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ON THE SHANNON ENTROPY OF THE NUMBER OF
VERTICES WITH ZERO IN-DEGREE IN RANDOMLY

ORIENTED HYPERGRAPHS

CHRISTOS PELEKIS

Suppose that you have n colours and m mutually independent dice,
each of which has r sides. Each dice lands on any of its sides with equal
probability. You may colour the sides of each die in any way you wish,
but there is one restriction: you are not allowed to use the same colour
more than once on the sides of a die. Any other colouring is allowed. Let
X be the number of different colours that you see after rolling the dice.
How should you colour the sides of the dice in order to maximize the
Shannon entropy of X? In this article we investigate this question. It is
shown that the entropy of X is at most 1

2 log
( n

2 +
1
6

)
+ 1

2 log(πe) and that
the bound is tight, up to a constant additive factor, in the case of there
being equally many coins and colours. Our proof employs the differential
entropy bound on discrete entropy, along with a lower bound on the en-
tropy of binomial random variables whose outcome is conditioned to be
an even integer. We conjecture that the entropy is maximized when the
colours are distributed over the sides of the dice as evenly as possible.

1. Prologue and main results

This work is motivated by the following entropy-maximization problem: Fix
positive integers m,n,r such that m ≥ n > r ≥ 2. Suppose you are given n
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colours and m mutually independent dice, each of which has r sides. Each dice
lands on any of its sides with equal probability. You can colour the sides of
the dice in any way you want, but there is only one restriction: you are not
allowed to use the same colour more than once on the sides of a die. All other
colourings are allowed. Let X be the number of different colours that you see
after rolling the dice. In what way should you colour the sides of the dice in
order to maximize the Shannon entropy of X?

The Shannon entropy (or entropy, for short) of a random variable X that
takes values on a finite set S is defined as

H(X) =−∑
s∈S

P[X = s] · logP[X = s],

with the convention 0log0 = 0. Throughout the text, log(·) denotes logarithm
with base 2. Shannon entropy may be thought of as the ”amount of informa-
tion”, or the ”amount of surprise”, that is evidenced by a random variable and,
in a certain sense, random variables with large entropy are less ”predictable”.
Entropy enjoys several interesting properties which render itself as a useful tool
for several problems in enumeration, statistics and theoretical computer science,
among several others. We refer the reader to [2, 3] for excellent textbooks on
the topic. A central theme that motivates the development of the theory of en-
tropy concerns the so-called maximum entropy principle: within a given class
of random variables, find one that has maximum entropy (see [2] for a whole
chapter devoted to the topic). It is well-known that for any random variable, X ,
taking values in a finite set S, it holds

H(X)≤ log(|S|).

This is a consequence of Jensen’s inequality. Notice that the bound is attained
by the random variable that takes each value from S with equal probability.
The following result, due to James Massey, is referred to as the the differential
entropy bound on discrete entropy and may be seen as a refinement of the afore-
mentioned bound.

Theorem 1.1 (Massey). Let X be a discrete random variable with finite vari-
ance, denoted Var(X). Then

H(X)≤ 1
2

log(2πe(Var(X)+1/12)) .

In other words, upper bounds on the variance of discrete random variables
imply upper bounds on their entropy. A proof of Theorem 1.1 can be found in
[4] (see also [2, p. 258]) and a refinement can be found in [5].
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This work introduces the problem of maximizing the entropy of the random
variable that counts the number of different colours after a roll of m fair dice
whose r sides have been coloured using n colours, subject to the condition that
it is not allowed to use a colour more than once on the sides of a die; we re-
fer to this condition as a proper colouring. The random variable that counts
the number of different colours after a toss of m properly coloured coins (i.e.,
when r = 2) has been previously studied in [6, 7], in the setting of maximising
its median. Similarly to the setting of the median, we conjecture that a proper
colouring over the dice that maximizes Shannon entropy is such that the colours
have been distributed as evenly as possible over the sides of the dice. In order to
be more precise, we need some extra piece of notation which allows to express
the problem under consideration in terms of hypergraphs. Recall that a hyper-
graph,H, is a pair (V,E) where V is a finite set, and referred to as the vertex set,
and E is a collection of (not necessarily distinct) of subsets of V , and referred to
as the edge set.

Let the positive integers m,n,r be such that m≥ n > r ≥ 2. Suppose that C
is a configuration consisting of m dice all of whose r sides have been properly
coloured using n colours. Let XC be the number of different colours after a roll
of the dice. One may associate a hypergraph,HC = (V,E), to this configuration:
for every colour put a vertex in V and for every (properly) coloured die put an
edge in E containing all vertices corresponding to the colours on the sides of the
die. Note that |V | = n and |E| = m. Moreover, notice that the hypergraph HC
may have isolated vertices and, since the same coloured dice may appear more
than once in the configuration C, it may have edges that appear more than one
time in E ; i.e., it is a multi-hypergraph. Notice also that every edge E ∈ E has
cardinality r or, in other words, the hypergraph HC is r-uniform. A 2-uniform
(multi)hypergraph is just a (multi)graph. Here and later, the class consisting of
all r-uniform multi-hypergraphs on n vertices and m edges is denoted by Dn,m,r.
The class Dn,n,r, i.e, the class consisting of all r-uniform hypergraphs having n
vertices and n edges, will be of particular interest. When r = 2, we write Gn

instead of Dn,n,2.

Now rolling the dice corresponds to choosing an element from each edgeHC
uniformly at random, where each choice is done independently of all previous
choices; we refer to this sampling procedure by saying that each edge in HC
is randomly oriented towards one of its elements. Here and later, the phrase
random orientation on the edges of a hypergraphH expresses the fact that each
edge inH is oriented towards one of its elements with probability 1

r , where each
edge is oriented independently of all other edges. For every v ∈V , let deg−H(v)
denote the in-degree of v, i.e., the number of edges in E that are oriented towards
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v ∈V after a random orientation on the edges ofH. Notice that

XC = |{v ∈V : deg−H(v)> 0}|.

In other words, XC is the number of vertices with non-zero in-degree after a
random orientation on the edges of HC and the above mentioned question on
coloured dice can be equivalently expressed as follows.

Problem 1.2. Fix positive integers n,m,r such that m ≥ n > r ≥ 2. For every
H ∈ Dn,m,r let XH be the random variable that counts the number of vertices
with non-zero in-degree after a random orientation on the edges of H. Find a
hypergraphH ∈Dn,m,r such that

H(XH)≥ H(XF ), for all F ∈ Dn,m,r.

We conjecture that the hypergraph that maximizes entropy is such that the
degrees of its vertices are as equal as possible. More precisely, we believe that
the following holds true. Given a hypergraphH= (V,E) and a vertex v ∈V , we
denote by degH(v) the number of edges in E that contain v.

Conjecture 1.3. Let the positive integers m,n,r be such that m≥ n > r ≥ 2. A
hypergraphH= (V,E) from Dn,m,r for which it holds

H(XH)≥ H(XG), for all G ∈ Dn,m,r

is such that

|degH(v1)−degH(v2)| ≤ 1, for all v1,v2 ∈V.

In other words, the colours should be distributed over the dice as evenly as
possible. In this note we obtain the following upper bound on the entropy of
XH, forH ∈Dn,m,r.

Theorem 1.4. Fix H ∈ Dn,m,r and let XH be the number of vertices with non-
zero in-degree after a random orientation on the edges ofH. Then

H(XH)≤
1
2

log
(

n
2
+

1
6

)
+

1
2

log(πe).

We prove Theorem 1.4 in Section 2. Moreover, we show that the bound is
tight, up to an additive constant factor, when m = n and r = 2. More precisely,
we have the following.
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Theorem 1.5. Let Cn denote a cycle on n ≥ 3 vertices. Let XCn be the number
of vertices with non-zero in-degree after a random orientation on the edges of
Cn. Then

H(XCn)≥
1
2

log(n)+
1
2

log(πe)− 3
2
− 1

2ln(2)(n−1)
.

Straightforward calculations show that the difference between the bounds
provided in Theorem 1.4 and Theorem 1.5 is less than 0.73+ 1

2ln(2)(n−1) . We
conjecture that H(XCn) ≥ H(XG) for all G ∈ Gn. We prove Theorem 1.5 in
Section 3. The proof employs a lower bound on the entropy of a binomial
random variable whose outcome is conditioned to be an even positive integer.
Our article ends with Section 4 in which we state a conjecture.

2. Proof of Theorem 1.4

We show that Var(XH) ≤ n/4. The result then follows from Theorem 1.1. For
every vertex v∈H, let Iv be the indicator of the event {deg−H(v)> 0} and notice
that XH = ∑v∈V Iv. We may therefore write

Var(XH) = ∑
v1,v2∈V

(E[Iv1 · Iv2 ]−E[Iv1 ] ·E[Iv2 ])

= ∑
v∈V

(
E[Iv]−E[Iv]

2)+ ∑
v1 6=v2

(E[Iv1 · Iv2 ]−E[Iv1 ] ·E[Iv2 ]) .

We now show that, whenever v1 6= v2, we have

E[Iv1 · Iv2 ]−E[Iv1 ] ·E[Iv2 ]≤ 0, (1)

or, in other words, the indicators Iv1 and Iv2 are negatively correlated. This is
clearly true when there exists no edge E ∈ H such that {v1,v2} ⊂ E, and we
may therefore assume that v1 and v2 are both elements of some edge in H. Let
Ev1 be the class consisting of those edges inH that contain v1 and do not contain
v2 and, similarly, let Ev2 be the class consisting of those edges inH that contain
v2 and do not contain v1. Finally, let Ev1,v2 be the subset of the edges in H that
contain both v1 and v2. Notice that

E[Iv1 ] ·E[Iv2 ] =

(
1−
(

r−1
r

)degH(v1)
)
·

(
1−
(

r−1
r

)degH(v2)
)

and we proceed by working out the term E[Iv1 · Iv2 ].
Let A1 be the event ”there is no edge in Ev1,v2 which is oriented towards

either v1 or v2”, let A2 be the event ”no edge from Ev1,v2 is oriented towards v2,
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but some edge from Ev1,v2 is oriented towards v1”, let A3 be the event ”no edge
from Ev1,v2 is oriented towards v1, but some edge from Ev1,v2 is oriented towards
v2”, and, finally, let A4 be the event ”some edge from Ev1,v2 is oriented towards v1
and some other edge from Ev1,v2 is oriented towards v2”. In particular, notice that
the event A4 has non-zero probability if and only if |Ev1,v2 | ≥ 2. If |Ev1,v2 | = 1,
then A4 is empty and so P(A4) = 0. Moreover, when r = 2 the event A1 is empty
as well; thus P(A1) = 0.

Now we may write

E[Iv1 · Iv2 ] =
4

∑
i=1

P(Ai) ·P(Iv1 · Iv2 = 1|Ai) .

Let d1 = |Ev1 |,d2 = |Ev2 | and d3 = |Ev1,v2 | and notice that degH(v1) = d1 + d3
and degH(v2) = d2 +d3. We compute

P(A1) ·P(Iv1 ·Iv2 = 1|A1)=

(
r−2

r

)d3

·

(
1−
(

r−1
r

)d1
)
·

(
1−
(

r−1
r

)d2
)

.

Moreover, since

P(A2) = P(A3) =
d3

∑
i=1

(
d3

i

)(
1
r

)i(r−2
r

)d3−i

,

the binomial theorem yields

P(A2) ·P(Iv1 · Iv2 = 1|A2) =
1

rd3

(
(r−1)d3− (r−2)d3

)
·

(
1−
(

r−1
r

)d2
)

as well as

P(A3) ·P(Iv1 · Iv2 = 1|A3) =
1

rd3

(
(r−1)d3− (r−2)d3

)
·

(
1−
(

r−1
r

)d1
)

.

Finally, notice that

P(A4) ·P(Iv1 · Iv2 = 1|A4) = P(A4) = 1−P(A1)−P(A2)−P(A3) .

Now straightforward calculations show that

E[Iv1 · Iv2 ]−E[Iv1 ] ·E[Iv2 ] =

(
r−2

r

)d3
(

r−1
r

)d1+d2

−
(

r−1
r

)d1+d2+2d3

≤ 0 .
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Thus (1) holds true and we have shown

Var(XH)≤ ∑
v∈V

(
E[Iv]−E[Iv]

2) .
Now write

E[Iv]−E[Iv]
2 =

(
1−
(

r−1
r

)degH(v)
)
−

(
1−
(

r−1
r

)degH(v)
)2

=

(
r−1

r

)degH(v)
(

1−
(

r−1
r

)degH(v)
)

≤ 1
4
,

where the last estimate follows from the inequality x(1−x)≤ 1/4, for x∈ [0,1].
Hence Var(XH)≤ n/4 and Theorem 1.4 follows from Theorem 1.1.

3. Proof of Theorem 1.5

Throughout this section, we denote by Bin(n,1/2) the binomial distribution of
parameters n and 1/2 and we occasionally identify a random variable with its
distribution. Given two random variables Z,W , the notation Z ∼W indicates
that they have the same distribution. Recall that we work within the class Gn

and that, given G ∈ Gn, we denote by XG the number of vertices with non-zero
in-degree after a random orientation on the edges of G. A non-negative integer
which is equal to zero mod 2 is referred to as an even integer. Finaly, Bin(n,e)
denotes a Bin(n,1/2) random variable conditional on the event that it is even.
In particular, notice that

P[Bin(n,e) = k] =
(

n
k

)
1

2n−1 , for even k,

a fact that is immediate upon observing that the probability that a Bin(n,1/2)
random variable is even equals 1/2 (see also [6, Lemma 1] for a more general
result). We begin by showing that the entropy of XCn , where Cn denotes a cycle
on n vertices, equals the entropy of a Bin(n,e) random variable. The following
result is a direct consequence of [7, Theorem 4], but we include here an inde-
pendent proof (which borrows ideas from [7]) for the sake of completeness.

Lemma 3.1. Let Cn be a cycle on n≥ 3 vertices. Then H(XCn) = H(Bin(n,e)).
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Proof. Let Z be the number of vertices with zero in-degree after the random
orientation on the edges of Cn, and let E be the number of vertices with even
in-degree. Notice that XCn = n−Z and thus

H(XCn) = H(Z).

For i ∈ {1,2}, let Vi := {v ∈ Cn : deg−Cn
(v) = i}. The in-degree sum formula

yields
n = ∑

v∈Cn

deg−Cn
(v) = |V1|+2|V2|.

Since Cn has n vertices, we also have

n = Z + |V1|+ |V2|.

If we subtract the last two equations we get Z = |V2| and thus, since E = Z+ |V2|,
we conclude

E = 2 ·Z.

In particular, this implies that E is even and

H(Z) = H(E).

Hence it is enough to determine the entropy of E. We claim that

P(E = 2k) =
(

n
2k

)
1

2n−1 , for k ≤ n/2.

This is clearly true for k = 0, so assume that k > 0 is such that k ≤ n/2. Now
notice that if we fix an orientation of the edges of Cn for which E = 2k then
between any two vertices with zero in-degree there exists a vertex whose in-
degree equals two and, conversely, between any two vertices with in-degree
equal to two there exists a vertex whose in-degree equals zero. This implies
that if we fix 2k vertices {v1, ...,v2k}, whose in-degree is even, and we fix the
in-degree of vertex v1, say deg−G(v1) = 0, then the in-degrees of all other vertices
are determined (that is, v2 ∈V2,v3 ∈V0, . . . ,v2k ∈V2 and all other vertices have
in-degree one). Since there are two ways to choose the in-degree of v1, the
claim follows. Summarising, we have shown that E has the same distribution as
a Bin(n,e) random variable and so their entropies are equal.

Using Lemma 3.1, we obtain a lower bound on the entropy of XCn which is
expressed in terms of the entropy of a binomial random variable.

Lemma 3.2. Let Cn be a cycle of n≥ 3 vertices. Then

H(XCn)≥ H(Bin(n−1,1/2))−1 .
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Proof. Lemma 3.1 implies that it is enough to show that

H(Bin(n,e))≥ H(Bin(n−1,1/2))−1 .

We begin by showing that an outcome of Bin(n,e) can be obtained as follows:
First draw from a Bin(n− 1,1/2) random variable. If the outcome is even,
then add 0 to the outcome. If the outcome is odd, then add 1. Formally, let
X ∼ Bin(n−1,1/2) and define the random variable δX by

δX =

{
0, if X is even
1, if X is odd .

We claim that
Bin(n,e)∼ X +δX (2)

To prove (2), notice that X + δX is always even and fix an even integer k from
{0,1, . . . ,n}. Then, using the convention

(a
b

)
= 0, whenever b < 0 or a < b, and

the relation
(n

k

)
=
(n−1

k

)
+
(n−1

k−1

)
, we may write

P(X +δX = k) = P(Bin(n−1,1/2) = k)+P(Bin(n−1,1/2) = k−1)

=

(
n
k

)
1

2n−1

= P(Bin(n,e) = k) ,

and (2) follows. Next, we claim that

H(X |X +δX)≤ 1 (3)

To prove (3), write

H(X |X +δX) = ∑
k even

H(X |X +δX = k) ·P(X +δX = k) .

and notice that conditional on the event {X + δX = k} it follows that X ∈ {k−
1,k}. This implies that

H(X |X +δX = k)≤ log2 = 1

and (3) follows upon observing that

H(X |X +δX)≤ ∑
k even

P(X +δX = k) = 1 .
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Since X determines X +δX , we have H(X +δX |X) = 0 and therefore the chain
rule for entropy (see [2, p. 17]) implies

H(X +δX) = H(X)+H(X +δX |X)−H(X |X +δX)

= H(Bin(n−1,1/2))−H(X |X +δX)

≥ H(Bin(n−1,1/2))−1 ,

where the inequality follows from (3). Finally, using (2), we deduce

H(Bin(n,e))≥ H(Bin(n−1,1/2))−1 ,

as desired.

The proof of Theorem 1.5 is almost complete.

Proof of Theorem 1.5. It is known (see [1, p. 4]) that

H(Bin(n−1,1/2))≥ 1
2

log(n−1)+
1
2

log(πe)− 1
2
.

Hence, using the inequality log(n−1)≥ log(n)− 1
(n−1) ln2 , we conclude

H(Bin(n−1,1/2))≥ 1
2

log(n)+
1
2

log(πe)− 1
2
− 1

2ln(2)(n−1)

and Lemma 3.2 yields

H(XCn)≥
1
2

log(n)+
1
2

log(πe)− 3
2
− 1

2ln(2)(n−1)
.

The result follows.

4. A conjecture

In this section we define a hypergraph from the class Dn,n,r which, we believe,
maximizes the entropy of the number of vertices of non-zero in-degree, after a
random orientation on its edges.

Fix a positive integer r ≥ 3. A circular r-uniform hypergraph on n > r ver-
tices is defined as follows: Begin with a cycle Cn on n vertices, identified with
Zn. A proper subset I ⊂Zn is a path in Cn if it induces a connected sub-graph of
the graph Cn. The size of a path is the number of vertices in the corresponding
induced sub-graph. We call a hypergraph circular if (up to isomorphism) its set
of vertices is equal to Zn and its edges are paths of Cn of size r. We denote by
Cn,r the circular hypergraph on n vertices whose edge set consists of all paths of
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size r. Circular hypergraphs have attracted some attention due to the fact that
they share similar properties with certain classes of matrices (see [8, 9]). Recall
that XCn,r denotes the number of vertices with non-zero in-degree, after a random
orientation on the edges of Cn,r.

We conjecture that circular hypergraphs are such that

H(XCn,r)≥ H(XH), for all H ∈Dn,n,r .

Moreover, we believe that the following holds true.

Conjecture 4.1. Fix a positive integer r ≥ 3. Then for all n > r, it holds

H(XCn,r)≥
1
2

log(n/r)−O(1) .
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