BLOCKING SETS AND COLOURINGS IN STEINER SYSTEMS $S(2,4, v)$

ALEXANDER ROSA

A Steiner system $\mathrm{S}(2,4, v)$ is a v-element set V together with a collection \mathscr{B} of 4 -subsets of V called blocks such that every 2 -subset of V is contained in exactly one block. (Other names: Steiner 2-designs with $k=4$; block designs with block size 4 and $\lambda=1$; linear spaces with all lines of size 4). Hanani [7] was the first to show that a Steiner system $\mathrm{S}(2,4, v)$ exists if and only if $v \equiv 1$ or $4(\bmod 12)$; these values of v are admissible.

Although Steiner systems $S(2,4, v)$ are not as well studied as Steiner triple systems, there exists extensive literature devoted to $\mathrm{S}(2,4, v)$ s as well as a host of interesting open questions, including many that apparently remain unexplored at all. We concentrate here on several types of subsets in Steiner systems $\mathrm{S}(2,4, v)$ with specified properties, especially those related to colourings.

A set $S \subset V$ is independent if it contains no block. Let $\alpha(S)$ be the independence number of a Steiner system $\mathrm{S}(2,4, v) S=(V, \mathscr{B})$, i.e. the maximum cardinality of an independent set in S. A maximum size independent set in an $\mathrm{S}(2,4, v)$ may contain as many as $\frac{2 v+1}{3}$ elements. Indeed, if $v \equiv$ $4,13(\bmod 36)$, there exist Steiner systems $S(2,4, v)$ with $\alpha=\frac{2 v+1}{3}$. This follows easily from applying the so-called $v \rightarrow 3 v+1$ rule for Steiner systems $\mathrm{S}(2,4, v)$.

The $v \rightarrow 3 v+1$ rule. Let (V, \mathcal{B}) be an $\mathrm{S}(2,4, v), V=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$, and let $(X, \mathcal{C}, \mathcal{R})$ be a Kirkman triple system $\operatorname{KTS}(2 v+1)$ (see [2]); $X \cap V=$
$\emptyset ; \mathscr{R}=\left\{R_{1}, R_{2}, \ldots, R_{v}\right\}$. Put $\mathscr{D}_{i}=\left\{\left\{a_{i}, x, y, z\right\}:\{x, y, z\} \in R_{i}\right\}, \mathscr{D}=$ $\bigcup_{i=1}^{v} D_{i}$. Then $(V \cup X, \mathscr{B} \cup \mathcal{D})$ is an $\mathrm{S}(2,4,3 v+1)$.

One sees instantly that in any Steiner system $\mathrm{S}(2,4,3 v+1)$ with a subsystem $\mathrm{S}(2,4, v)$, the complement of the subsystem (the set X in the above construction) is an independent set.

On the other hand, for sufficiently large orders v, a maximum size independent set may contain as few as $c v^{\frac{2}{3}}(\log v)^{\frac{1}{3}}$ elements; this was shown in [5], [16]. More precisely, it was shown by Rödl and Šiňajová [16] that for sufficiently large v, there is a constant c such that for every $\mathrm{S}(2,4, v)$,

$$
\alpha \geq c v^{\frac{2}{3}}(\log v)^{\frac{1}{3}},
$$

and there is a constant c^{\prime} such that there exist infinitely many $\mathrm{S}(2,4, v)$ with

$$
\alpha \leq c^{\prime} v^{\frac{2}{3}}(\log v)^{\frac{1}{3}}
$$

A blocking set in a Steiner system $S(2,4, v)(V, \mathscr{B})$ is a subset $X \subset V$ such that for any block $B \in \mathscr{B}$, we have $X \cap B \neq \emptyset$ but $X \supseteq B$. In other words, a blocking set is an independent set which intersects each block; equivalently, it is an independent set whose complement (in V) is also an independent set.

Not every Steiner system $\mathrm{S}(2,4, v)$ has a blocking set. In fact, it follows from [15] that for all admissible $v \geq 25$ there exists an $S(2,4, v)$ without a blocking set. On the other hand, unlike for Steiner triple systems, a Steiner system $\mathrm{S}(2,4, v)$ with a blocking set exists for all admissible orders $v \equiv$ $1,4(\bmod 12)$. This was shown in [8] for all admissible orders v except $v=37,40$, and 73, and in [3] for those three orders.

For a blocking set S, the discrepancy δ is the difference between the cardinalities of S and its complement $V \backslash S$ (which is also a blocking set):

$$
\delta=\|S|-| V \backslash S\|
$$

The blocking sets constructed in [8] and [3] all have discrepancy 0 or 1 , according to whether $v \equiv 4(\bmod 12)$ or $v \equiv 1(\bmod 12)$. In 1990, Lo Faro [12] has shown that if $v \equiv 1(\bmod 12)$, the discrepancy of a blocking set must equal.

In the same paper [12] it was shown that if $v \equiv 4(\bmod 12)$, the discrepancy δ is either 0 , or else $\delta \equiv 2(\bmod 4)$. That is, in this case the cardinality of the blocking set is $\frac{v}{2}$ or else it is odd.

Suppose (V, \mathscr{B}) is an $\mathrm{S}(2,4, v), v \equiv 4(\bmod 12), v=12 t+4$. Let $S \subset V$ be a blocking set with $|S|=6 t+2-s,|\bar{S}|=6 t+2+s$, and assume $s>0$,
s odd; $s=\frac{\delta}{2}$ is the half-discrepancy. Let a, b, and c, respectively, be the number of blocks B in \mathscr{B} such that $|B \cap S|=3$, 2, and 1, respectively (and thus $|B \cap \bar{S}|=1,2$, and 3 , respectively). Counting the number of pairs of elements which are both in S, both in \bar{S}, or one in S and one in \bar{S}, we get the following equalities:

$$
\begin{gathered}
a+b+c=\frac{1}{6}\binom{12 t+4}{2}=12 t^{2}+7 t+1 \\
3 a+b=\frac{(6 t+2-s)(6 t+1-s)}{2} \\
b+3 c=\frac{(6 t+2+s)(6 t+1+s)}{2} \\
3 a+4 b+3 c=(6 t+2-s)(6 t+2+s)=(6 t+2)^{2}-s^{2}
\end{gathered}
$$

Solving for a, b, c, we obtain $a=6 t^{2}-(2 s-2) t+\binom{s}{2}, b=3 t+1-s^{2}$, $c=6 t^{2}+(2 s+2) t+\binom{s+1}{2}$. Furthermore, clearly either $b=0$ or $b \geq 6$ which implies $t=\frac{s^{2}-1}{3}$ or $t \geq \frac{s^{2}+5}{3}$.

No nontrivial example with $b=0$ is known. The smallest possibility occurs at $v=100$ (with $t=8, s=5$); this would be the "century design" mentioned by M. J. de Resmini [14].

The smallest nontrivial case where a Steiner system $\mathrm{S}(2,4, v)$ with a blocking set of half-discrepancy $s=1$ can exist occurs when $t=2$ and $v=28$. Such a design does indeed exist; it was first constructed in [9].

In order to show how we can construct an $\mathrm{S}(2,4, v)$ having a blocking set of discrepancy $\delta=2$ for all $v \equiv 4(\bmod 24), v \geq 100$, we need a definition.

Let S be a set with $t . n$ elements, let $\left\{S_{1}, \ldots, S_{n}\right\}$ be a partition of S where $\left|S_{i}\right|=t$. A skew Room frame of type t^{n} is a $t . n \times t . n$ array R indexed by S such that
(1) every cell of R is either empty or contains an unordered pair of elements of S;
(2) the subarrays $S_{i} \times S_{i}$ ("holes") are empty;
(3) each element of $S \backslash S_{i}$ occurs exactly once in row (column) s where $s \in S_{i}$;
(4) the pairs $\{s, t\}$ in R are precisely those where s, t are from different holes; and
(5) of any two cells $(s, t),(t, s)$ where s, t are in different holes, exactly one is empty.

Fig. 1 shows an example of a skew Room frame of type 4^{4}.

Figure 1: Skew Room frame of type 4^{4}
We can now describe a following
Construction. Let X be a set, $|X|=4 t$, let R be a skew Room frame of type 4^{t} based on X, with holes $H=\left\{h_{1}, h_{2}, \ldots, h_{t}\right\},\left|h_{i}\right|=4$. Let $S=$ $\{a, b, c, d\} \cup X \times\{1,2,3,4,5,6\}$ where $\{a, b, c, d\}$ is a block of an $\mathrm{S}(2,4,28)$. For $i=1,2, \ldots, t$, let $\left(\{a, b, c, d\} \cup\left\{h_{i} \times\{1,2,3,4,5,6\}, \mathcal{B}_{i}\right)\right.$ be an $\mathrm{S}(2,4,28)$ with blocking sets $\{a\} \cup\left\{h_{i} \times\{1,2,3\}\right\}$ and $\{b, c, d\} \cup\left\{h_{i} \times\{4,5,6\}\right\}$. Place the blocks of $\mathscr{B}_{i}, i=1, \ldots, t$ in \mathcal{B}. If x and y belong to different holes of H, place the six blocks $\{(x, i),(y, i),(r, i+1),(c, i+4)\}$ in \mathcal{B} where $i \in\{1,2,3,4,5,6\}$ (second coordinates reduced mod 6) and $\{x, y\}$ is in the cell (r, c) of R.

Then (S, \mathscr{B}) is a Steiner system $\mathrm{S}(2,4,24 t+4)$ with blocking sets of sizes $12 t+1$ and $12 t+3$.

Chen and Zhu [1] have shown that a skew Room frame of type 4^{t} exists for all $t \geq 4$. This, together with our Construction above, yields the following
theorem (cf. Theorem 3 of [9]).
Theorem. There exists a Steiner system $S(2,4, v)$ with blocking sets of sizes $\frac{v}{2}-1$ and $\frac{v}{2}+1$ (i.e. of discrepancy $\delta=2$) for all $v \equiv 4(\bmod 24), v \geq 28$, except possibly for $v \in\{52,76\}$.

This still leaves following open problems.
Problem 1. Do there exist Steiner systems $\mathrm{S}(2,4, v)$ with blocking sets of discrepancy $\delta=2$ if $v \equiv 16(\bmod 24)$?

Problem 2. Do there exist Steiner systems $\mathrm{S}(2,4, v)$ with blocking sets of discrepancy $\delta \geq 6$?

The smallest order for which there may exist a Steiner system $\mathrm{S}(2,4, v)$ with a blocking set of discrepancy 6 is $v=64$.

Maximum arcs in a Steiner system $S(2,4, v)$ provide another example of sets with interesting properties. A set S in $\mathrm{S}(2,4, v)$ such that S intersects each block in 0 or 2 points is called a maximum arc or hyperoval (or a set of type $(0,2)$, see [14]). For a maximum arc to exist, we must have $v \equiv 4(\bmod 12)$, and $|S|=\frac{v+2}{3}$. It was shown recently in [6] (and also independently in [10]) that for each $v \equiv 4(\bmod 12)$ there exists an $\mathrm{S}(2,4, v)$ with a maximum arc. For an application of maximum arcs to a special type of colourings (colourings of type AC), see below.

A (clasical, weak) colouring of a Steiner system $\mathrm{S}(2,4, v), S=(V, \mathscr{B})$, is a mapping $f: V \rightarrow C$ such that $f^{-1}(c)$ is an independent set for each $c \in C$ (no block is monochromatic). The elements of C are colours, and for each $c \in C, f^{-1}(c)$ is a colour class. The chromatic number $\chi=\chi(V, \mathscr{B})$ is the smallest integer $m=|C|$ such that S admits a colouring with m colours [17]. An $\mathrm{S}(2,4, v)$ is m-colourable if it admits a colouring with m colours, and is m-chromatic if $\chi=m$.

An $\mathrm{S}(2,4, v)$ is 2 -chromatic if and only if it admits a blocking set; the colour classes in any 2 -colouring are blocking sets. It follows from a clasical result of Erdös and Hajnal, together with Ganter's embedding result for partial $\mathrm{S}(2,4, v)$ s that there exist Steiner systems $\mathrm{S}(2,4, v)$ with an arbitrarily high chromatic number. In [15] it is shown that a 3-chromatic $S(2,4, v)$ exists for all admissible $v \geq 25$, and in [11] it is shown that for all $m \geq 2$ there exists v_{m} such that for all $v \geq v_{m}, v \equiv 1,4(\bmod 12)$, there exists an m-chromatic $\mathrm{S}(2,4, v)$. Still, many open problems remain.

Voloshin's mixed hypergraph colouring concept has motivated an examination of more specific type colourings for hypergraphs and designs in general,
and for Steiner systems $\mathrm{S}(2,4, v)$ in particular. A block colour pattern is a partition of the block size, in our case of the number 4 . The five possible partitions of 4 , and the corresponding block colour paterns, are $A=4, B=3+1, C=$ $2+2, D=2+1+1, E=1+1+1+1$. For S a nonempty subset of $\{A, B, C, D, E\}$, a colouring of type S colours the elements of $S(2,4, v)$ in such a way that each block is coloured according to a pattern from S. This may lead to a consideration of 31 different types of colourings; however, not all of these are very interesting, and some of these are easily dealt with.

Since in general the existence of a colouring of type S is no longer guaranteed, the main questions asked here are those about colourability, and then about the spectrum for colourings of type S, i.e. the set Ω_{S} (defined for individual systems, $\Omega_{S}(V, \mathscr{B})$, and also for admissible orders, $\Omega_{S}(v)=$ $\cup \Omega_{S}(V, \mathscr{B})$ where the union is taken over all Steiner systems $S(2,4, v)$ of order v) of integers m such that there exists an m-colouring of type S; unlike for classical colourings, it is essential here that all colours must be used (cf. [13]).

Classical colourings in this setting become colourings of type $B C D E$ (no monochromatic blocks) while Voloshin-type colourings are those of type $B C D$ (no monochromatic or polychromatic blocks). Several other types of colourings have been recently investigated: bicolourings (type $B C$, [4]), colourings of type $B, A C$ etc. [13], with complete results available for some types, and only partial results for others.

Unlike in the classical case, it may happen that for a given colouring type S and a given system (V, \mathscr{B}), the spectrum $\Omega_{S}(V, \mathscr{B})=\emptyset$, that is, (V, \mathscr{B}) is S uncolourable. If (V, \mathscr{B}) is S-uncolourable then we must have $S \subseteq\{B, C, D\}$.

But do there indeed exist systems $\mathrm{S}(2,4, v)$ which are $B C D$-uncolourable, i.e. have no Voloshin-type colouring? It is not hard to see that if the largest independent set in a Steiner system $S(2,4, v)$ has cardinality less than $\frac{v}{6}$ then it is $B C D$-uncolourable. The results of [5] and [16] mentioned earlier guarantee that infinitely many such systems $\mathrm{S}(2,4, v)$ exist. In fact, there exists a constant v^{*} such that for all $v \geq v^{*}, v \equiv 1,4(\bmod 12)$, there exists a $B C D$ uncolourable $\mathrm{S}(2,4, v)$.

From among the 31 potential colouring types for Steiner systems $\mathrm{S}(2,4, v)$, those that admit only a single block colour pattern may perhaps appear to be the most appealing. But one discovers instantly that colourings of type A or E are trivial and utterly uninteresting, and colouring of type C exists only for the trivial design with $v=4$. This leaves types B and D which, on the other hand, are all but uninteresting.

If $B \in S$ then the $v \rightarrow 3 v+1$ rule given earlier shows that $m \in \Omega_{S}(v)$ implies $m+1 \in \Omega_{S}(3 v+1)$. Starting with the trivial design with $v=4$ which obviously admits a colouring of type B we obtain that for every order $v=\frac{3^{m}-1}{2}$
there exists a Steiner system $\mathrm{S}(2,4, v)$ with an m-colouring of type B.
But do there exist $\mathrm{S}(2,4, v)$ s of other orders v admitting colourings of type B ? In an $\mathrm{S}(2,4, v)$ with an m-colouring of type B, with colour classes X_{i}, $\left|X_{i}\right|=x_{i},=1, \ldots, m$, we have:
(i) $\quad x_{i} \equiv 1,3(\bmod 6), i=1, \ldots, m$;
(ii) $\quad \sum\binom{x_{i}}{2}=\sum x_{i} \cdot x_{j}=\frac{1}{4} v(v-1)$;
(iii) $\quad x_{i} \leq \frac{2 v+1}{3}$.

Also, in an m-colouring of type B there is exactly one colour class with $x_{i} \equiv 1(\bmod 6)$.

It turns out that for $v \leq 121$, we get only three additional solutions $\left(x_{1}, \ldots, x_{k}\right)$ satisfying these necessary conditions:
(1) $\quad v=61,\left(x_{1}, x_{2}, x_{3}\right)=(3,19,39)$;
(2) $\quad v=100,\left(x_{1}, x_{2}\right)=(45,55)$;
(3) $\quad v=109,\left(x_{1}, x_{2}, x_{3}\right)=(1,45,63)$.

No such $\mathrm{S}(2,4, v)$ admitting a colouring of type B is known! Note that under (2) we again encountered the "century design" mentioned earlier.

Colourings of type D (each block is 3-coloured) are also quite interesting (cf. [13]). First of all, a 3-colouring of type D exists only for the trivial $\mathrm{S}(2,4, v)$ with $v=4$. No 4-colouring of type D exists for any $\mathrm{S}(2,4, v)$ whatsoever, and a 5 -colouring of type D of an $\mathrm{S}(2,4, v)$ exists only if $v \in$ $\{13,16,25\}$. If there is an m-colouring of type D of an $\mathrm{S}(2,4, v)$ and $v>25$ then $m \geq 6$. One has $\Omega_{D}(13)=\{5,6\}, \Omega_{D}(16)=\{5,6,7\}$.

An example of an $S(2,4,25)$ with a 5 -colouring of type D is given by the following: $V=Z_{5} \times Z_{5}, \mathscr{B}=\{\{00,01,10,22\},\{00,02,20,44\}\} \bmod (5,5)$, with colour classes $Z_{5} \times\{i\}, i \in Z_{5}$. But, curiously, we also have the following stronger 'converse':

Let $m \geq 2$ be arbitrary, and assume there is an m-colouring of $\mathrm{S}(2,4, v)$ of type D in which all colour classes have the same cardinality. Then $m=5$ and $v=25$.

Finally, let us conclude with a result which was obtained as a consequence of the result on the existence of maximum arcs in Steiner systems S2, 4, v) mentioned earlier. This concerns colourings of type $A C$. Since an $\mathrm{S}(2,4, v)$ with a maximum arc admits a 2 -colouring of type $A C$, one obtains a complete characterization of the spectrum $\Omega_{A C}(v)$: it equals $\{1\}$ for $v \equiv 1(\bmod 12)$, and it equals $\{1,2\}$ for $v \equiv 4(\bmod 12)$.

REFERENCES

[1] K. Chen - L. Zhu, On the existence of skew Room frames of type t^{u}, Ars Combinat., 43 (1996), pp. 65-79.
[2] C.J. Colbourn - A. Rosa, Triple Systems, Oxford Univ. Press, 1999.
[3] F. Franek - T.S. Griggs - C.C. Lindner - A. Rosa, Completing the spectrum of 2-chromatic $S(2,4, v)$, Discrete Math., 247 (2002), pp. 225-228.
[4] M. Gionfriddo - L. Milazzo - A. Rosa - V. Voloshin, Bicolouring Steiner systems $S(2,4, v)$, Discrete Math., 283 (2004), pp. 249-253.
[5] D. A. Grable - K.T. Phelps - V. Rödl, The minimum independence number for designs, Combinatorica, 15 (1995), pp. 175-185.
[6] M. Greig - A. Rosa, Maximal arcs in Steiner systems $S(2,4, v)$, Discrete Math., 267 (2003), pp. 143-151.
[7] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist., 32 (1961), pp. 361-386.
[8] D.G. Hoffman - C.C. Lindner - K.T. Phelps, Blocking sets in designs with block size four, Europ. J. Combin., 11 (1990), pp. 451-457.
[9] C.C. Lindner - M. Meszka - A. Rosa, On a problem of Lo Faro concerning blocking sets in Steiner systems $S(2,4, v)$, preprint.
[10] A.C.H. Ling, Hyperovals in Steiner systems, J. Geometry, 77 (2003), pp. 129135.
[11] V. Linek - E. Wantland, Coloring BIBDs with block size 4, J. Combin. Designs, 6 (1998), pp. 403-409.
[12] G. Lo Faro, Sui blocking sets nei sistemi di Steiner $S(2,4, v)$, Boll. Un. Mat. Ital. Ser. A (7), 4 (1990), pp. 71-76.
[13] S. Milici - A. Rosa - V. Voloshin, Colouring Steiner systems with specified block colour patterns, Discrete Math., 240 (2001), pp. 145-160.
[14] M.J. De Resmini, On k-sets of type (m, n) in a Steiner system $S(2, l, v)$, Finite Geometries and Designs - London Math. Soc. Lect. Note Ser. 49, Cambr. Univ. Press 1981, pp. 104-113.
[15] C.A. Rodger - E. Wantland - K. Chen - L. Zhu, Existence of certain skew Room frames with application to weakly 3-chromatic linear spaces, J. Combin. Designs, 2 (1994), pp. 311-232.
[16] V. Rödl - E. Šiňajová, Note on independent sets in Steiner systems, Random Str. Alg., 5 (1994), pp. 183-190.
[17] A. Rosa - C.J. Colbourn, Colorings of block designs, Contemporary Design Theory. A Collection of Surveys (Ed. J. H. Dinitz - D. R. Stinson), J. Wiley 1992, pp. 401-430.

McMaster University, Hamilton, Ontario (CANADA)

