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OPTIMALITY CONDITIONS WITH RESPECT TO AN
ORDERING MAP USING AN EXACT SEPARATION

PRINCIPLE

N. GADHI - K. HAMDAOUI - M. EL IDRISSI - F. RAHOU

In this note, we are concerned with a multiobjective optimization
problem with respect to a variable ordering map. Using a special (nonlin-
ear) scalarization [1], together with an exact separation principle recently
introduced by Zheng,Yang and Zou [10], we give necessary optimality
conditions for locally weakly nondominated solutions with respect to a
given ordering map. To get the results, a nonsmooth sequential Guignard
constraint qualification is introduced.

1. Introduction

It is well known that the convex separation principle plays a fundamental role in
many aspects of nonlinear analysis and optimization. The whole convex anal-
ysis revolves around the use of separation theorems; see Rockafellar [8]. In
fact, many crucial results with their proofs are based on separation arguments
which are applied to convex sets ( see [7] ). There is another approach initiated
by Zheng,Yang and Zouthe [10], which does not involve any convex approxima-
tions and convex separation arguments. Using the Ekeland variational principle,
those authors gave an exact separation result that can be applied to disjoint sets;
which supplement the extremal principle [4, 5].

Submission received : 21 November 2018

AMS 2010 Subject Classification: 90C29, 49K99
Keywords: Multiobjective optimization, local weak efficient solution, optimality conditions



132 N. GADHI - K. HAMDAOUI - M. EL IDRISSI - F. RAHOU

Let X be an Asplund space and consider the following multi-objective program-
ming problem

(P) :
{

Min F (x) = (F1 (x) , ..., Fn (x))
Subject to : h j (x)≤ 0, j = 1, ..., p

where Fi : X→R and h j : X→R are lower semicontinuous functions. To define
an ordering cone, let l : Rn → Rn be a given Lipschitz continuous map and
suppose that Rn is equipped with a variable ordering structure defined by the
following cone-valued map D : Rn ⇒ Rn such that

D(y) :=C (l (y)) = {v ∈ Rn : ‖v‖ ≤ l (y)(v)} , ∀y ∈ Rn

is a Bishop-Phelps cone ( see [2] ). These cones are often used as second-order
cones. Local Lipschitz continuity of the function l is needed in the proof of
Theorem 3.4 below. Remark that the images of D cover a wide range of dif-
ferent cones; however, in order to represent all nontrivial convex closed pointed
cones as Bishop-Phelps cones, one might need to replace the norm ‖.‖ , in the
definition of D(y) , by other different equivalent norms; for more details, see
[1].
Let C be the set of all feasible solutions defined by

C =
{

x ∈ X : h j (x)≤ 0, j = 1, ..., p
}
.

The point x ∈ C is said to be a locally weakly nondominated solution of the
problem (P) with respect to the ordering cone valued map D [1, 9] if there is no
x ∈C such that

F (x)−F (x) ∈ int D(F (x)) ,

where
D(F (x)) = ∪

y∈F(x)
D(y) .

For all the following, we assume that ‖l (y)‖ > 1, for all y ∈ F (C) . Under
this condition, Eichfelder and Ha [1] have proved that the interior of D(y) is
nonempty and the interior is the set

int D(y) = {v ∈ Rn : ‖v‖< l (y)(v)} , ∀y ∈ F (C) . (1)

Such problem has been discussed by several authors at various levels of gen-
erality. Using a special (nonlinear) scalarization [1], together with an exact
separation principle [10], under a nonsmooth sequential Guignard constraint
qualification, we investigate necessary optimality conditions for locally weakly
nondominated solutions with respect to the given ordering map D [1, 9]. The
obtained results are given in terms of Fréchet subdifferentials.
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Throughout this work, we use standard notations. We denote by X∗ the
topological dual of X with the canonical dual pairing 〈·, ·〉; ‖(x,y)‖ := ‖x‖+‖y‖
is the l1-norm of (x,y) ; BX and BX∗ stand for the closed unit balls in the space
and dual space in question; and w∗ denotes the weak∗ topology on the dual
space. For a multifunction F : X ⇒ X∗, the expressions
limsup

x→x
F (x) :=

{
x∗ ∈ X∗ | ∃xk→ x, ∃x∗k

w∗→ x∗ : x∗k ∈ F (xk) ∀k ∈ N
}

and
liminf

x→x
F (x) :=

{
x∗ ∈ X∗ | ∀xk→ x, ∃x∗k

w∗→ x∗ : x∗k ∈ F (xk) ∀k ∈ N
}

signify, respectively, the sequential Painlevé-Kuratowski upper/outer and lower/
inner limits in the norm topology in X and the weak∗ topology in X∗; N :=
{1,2, . . .}.
The rest of the paper is organized in this way : Section 2 contains basic defini-
tions and preliminary material from nonsmooth variational analysis. Section 3
addresses main results (optimality conditions).

2. Preliminaries

In this section, we give some definitions, notations and results, which will be
used in the sequel. For a subset D of X , the sets int D, cl D, cl conv D and D◦

stand for the topological interior of D, the closure of D, the closed convex hull
of D and the negative polar cone of D, repectively. The contingent cone K(D,x)
to D at x ∈ cl D is defined by

K (D,x) = {v ∈ X : ∃tn ↓ 0 and ∃vn→ v such that x+ tnvn ∈ D}.

A function f : X −→ R∪{+∞} is said to be locally Lipschitzian around x ∈
dom f if there exist a neighbourhood V of x and k > 0 such that

| f (x)− f (y) |≤ k‖x− y‖ ∀x,y ∈V.

The following definitions are crucials for our investigation.

Definition 2.1. [4] Let Ω⊂ X be locally closed around x̄∈Ω. Then the Fréchet
normal cone N̂(x̄;Ω) and the Mordukhovich normal cone N(x̄;Ω) to Ω at x̄ are
defined by

N̂(x̄;Ω) :=

{
x∗ ∈ X∗ : limsup

x Ω→x̄

〈x∗,x− x̄〉
‖x− x̄‖

≤ 0

}
, (2)

N(x̄;Ω) := limsup
x Ω→x̄

N̂(x;Ω), (3)

where x Ω→ x̄ stands for x→ x̄ with x ∈Ω.
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Definition 2.2. [4]Let ϕ be a lower semicontinuous function around x̄.
1. The Fréchet subdifferential of ϕ at x̄ is

∂̂ϕ(x̄) :=

{
x∗ ∈ X∗ : liminf

x Ω→x̄

ϕ(x)−ϕ(x̄)−〈x∗,x− x̄〉
‖x− x̄‖

≥ 0

}
.

2. The Mordukhovich subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) := limsup
x Ω→x̄

∂̂ϕ(x), (4)

where x
ϕ→ x̄ means that x→ x̄ with ϕ(x)→ ϕ(x̄).

One clearly has

N̂(x̄;Ω) = ∂̂ δ (x̄;Ω), N(x̄;Ω) = ∂δ (x̄;Ω),

where δ (·;Ω) is the indicator function of Ω.

Remark 2.3. [6]1. For any closed set Ω⊂ X and x ∈Ω one has

Nc(x̄;Ω) = cl conv N(x̄;Ω) (5)

and for any Lipschitz continuous function ϕ : X → R around x̄, one has

∂cϕ(x̄) = cl conv ∂ϕ(x̄) (6)

where Nc(x̄;Ω) and ∂cϕ(x̄) denote respectively the Clarke’s normal cone and
the Clarke’s subdifferential.
2. The Fréchet normal cone N̂(x̄;Ω) is always convex while the Mordukhovich
normal cone N(x̄;Ω) is nonconvex in general.

As for the extremal principle, the following exact separation theorem can be
considered as a generalization of the convex separation theorem to nonconvex
sets and used as a powerful tool for deducing optimality conditions in nonconvex
optimization. In the separation theorem below, it is supposed that the intersec-
tion between the sets is empty and each set is considered near its own point;
which is not the case in the extremal principle.

Theorem 2.4. [10]Let X be an Asplund space and A, A1, ..., An be nonempty
closed (not necessarily convex) subsets of X such that A is compact and A∩(

n
∩

i=1
Ai

)
=∅. Let 1≤ p, q≤+∞ be such that

1
p
+

1
q
= 1.

Then, for any ε ∈ ]0, +∞[ and ρ ∈ ]0, 1[ there exist a ∈ A, ai ∈ Ai and a∗i ∈
X∗, i = 1, ..., n, such that the following statements hold:
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1. (
n

∑
i=1
‖ai−a‖p

) 1
p

≤ γp (A1, ..., An, A)+ ε.

2. 
a∗i ∈ N̂ (Ai, ai) , i = 1, ..., n,

−
n
∑

i=1
a∗i ∈ N̂ (A, a) and

(
n
∑

i=1
‖a∗i ‖

q
) 1

q

= 1.

3.

ρ

(
n

∑
i=1
‖ai−a‖p

) 1
p

≤
n

∑
i=1
〈a∗i , a−ai〉 .

Here, γp (A1, ..., An, A) denotes the (p-weighted) non-intersect index of
A1, ..., An, A defined by

γp (A1, ..., An, A) = inf


(

n

∑
i=1
‖ai−a‖p

) 1
p

: ai ∈ Ai, i = 1, ..., n

 .

3. Necessary optimality conditions

In this section, we maintain the notations given in the previous section and we
give necessary optimality conditions for the multiobjective optimization prob-
lem (P) . The following result has been proved by Eichfelder and Ha [1]; for the
convinience of the reader, we allow ourselves to give a proof.

Proposition 3.1. [1, Theorem 3.7] x is a local weak nondominated solution
of problem (P) with respect to the ordering map D if and only if x is a local
minimiser of the functional ϕ defined over C by

ϕ (x) := ψ (F (x)) for all x ∈C

where
ψ (y) := l (y)t (y−F (x))+‖y−F (x)‖ for all y.

Proof. x is a local weak nondominated solution of the problem (P) with respect
to the ordering map D, if and only if there exists a neighborhood V of x such
that for all x ∈V ∩C

F (x)−F (x) /∈ int D(F (x)) .

⇐⇒ ψ (F (x)) = l (F (x))(F (x)−F (x))+‖F (x)−F (x)‖ ≥ 0.
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⇐⇒ (ψ ◦F)(x)≥ (ψ ◦F)(x) = 0,

since ψ (F (x)) = 0, one has equivalently

ψ (F (x))≥ ψ (F (x)) .

Thus, one deduces that x is a minimiser of the functional ϕ over C∩V.

Remark 3.2. [1] If the functions l : Rn → Rn and F : X → Rn are Lipschitz
continuous then, the function ϕ : X → R is Lipschitz continuous on the set C,
too.

Definition 3.3. We say that the nonsmooth sequential Guignard constraint qual-
ification holds at x ∈C if for every sequences {wk} ⊂C, such that

lim
k→+∞

‖wk− x‖= 0 (7)

one has
[K (C,wk)]

◦ ⊆
[
T Lin (wk)

]◦
,

where

∆(wk) =


α∗ ∈ Rp

+ :

‖α∗‖ ≤ 1 and
p
∑
j=1

α∗j h j (wk) = 0


and

T Lin (wk) =


d ∈ X :

∀α∗ ∈ ∆(wk) , ∀π∗j ∈ ∂̂h j(wk),

〈
p
∑
j=1

α∗j π∗j ,d

〉
≤ 0

 .

Theorem 3.4. Assume that C is bounded and that F is locally Lipschitz con-
tinuous at x, where the nonsmooth sequential Guignard constraint qualification
holds. Suppose that x is a locally weakly nondominated solution of the prob-
lem (P) , with respect to the ordering map D. Then, there exist sequences λk =(
λ 1

k , ..., λ n
k

)
∈
(
−Rn

+

)◦ \{0} , {vk}⊂X , {ωk}⊂C and a∗k ∈ {l (F (vk))}+BRn

such that
lim

k→+∞

F (vk) = F (x) , lim
k→+∞

‖vk−wk‖= 0

0 ∈ ∂̂ 〈a∗k ,F〉(vk)+ clconv
{

p
∪

i=1
α
∗
j ∂̂h j(wk) such that α

∗ ∈ ∆(wk)

}
.
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Proof. Since x is a locally weakly nondominated solution of the problem (P)
with respect to the ordering map D, it is also a local minimiser of the functional
ϕ = ψ ◦F over C. Since ϕ is lower semicontinuous and since C is compact, one
deduces that epi(ϕ) is a closed subset of X×R and that ϕ (x) > −∞. For each
k ∈ N, let

A =C×
{

ϕ (x)− 1
k+1

}
.

In this case, A is a compact subset of X×R, A∩ epi(ϕ) =∅ and

γ1 (epi(ϕ) , A) = d (epi(ϕ) , A)≤ 2
k+1

.

Applying Theorem 2.4, for each fixed k ∈ N, there exist wk ∈C, vk ∈ X ,
(vk,αk) ∈ epi(ϕ) and

(
v∗k , βk

)
∈ X×R such that

‖(v∗k , −βk)‖∞
= 1,

∥∥∥∥(wk, ϕ (x)− 1
k+1

)
− (vk, αk)

∥∥∥∥< 2
k+1

(8)

and

(v∗k , −βk) ∈ N̂ (epi(ϕ) , (vk, αk))∩−N̂
(

A,
(

wk, ϕ (x)− 1
k+1

))
. (9)

• From (8), one gets that (vk, αk) is not an interior point of epi(ϕ) ; conse-
quently,

αk = ϕ (vk) .

Then, using (8) , one obtains the following inequalities :

‖wk− vk‖ ≤
2

k+1
and |ϕ (vk)−ϕ (x)| ≤ 3

k+1
.

This implies that

ϕ (vk)>−∞, lim
k→+∞

ϕ (vk) = ϕ (x) , lim
k→+∞

‖vk−wk‖= 0. (10)

• Since (vk,αk) ∈ epi(ϕ) and
(
v∗k , −βk

)
∈ N̂ (epi(ϕ) , (vk, αk)) , by a re-

sult of [3], one has
βk ≥ 0.

By (9) , the equality in (8) and the Lipschitz continuity of ϕ, implies that

βk 6= 0. Setting π∗k =
v∗k
βk

, from (9) , one has

(π∗k , −1) ∈ N̂ (epi(ϕ) , (vk, αk))∩−N̂
(

A,
(

wk, ϕ (x)− 1
k+1

))
.

(11)



138 N. GADHI - K. HAMDAOUI - M. EL IDRISSI - F. RAHOU

Thus,
π
∗
k ∈ ∂̂ϕ (vk)

and

(π∗k , −1) ∈ −N̂
(

A,
(

wk, ϕ (x)− 1
k+1

))
=−N̂ (C,wk)×R

That is,
π
∗
k ∈ ∂̂ϕ (vk)∩−N̂ (C,wk) .

Consequently,
0 ∈ ∂̂ϕ (vk)+ N̂ (C,wk) . (12)

Then, there exists a∗k ∈ {l (F (vk))}+BRn such that

0 ∈ ∂̂ 〈a∗k ,F〉(vk)+ N̂ (C,wk) .

• According to [4, Corollary 1.11], one has

N̂ (C,wk) = {α∗ ∈ X∗ : 〈α∗,d〉 ≤ 0 whenever d ∈ K (C,wk)} .

Since the nonsmooth sequential Guignard constraint qualification holds
at x, one deduces that

N̂ (C,wk)⊆
{

α
∗ ∈ X∗ : 〈α∗,d〉 ≤ 0 whenever d ∈ T Lin (wk)

}
.

Finally,

0 ∈ ∂̂ 〈a∗k ,F〉(vk)+ clconv
{

p
∪

i=1
α
∗
j ∂̂h j(wk) such that α

∗ ∈ ∆(wk)

}
.
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