
LE MATEMATICHE
Vol. LIX (2004) – Fasc. I–II, pp. 341–348

BLOCKING SETS AND COLOURINGS IN
STEINER SYSTEMS S(2, 4, v)

ALEXANDER ROSA

A Steiner system S(2, 4, v) is a v-element set V together with a collection
B of 4-subsets of V called blocks such that every 2-subset of V is contained in
exactly one block. (Other names: Steiner 2-designs with k = 4; block designs
with block size 4 and λ = 1; linear spaces with all lines of size 4). Hanani [7]
was the first to show that a Steiner system S(2, 4, v) exists if and only if v ≡ 1
or 4 (mod 12); these values of v are admissible.

Although Steiner systems S(2, 4, v) are not as well studied as Steiner triple
systems, there exists extensive literature devoted to S(2, 4, v)s as well as a
host of interesting open questions, includingmany that apparently remain unex-
plored at all. We concentrate here on several types of subsets in Steiner systems
S(2, 4, v) with specified properties, especially those related to colourings.

A set S ⊂ V is independent if it contains no block. Let α(S) be the
independence number of a Steiner system S(2, 4, v) S = (V , B), i.e. the
maximum cardinality of an independent set in S . A maximum size independent
set in an S(2, 4, v) may contain as many as 2v+1

3 elements. Indeed, if v ≡
4, 13 (mod 36), there exist Steiner systems S(2, 4, v) with α = 2v+1

3 . This
follows easily from applying the so-called v → 3v + 1 rule for Steiner systems
S(2, 4, v).

The v → 3 v + 1 rule. Let (V , B) be an S(2, 4, v), V = {a1, a2, . . . , av}, and
let (X, C, R) be a Kirkman triple system KTS(2v + 1) (see [2]); X ∩ V =
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∅; R = {R1, R2, . . . , Rv}. Put Di = {{ai, x , y, z} : {x , y, z} ∈ Ri }, D =⋃v
i=1 Di . Then (V ∪ X, B ∪ D) is an S(2, 4, 3v + 1).
One sees instantly that in any Steiner system S(2, 4, 3v + 1) with a

subsystem S(2, 4, v), the complement of the subsystem (the set X in the above
construction) is an independent set.

On the other hand, for sufficiently large orders v, a maximum size inde-
pendent set may contain as few as cv

2
3 (log v)

1
3 elements; this was shown in [5],

[16]. More precisely, it was shown by Rödl and Šiňajová [16] that for suffi-
ciently large v, there is a constant c such that for every S(2, 4, v),

α ≥ cv
2
3 (log v)

1
3 ,

and there is a constant c′ such that there exist infinitely many S(2, 4, v) with

α ≤ c′v
2
3 (log v)

1
3 .

A blocking set in a Steiner system S(2, 4, v) (V , B) is a subset X ⊂ V such
that for any block B ∈ B, we have X ∩ B �= ∅ but X ⊇ B . In other words, a
blocking set is an independent set which intersects each block; equivalently, it
is an independent set whose complement (in V ) is also an independent set.

Not every Steiner system S(2, 4, v) has a blocking set. In fact, it follows
from [15] that for all admissible v ≥ 25 there exists an S(2, 4, v) without a
blocking set. On the other hand, unlike for Steiner triple systems, a Steiner
system S(2, 4, v) with a blocking set exists for all admissible orders v ≡
1, 4 (mod 12). This was shown in [8] for all admissible orders v except
v = 37, 40, and 73, and in [3] for those three orders.

For a blocking set S , the discrepancy δ is the difference between the
cardinalities of S and its complement V \ S (which is also a blocking set):

δ = ‖S| − |V \ S‖

The blocking sets constructed in [8] and [3] all have discrepancy 0 or 1,
according to whether v ≡ 4 (mod 12) or v ≡ 1 (mod 12). In 1990, Lo Faro
[12] has shown that if v ≡ 1 (mod 12), the discrepancy of a blocking set must
equal 1.

In the same paper [12] it was shown that if v ≡ 4 (mod 12), the discrep-
ancy δ is either 0, or else δ ≡ 2 (mod 4). That is, in this case the cardinality of
the blocking set is v

2 or else it is odd.
Suppose (V , B) is an S(2, 4, v), v ≡ 4 (mod 12), v = 12t+4. Let S ⊂ V

be a blocking set with |S| = 6t + 2− s , |S̄| = 6t + 2 + s , and assume s > 0,
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s odd; s = δ
2 is the half-discrepancy. Let a, b, and c, respectively, be the

number of blocks B in B such that |B ∩ S| = 3, 2, and 1, respectively (and thus
|B ∩ S̄| = 1, 2, and 3, respectively). Counting the number of pairs of elements
which are both in S , both in S̄ , or one in S and one in S̄, we get the following
equalities:

a + b + c = 1

6

(
12t + 4

2

)
= 12t2 + 7t + 1

3a + b = (6t + 2− s)(6t + 1− s)

2

b + 3c = (6t + 2+ s)(6t + 1+ s)

2

3a + 4b+ 3c = (6t + 2− s)(6t + 2+ s) = (6t + 2)2 − s2

Solving for a, b, c, we obtain a = 6t2 − (2s − 2)t + (s
2

)
, b = 3t + 1 − s2,

c = 6t2 + (2s + 2)t + (s+1
2

)
. Furthermore, clearly either b = 0 or b ≥ 6 which

implies t = s2−1
3 or t ≥ s2+5

3 .
No nontrivial example with b = 0 is known. The smallest possibility

occurs at v = 100 (with t = 8, s = 5); this would be the ”century design”
mentioned by M. J. de Resmini [14].

The smallest nontrivial case where a Steiner system S(2, 4, v) with a
blocking set of half-discrepancy s = 1 can exist occurs when t = 2 and v = 28.
Such a design does indeed exist; it was first constructed in [9].

In order to show how we can construct an S(2, 4, v) having a blocking set
of discrepancy δ = 2 for all v ≡ 4 (mod 24), v ≥ 100, we need a definition.

Let S be a set with t .n elements, let {S1, . . . , Sn} be a partition of S where
|Si | = t . A skew Room frame of type t n is a t .n × t .n array R indexed by S
such that

(1) every cell of R is either empty or contains an unordered pair of elements
of S ;
(2) the subarrays Si × Si (”holes”) are empty;
(3) each element of S \ Si occurs exactly once in row (column) s where s ∈ Si ;
(4) the pairs {s, t} in R are precisely those where s, t are from different holes;
and
(5) of any two cells (s, t), (t, s) where s, t are in different holes, exactly one is
empty.

Fig.1 shows an example of a skew Room frame of type 44.
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Figure 1: Skew Room frame of type 44

We can now describe a following

Construction. Let X be a set, |X | = 4t , let R be a skew Room frame of
type 4t based on X , with holes H = {h1, h2, . . . , ht}, |hi | = 4. Let S =
{a, b, c, d}∪ X ×{1, 2, 3, 4, 5, 6}where {a, b, c, d} is a block of an S(2, 4, 28).
For i = 1, 2, . . . , t , let ({a, b, c, d}∪{hi×{1, 2, 3, 4, 5, 6}, Bi) be an S(2, 4, 28)
with blocking sets {a}∪{hi ×{1, 2, 3}} and {b, c, d}∪{hi ×{4, 5, 6}}. Place the
blocks ofBi , i = 1, . . . , t inB. If x and y belong to different holes of H , place
the six blocks {(x , i), (y, i), (r, i+1), (c, i+4)} in B where i ∈ {1, 2, 3, 4, 5, 6}
(second coordinates reduced mod 6) and {x , y} is in the cell (r, c) of R.

Then (S, B) is a Steiner system S(2, 4, 24t+4) with blocking sets of sizes
12t + 1 and 12t + 3.

Chen and Zhu [1] have shown that a skew Room frame of type 4t exists
for all t ≥ 4. This, together with our Construction above, yields the following
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theorem (cf. Theorem 3 of [9]).

Theorem. There exists a Steiner system S(2, 4, v) with blocking sets of sizes
v
2 − 1 and v

2 + 1 (i.e. of discrepancy δ = 2) for all v ≡ 4 (mod 24), v ≥ 28,
except possibly for v ∈ {52, 76}.

This still leaves following open problems.

Problem 1. Do there exist Steiner systems S(2, 4, v) with blocking sets of
discrepancy δ = 2 if v ≡ 16 (mod 24)?

Problem 2. Do there exist Steiner systems S(2, 4, v) with blocking sets of
discrepancy δ ≥ 6?

The smallest order for which there may exist a Steiner system S(2, 4, v)
with a blocking set of discrepancy 6 is v = 64.

Maximum arcs in a Steiner system S(2, 4, v) provide another example of
sets with interesting properties. A set S in S(2, 4, v) such that S intersects each
block in 0 or 2 points is called a maximum arc or hyperoval (or a set of type
(0, 2), see [14]). For a maximum arc to exist, we must have v ≡ 4 (mod 12),
and |S| = v+2

3 . It was shown recently in [6] (and also independently in [10])
that for each v ≡ 4 (mod 12) there exists an S(2, 4, v) with a maximum arc.
For an application of maximum arcs to a special type of colourings (colourings
of type AC), see below.

A (clasical, weak) colouring of a Steiner system S(2, 4, v), S = (V , B),
is a mapping f : V → C such that f −1(c) is an independent set for each
c ∈ C (no block is monochromatic). The elements of C are colours, and for
each c ∈ C , f −1(c) is a colour class. The chromatic number χ = χ (V , B) is
the smallest integer m = |C| such that S admits a colouring with m colours
[17]. An S(2, 4, v) is m-colourable if it admits a colouring with m colours, and
is m-chromatic if χ = m.

An S(2, 4, v) is 2-chromatic if and only if it admits a blocking set; the
colour classes in any 2-colouring are blocking sets. It follows from a clasical
result of Erdös and Hajnal, together with Ganter’s embedding result for partial
S(2, 4, v)s that there exist Steiner systems S(2, 4, v) with an arbitrarily high
chromatic number. In [15] it is shown that a 3-chromatic S(2, 4, v) exists for
all admissible v ≥ 25, and in [11] it is shown that for all m ≥ 2 there exists
vm such that for all v ≥ vm , v ≡ 1, 4 (mod 12), there exists an m-chromatic
S(2, 4, v). Still, many open problems remain.

Voloshin’s mixed hypergraph colouring concept has motivated an exami-
nation of more specific type colourings for hypergraphs and designs in general,
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and for Steiner systems S(2, 4, v) in particular. A block colour pattern is a par-
tition of the block size, in our case of the number 4. The five possible partitions
of 4, and the corresponding block colour paterns, are A = 4, B = 3 + 1,C =
2 + 2, D = 2 + 1 + 1, E = 1 + 1 + 1 + 1. For S a nonempty subset of
{A, B,C, D, E}, a colouring of type S colours the elements of S(2, 4, v) in
such a way that each block is coloured according to a pattern from S . This may
lead to a consideration of 31 different types of colourings; however, not all of
these are very interesting, and some of these are easily dealt with.

Since in general the existence of a colouring of type S is no longer
guaranteed, the main questions asked here are those about colourability, and
then about the spectrum for colourings of type S , i.e. the set �S (defined
for individual systems, �S(V , B), and also for admissible orders, �S(v) =
∪�S(V , B) where the union is taken over all Steiner systems S(2, 4, v) of order
v) of integers m such that there exists an m-colouring of type S ; unlike for
classical colourings, it is essential here that all colours must be used (cf. [13]).

Classical colourings in this setting become colourings of type BCDE (no
monochromatic blocks) while Voloshin-type colourings are those of type BCD
(no monochromatic or polychromatic blocks). Several other types of colourings
have been recently investigated: bicolourings (type BC , [4]), colourings of type
B , AC etc. [13], with complete results available for some types, and only partial
results for others.

Unlike in the classical case, it may happen that for a given colouring type
S and a given system (V , B), the spectrum �S(V , B) = ∅, that is, (V , B) is S-
uncolourable. If (V , B) is S-uncolourable then we must have S ⊆ {B,C, D}.

But do there indeed exist systems S(2, 4, v) which are BCD-uncolourable,
i.e. have no Voloshin-type colouring? It is not hard to see that if the largest
independent set in a Steiner system S(2, 4, v) has cardinality less than v

6 then it
is BCD-uncolourable. The results of [5] and [16] mentioned earlier guarantee
that infinitely many such systems S(2, 4, v) exist. In fact, there exists a constant
v∗ such that for all v ≥ v∗ , v ≡ 1, 4 (mod 12), there exists a BCD-
uncolourable S(2, 4, v).

From among the 31 potential colouring types for Steiner systems S(2, 4, v),
those that admit only a single block colour pattern may perhaps appear to be the
most appealing. But one discovers instantly that colourings of type A or E are
trivial and utterly uninteresting, and colouring of type C exists only for the trivial
design with v = 4. This leaves types B and D which, on the other hand, are all
but uninteresting.

If B ∈ S then the v → 3v + 1 rule given earlier shows that m ∈ �S(v)
implies m + 1∈ �S(3v + 1). Starting with the trivial design with v = 4 which
obviously admits a colouring of type B we obtain that for every order v = 3m−1

2
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there exists a Steiner system S(2, 4, v) with an m-colouring of type B .
But do there exist S(2, 4, v)s of other orders v admitting colourings of

type B? In an S(2, 4, v) with an m-colouring of type B , with colour classes Xi ,
|Xi | = xi , = 1, . . . ,m, we have:

(i) xi ≡ 1, 3 (mod 6), i = 1, . . . ,m;

(ii)
∑ (

xi
2

)
=

∑
xi .xj = 1

4
v(v − 1);

(iii) xi ≤ 2v + 1

3
.

Also, in an m-colouring of type B there is exactly one colour class with
xi ≡ 1 (mod 6).

It turns out that for v ≤ 121, we get only three additional solutions
(x1, . . . , xk) satisfying these necessary conditions:

(1) v = 61, (x1, x2, x3) = (3, 19, 39);
(2) v = 100, (x1, x2) = (45, 55);
(3) v = 109, (x1, x2, x3) = (1, 45, 63).

No such S(2, 4, v) admitting a colouring of type B is known! Note that
under (2) we again encountered the ”century design” mentioned earlier.

Colourings of type D (each block is 3-coloured) are also quite interesting
(cf. [13]). First of all, a 3-colouring of type D exists only for the trivial
S(2, 4, v) with v = 4. No 4-colouring of type D exists for any S(2, 4, v)
whatsoever, and a 5-colouring of type D of an S(2, 4, v) exists only if v ∈
{13, 16, 25}. If there is an m-colouring of type D of an S(2, 4, v) and v > 25
then m ≥ 6. One has �D(13) = {5, 6}, �D(16) = {5, 6, 7}.

An example of an S(2, 4, 25) with a 5-colouring of type D is given by the
following: V = Z5 × Z5, B = {{00, 01, 10, 22}, {00, 02, 20, 44}}mod(5, 5),
with colour classes Z5 × {i}, i ∈ Z5. But, curiously, we also have the following
stronger ’converse’:

Let m ≥ 2 be arbitrary, and assume there is an m-colouring of S(2, 4, v)
of type D in which all colour classes have the same cardinality. Then m = 5
and v = 25.

Finally, let us conclude with a result which was obtained as a consequence
of the result on the existence of maximum arcs in Steiner systems S2, 4, v)
mentioned earlier. This concerns colourings of type AC . Since an S(2, 4, v)
with a maximum arc admits a 2-colouring of type AC , one obtains a complete
characterization of the spectrum�AC (v): it equals {1} for v ≡ 1 (mod 12), and
it equals {1, 2} for v ≡ 4 (mod 12).
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