilton cycles was maximal.
Amalgamations, together with the “ new ” orientation of the cutset, allowed all
cases to be completed except for the smallest possible value of k!

So it still remains to settle the case when n = 3, k is the smallest possible
value allowed by Lemma 5.1, and p is odd. In this small tight case, we are
finally forced to deal with both the asymmetry in the arrangement of the vertices,
and finding some clever way to making sure that each color class is connected.
Again, the asymetry manifests itself in the sizes of the Top and Bottom sets
of vertices: the Left Top sets contain 2 vertices each, as do the Bottom Right
sets; the Left Bottom and the Right Top sets each contain a single vertex (recall
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that we need only do this when n = 3). The relevant numbers suggest that
this structural setup will allow the final case to be settled, but some details still
remain to be established. (All other structural arrangements appear to require
too many edges in the cutset to allow k to be as small as we require).

To summarize, all these results combine to produce the following theorem.

Theorem 5.2. ([4], [6], [11], [13]) There exists a maximal set of k hamilton
cycles in Kp(n) ( p parts of size n) if and only if

1. �n(p − 1)

4
� ≤ k ≤ �n(p − 1)

2
	 and

2. k >
n(p − 1)

4
if

(a) n is odd and p ≡ 1 (mod 4), or
(b) p = 2, or
(c) n = 1

except possibly for the undecided case when n = 3, and k is the smallest value.

6. 2-factors, each component is a triangle.

A triangle-factor of a graph G is a 2-factor of G in which each component
is a copy of K3. In this section we consider the case where S is a maximal set
of triangle-factors; so the deficiency of S contains no triangle-factors. We focus
on the case where G = Kn . Clearly, if G is to have any triangle factors at all it
must have a number of vertices that is divisible by 3. Two cases emerge in this
study: n = 6m and n = 6m + 3.

Amazingly enough, the result that provides the lower bound on |S| was
proved over 40 years ago by Corrádi and Hajnal [5].

Theorem 6.1. Let G be a simple graph on n = 3z vertices with minimum
degree at least 2z. Then G contains a triangle-factor.

So the least one can expect |S| to be is n/6 (for then the deficiency of S in
G is regular of degree 3z−1−2(z/2) = 2z−1 < 2z). At the other extreme, the
case where |S| = (n−1)/2 ( so n is necessarily odd; n = 6m+3) is equivalent to
finding a Kirkman Triple System of order 6m+3. This is a historic problem that
is over 150 years old, and one that was eventually solved by Ray-Chaudhuri and
Wilson [15]. The next largest value for |S| is |S| = (n−2)/2 (so n is even), and
this corresponds to a Nearly Kirkman Triple System on 6m vertices; this was
solved in a series of papers [1], [3], [12], [20]. The remaining possible values of
|S| first came under consideration by Rees, Rosa and Wallis ten years ago [19],
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when they focussed on the values of |S| in the range �n/6� < |S| ≤ n/4. So at
that point, |S| = �n/6� and the large possible values of |S| remained in doubt.
Recently, a series of two papers by Rees [17], [18] has removed almost all that
doubt! One paper looked at the cases when G has 6m vertices, and the other
considered graphs with 6m + 3 vertices. Put together, this work produces the
current state of affairs described in the following.

Theorem 6.2. Let n ≡ 0 (mod 3). There exists a maximal set of k triangle-
factors in Kn if and only if

(a) �n/6� ≤ k ≤ �(n − 1)/2	, and
(b) (k, n) 
 ∈ {(2, 9), (3, 9), (2, 12), (5, 12), (3, 15), (3, 18)} except possibly in

the following unsettled cases:

(i) k = �(n + 3)/6	 and n ≡ 0, 9 or 12 (mod 18),
(ii) k = 6 = �(n + 3)/6	 and n = 33, and
(iii) n ∈ {45, 57, 69, 81, 93, 237, 261, 309, 333, 381}.

Remark. For the 5 smallest values of n in (c), some values of k have been
found for which there exists a set of k maximal triangle factors in Kn [18]:

The proofs of this result rely heavily on the existence of frames (a group
divisible design whose blocks can be partitioned into holey parallel classes, each
of which partitions all the points except for those in one of the groups). The
interested reader is directed to the papers of Rees for more details.

But one particularly neat result that Rees uses to make great headway
towards a solution is the following result [16]. Yet again revealing my liking
of edge-colorings, I close this survey by presenting the proof below in that
milieu. Let G ⊗ I2 denote the graph formed from 2 copies of G by joining
xi to yj (1 ≤ i, j ≤ 2) if and only if {x , y}∈ E(G) (denoting the two copies of
v ∈ V (G) by v1 and v2).

Theorem 6.3. If there exists a triangle-factorization of G into 2l triangle
factors then there exists a triangle-factorization of G ⊗ I2 .

Proof. Clearly it suffices to consider just l = 1. Let the triangle-factors of G
be T1 and T2; let Ti = {ti,1, . . . , ti,n/3}. The crucial observation in this proof is
to show that the vertices of G can be partitioned into 3 sets V1, V2 and V3, each
of size n/3, such that each triangle in each triangle-factor has one vertex in each
of these three sets.

To do so, we think of triangles in Ti as vertices in a bipartite graph. Let
T ′
i = {t ′i,1, . . . , t ′i,n/3} for 1 ≤ i ≤ 2. Form a bipartite graph B with bipartition
T ′
1 and T

′
2 of the vertex set, and join t

′
1,y1

to t ′2,y2 if and only if t1,y1 ∩ t2,y2 
= ∅.
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Notice that each triangle in T1 has at most one vertex in common with each
triangle in T2. Also, since T1 and T2 are each 2-factors of G for each vertex v in
G there exist unique triangles t1,z1 ∈ T1 and t2,z2 ∈ T2 such that t1,z1 ∩ t2.z2 = {v}.
Therefore B is clearly 3-regular, so give it a proper 3-edge-coloring with colors
1, 2 and 3. Now place v in Vx if and only if the edge joining t ′1,z1 to t

′
2,z2

is
colored x in B .

So now, the 4 triangle factors in G ⊗ I2 are easily obtained as follows. For
each triangle {a, b, c} ⊂ T1 and each triangle {d, e, f } ⊂ T2, named so that
{a, d} ⊆ V1, {b, e} ⊆ V2, and {c, f } ⊆ V3, let:

1. F1 contain {a1, b1, c1} and F2 contain {d2, e2, f2},
2. F2 contain {a1, b2, c2} and F2 contain {d2, e1, f1},
3. F3 contain {a2, b1, c2} and F2 contain {d1, e2, f1}, and
4. F4 contain {a2, b2, c1} and F2 contain {d1, e1, f2}.
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