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OPTIMALITY CONDITIONS WITH RESPECT TO AN
ORDERING MAP USING AN EXACT SEPARATION
PRINCIPLE

N. GADHI - K. HAMDAOUI - M. EL IDRISSI - FE. RAHOU

In this note, we are concerned with a multiobjective optimization
problem with respect to a variable ordering map. Using a special (nonlin-
ear) scalarization [1], together with an exact separation principle recently
introduced by Zheng,Yang and Zou [10], we give necessary optimality
conditions for locally weakly nondominated solutions with respect to a
given ordering map. To get the results, a nonsmooth sequential Guignard
constraint qualification is introduced.

1. Introduction

It is well known that the convex separation principle plays a fundamental role in
many aspects of nonlinear analysis and optimization. The whole convex anal-
ysis revolves around the use of separation theorems; see Rockafellar [8]. In
fact, many crucial results with their proofs are based on separation arguments
which are applied to convex sets ( see [7] ). There is another approach initiated
by Zheng, Yang and Zouthe [10], which does not involve any convex approxima-
tions and convex separation arguments. Using the Ekeland variational principle,
those authors gave an exact separation result that can be applied to disjoint sets;
which supplement the extremal principle [4, 5].
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Let X be an Asplund space and consider the following multi-objective program-
ming problem

) Min F (x) = (F (x), ..., F,(x))
(P){ Subject to : hjéx)go,jzl,...,p

where F; : X — R and i : X — R are lower semicontinuous functions. To define
an ordering cone, let [ : R* — R” be a given Lipschitz continuous map and
suppose that R” is equipped with a variable ordering structure defined by the
following cone-valued map D : R” = R” such that

D(y):=C({)={veR" [ <l O}, vy eR"

is a Bishop-Phelps cone ( see [2] ). These cones are often used as second-order
cones. Local Lipschitz continuity of the function / is needed in the proof of
Theorem 3.4 below. Remark that the images of D cover a wide range of dif-
ferent cones; however, in order to represent all nontrivial convex closed pointed
cones as Bishop-Phelps cones, one might need to replace the norm ||.||, in the
definition of D (y), by other different equivalent norms; for more details, see
[1].

Let C be the set of all feasible solutions defined by

C={xeX: hj(x)<0, j=1,.., p}.

The point X € C is said to be a locally weakly nondominated solution of the
problem (P) with respect to the ordering cone valued map D [1, 9] if there is no
x € C such that

F(X)—F (x) €intD(F (x)),

where
D(F(x))= U D(y).
YEF (x)
For all the following, we assume that ||/(y)|| > 1, for all y € F(C). Under
this condition, Eichfelder and Ha [1] have proved that the interior of D(y) is
nonempty and the interior is the set

int D(y) ={veR":[v]| <l(y)(v)}, VyeF(C). (1)

Such problem has been discussed by several authors at various levels of gen-
erality. Using a special (nonlinear) scalarization [1], together with an exact
separation principle [10], under a nonsmooth sequential Guignard constraint
qualification, we investigate necessary optimality conditions for locally weakly
nondominated solutions with respect to the given ordering map D [1, 9]. The
obtained results are given in terms of Fréchet subdifferentials.
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Throughout this work, we use standard notations. We denote by X* the
topological dual of X with the canonical dual pairing (-, -); || (x, )| := ||lx|| + ||yl
is the /;-norm of (x,y); Bx and By- stand for the closed unit balls in the space
and dual space in question; and w* denotes the weak® topology on the dual
space. For a multifunction F : X = X™, the expressions
limsupF (x) := {x* eX*| Iy —x, A} X 1xp € F (x) Vk e N}

X—X
and

linl}pfF (x) = {x* €X* |V — X, I} X 1xp € F(x) Vk e N}

sixgn)icfy, respectively, the sequential Painlevé-Kuratowski upper/outer and lower/
inner limits in the norm topology in X and the weak® topology in X*; N :=
{1,2,...}.

The rest of the paper is organized in this way : Section 2 contains basic defini-
tions and preliminary material from nonsmooth variational analysis. Section 3
addresses main results (optimality conditions).

2. Preliminaries

In this section, we give some definitions, notations and results, which will be
used in the sequel. For a subset D of X, the sets int D, cl D, cl conv D and D°
stand for the topological interior of D, the closure of D, the closed convex hull
of D and the negative polar cone of D, repectively. The contingent cone K (D, x)
to D at x € ¢l D is defined by

K(D,x)={veX:3t, |0and Iv, — vsuch that x+1,v, € D}.

A function f: X — RU {+oo} is said to be locally Lipschitzian around x €
domf if there exist a neighbourhood V of X and £ > 0 such that

| f(x) = f(y) < kllx—y| Vx,y e V.

The following definitions are crucials for our investigation.

Definition 2.1. [4] Let Q C X be locally closed around X € Q. Then the Fréchet
normal cone N(%;Q) and the Mordukhovich normal cone N(%;Q) to Q at X are
defined by

]/\7()?;9) =<x e Xt limsupm <05, 2)
TP ]
N(%;Q) := limsupN (x; Q), 3)
x%}?

Q _ .
where x — X stands for x — ¥ with x € Q.
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Definition 2.2. [4]Let ¢ be a lower semicontinuous function around .
1. The Fréchet subdifferential of ¢ at ¥ is

(%) = {x* € X" : liminf P = OE — (X =%) o}.

2 [l — x|

2. The Mordukhovich subdifferential of @ at X is defined by
dp(x) :=lim sup§¢(x), 4)
xgi
where x - ¥ means that x — X with @(x) — @(%).

One clearly has
NE®Q)=08(%Q), NF®Q)=0958%Q),
where 8(-;Q) is the indicator function of Q.

Remark 2.3. [6]1. For any closed set Q C X and X € Q one has
N (%;Q) = cl conv N(x%;Q) Q)
and for any Lipschitz continuous function ¢ : X — R around X, one has
.0 (X) = cl conv d@(X) (6)

where N,(x;Q) and d.¢@(X) denote respectively the Clarke’s normal cone and
the Clarke’s subdifferential.

2. The Fréchet normal cone N(%;Q) is always convex while the Mordukhovich
normal cone N(X;Q) is nonconvex in general.

As for the extremal principle, the following exact separation theorem can be
considered as a generalization of the convex separation theorem to nonconvex
sets and used as a powerful tool for deducing optimality conditions in nonconvex
optimization. In the separation theorem below, it is supposed that the intersec-
tion between the sets is empty and each set is considered near its own point;
which is not the case in the extremal principle.

Theorem 2.4. [10]Let X be an Asplund space and A, Ay, ..., A, be nonempty
closed (not necessarily convex) subsets of X such that A is compact and AN

(FWIA,') =g. Let 1 < p, g < oo be such that
=

1 1
—+-=1.

2

Then, for any € € |0, +oo[ and p € |0, 1] there exist a € A, a; € A; and a} €
X* i=1, ..., n, such that the following statements hold:
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1.
1
(Z llai —all ) <% (Ar, ..., Ay, A) + €.
2 R
ar € N(A;, a;), i=1, .., n,
1
n
Ya'€N(A, a) and <Z ||la \q>q =1
i=1 i=1
3.

n 177 n
p (zuai—aup) <Y aa
i=1

i=1

Here, v, (A1, ..., Ay, A) denotes the (p-weighted) non-intersect index of
Ay, ..., Ay, A defined by

1

Yy (A1, ..., Ay, A) = inf <Z||a,—a|p> ca; €A i=1,...n

3. Necessary optimality conditions

In this section, we maintain the notations given in the previous section and we
give necessary optimality conditions for the multiobjective optimization prob-
lem (P) . The following result has been proved by Eichfelder and Ha [1]; for the
convinience of the reader, we allow ourselves to give a proof.

Proposition 3.1. [I, Theorem 3.7] X is a local weak nondominated solution
of problem (P) with respect to the ordering map D if and only if X is a local
minimiser of the functional @ defined over C by

¢ (x):=y(F(x)) forallxeC

where
Y () =10 0 —F @)+ |y —F &) forall y.

Proof. X is alocal weak nondominated solution of the problem (P) with respect
to the ordering map D, if and only if there exists a neighborhood V' of X such
that forallx e VNC

F (%)~ F (x) & int D (F (x)).
— V(F(x)) =1(F(x)(F(x) = F () +||F (x) - F ()| = 0.
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= (YoF)(x) = (yoF)(x) =0,
since Y (F (X)) = 0, one has equivalently
¥ (F (x)) = v (F (%)).

Thus, one deduces that X is a minimiser of the functional ¢ over CNYV.
O

Remark 3.2. [1] If the functions [ : R” — R” and F : X — R" are Lipschitz
continuous then, the function ¢ : X — R is Lipschitz continuous on the set C,
too.

Definition 3.3. We say that the nonsmooth sequential Guignard constraint qual-
ification holds at x € C if for every sequences {wy} C C, such that

lim [Jwy — ]| =0 (7
k—-o0
one has
K (Cwi))° € [TH" (wo)]”,
where
a*eRE:
AW =9 el <1and ¥ o*h; (wy) =0
= Jj=1 3R =
and
deX:
TLin (Wk) —

var € A(wy), ¥a! € dhy(wy), < _flo;;%n;,d> <0
j=

Theorem 3.4. Assume that C is bounded and that F is locally Lipschitz con-
tinuous at X, where the nonsmooth sequential Guignard constraint qualification
holds. Suppose that X is a locally weakly nondominated solution of the prob-
lem (P), with respect to the ordering map D. Then, there exist sequences A, =
(),kl, e ),,?) € (—RZ’F)O\{O}, {ve} X, {ax} CCandaj € {I(F (v))} +Bgn
such that

lim F (v) = F (%) , lim [[vg —wi| =0
k—r—+oo0 k—r-o0

0€d (ag,F) (vk) + clconv {iélajghj(wk) such that a* € A (wk)} .
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Proof. Since X is a locally weakly nondominated solution of the problem (P)
with respect to the ordering map D, it is also a local minimiser of the functional
¢ = yoF over C. Since ¢ is lower semicontinuous and since C is compact, one
deduces that epi (@) is a closed subset of X xR and that ¢ (x¥) > —oo. For each

keN, let
1
A=C - — L
X{¢@) k+1}

In this case, A is a compact subset of X xR, ANepi (@) = & and
2

< —.

=%+l

Applying Theorem 2.4, for each fixed k € N, there exist wy € C, v € X,
(vk, o) € epi (@) and (v§, Bx) € X xR such that

N (epi(9), A) =d(epi(@), A)

x - 1 2
16 -8l =1 | (e 0= ) O | < 5 ®
and
o . - 1
(i B0 € W (epi(o). O )R (4, (w0 7)) ©
e From (8), one gets that (v, @) is not an interior point of epi (¢); conse-
quently,
O =@ (Vk) .
Then, using (8), one obtains the following inequalities :
3
vl < s and Jo () — 9 ()| <

This implies that

¢ (i) > —eo, lim @ (ve) = @ (), lim [lve—wif|=0.  (10)

o Since (ve, o) € epi (@) and (v, —f) € N (epi(9), (v, c)), by a re-
sult of [3], one has
Bx > 0.

By (9), the equality in (8) and the Lipschitz continuity of ¢, implies that

*

Bi # 0. Setting 7} = ;—k, from (9), one has
k
U N 3 1
(7, 1) €M epi(9), (0N =N (4, (s 9= 1) ).

(11)
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Thus,
T € d (vk)

and

i - (4 (n 00— 7)) =R Com) xR

That is,

~

€ o (vi) N —N (C,wy).

Consequently,
0€dQ(v)+N(Cwp). (12)

Then, there exists a; € {I(F (v))} + Br» such that
0€d(a;,F)(v)+N(C,w).

e According to [4, Corollary 1.11], one has
N(C,w) ={a* e X*: (a*,d) <0 wheneverd € K (C,wy)}.

Since the nonsmooth sequential Guignard constraint qualification holds
at X, one deduces that

N(C,wy) C {a* e X*: (a*,d) <0 wheneverd € T"" (wy)} .

Finally,

o~

0 € d{a;,F) (vi)+ clconv {ig a}‘§hj(wk) such that o™ € A(wk)} .

O]
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