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CONNECTED GRAPHS OF FIXED ORDER AND SIZE WITH

MAXIMAL INDEX: STRUCTURAL CONSIDERATIONS

S. K. SIMIĆ - E. M. LI MARZI - F. BELARDO

The largest eigenvalue, or index, of simple graphs is extensively studied
in literature. Usually, the authors consider the graphs from some fixed class
and identify within it those graphs with maximal (or minimal) index. So far
maximal graphs with fixed order, or with fixed size, are identified, but not
maximal connected graphs with fixed order and size. In this paper we add
some new observations related to the structure of the latter graphs.

1. Introduction.

We consider only simple graphs, i.e. finite, undirected graphs without
loops or multiple edges. The spectrum of a graph G is the spectrum of its (0, 1)-
adjacency matrix. As is well known (see, for example, [5]) the spectrum of G
is a collection of its real invariants. The largest eigenvalue, to be denoted by
λ(G), is also called the index (or spectral radius) of G . If G is connected then
λ(G) is of multiplicity one. The corresponding eigenvector (as it follows from
the theory of non-negative irreducible matrices, see also [5]) can be assumed to
be positive; it is also called the Perron eigenvector of G .

Following [6] we will take that G(ν, ε) denotes the set of all graphs of
order ν and size ε , while H(ν, ε) is its subset consisting of connected graphs.
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(In addition, see Section 2, S(ν, ε) will stand for those which are nested split
graphs). In the set of graphs with fixed order, or fixed size, maximal graphs
(i.e. graphs with maximum index) are identified. For the order ν , this is Kν

(see, for example, [5]). For the size ε the corresponding graph is formed from
a single clique of maximal allowed size and a single vertex adjacent to at least
one (possibly all) vertices of the clique: more precisely, if ε = (q−1

2

) + r , where
1 ≤ r ≤ q − 1, then the clique order is q − 1 and the single vertex is adjacent
to r vertices from the clique. This graph will be denoted by P(ε) (note, it is
connected). The corresponding problemwas open for many years. The structure
of maximal graphs had been for the first time described by R. A. Brualdi and A.
J. Hoffman, but the complete solution to the problem was provided later, by P.
Rowlinson (see [9]). Thus, if we ask for a graph in G(ν, ε) with maximal index,
then the corresponding graph consists of one copy of P(ε) and n−q of isolated
vertices.

The problem of finding maximal graphs inH(ν, ε) has not been solved yet
(in general).

To mention some known results from literature, we next define two types
of graphs of order ν and size ν + κ , to be denoted by B(ν, κ) and S(ν, κ) (here,
we assume that κ ≥ 0; for κ = −1, i.e. for trees, the maximal graphs are stars -
see, for example, [5]). Let d be the largest integer such that

(d−1
2

) ≤ κ +1. Then
we can write (uniquely) that

(d−1
2

) + r = κ + 1, where 0 ≤ r ≤ d − 2. If r = 0
(then 3 ≤ d ≤ ν), B(ν, κ) is obtained from a complete graph Kd by adding
ν − d pendant edges at one of its vertices - this graph will be also denoted by
F(ν, d); otherwise, if r > 0 (then 3 ≤ d ≤ ν − 1), B(ν, κ) is obtained from
F(ν, d) by joining one vertex of degree 1 to r vertices of degree d − 1. Note,
if d ≤ 2 then F(ν, 1) = F(ν, 2) = K1,ν−1 and then κ < 0; for d > 2, it is
noteworthy that the subgraph obtained by deleting the vertex of maximal degree
from B(ν, κ) coincides (up to isolated vertices) with P(κ+1). S(ν, κ) is defined
only for κ ≤ ν − 3. It is the graph obtained from the star K1,ν−1 by joining one
vertex of degree 1 to κ + 1 other vertices of degree 1. Note that B(ν, κ) and
S(ν, κ) coincide if and only if κ = 0 or 1.

Consider now the graphs from H(ν, ε). Then the maximal graphs in
several cases, depending on ε , are identified. For example, if

(
ν−1
2

)
< ε ≤ (

ν

2

)

then P(ε) is maximal (follows from the result of P. Rowlinson since all graphs
in question are now connected). In what follows we will put, as in [6], that
ε = ν + κ . Due to R. A. Brualdi and E. S. Solheid (see [4]), the problem is
completely solved for some small values of κ , i.e. for κ ≤ 2. For κ ≤ 1,
B(ν, κ) (= S(ν, κ)) is maximal; for κ = 2, only B(ν, κ) is maximal. In the
same paper, it was shown that for 3 ≤ κ ≤ 5 the maximal graph is not of the
prescribed form. Namely, for small values of ν , B(ν, κ) is maximal, while,
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for large values of ν , S(ν, κ) is maximal. These results were extended by D.
Cvetković and P. Rowlinson in [6]. Their result is asymptotic. Namely, for any
fixed κ ≥ 6, and for all sufficiently large values of ν , only S(ν, κ) is maximal.
Finally, it was proved by F. K. Bell (see [1]) that for κ = (d−1

2

) − 1 (and ν

arbitrary), that F(ν, d) is maximal for ν ≤ g; S(ν, κ) is maximal for ν > g (see
Section 4 for the meaning of g). Based on these results, many questions were
posed by F. K. Bell in the mentioned paper. Some further results of F.K. Bell
are mentioned in Section 4.

In Section 2 we give some preparatory results (including new ones), and
introduce the type of graphs to be considered (also called, by P. Hansen,
nested split graphs, or NSGs for short). In Section 3 we investigate various
modifications of NSGs which keep them within the same class. In Section 4
we add some general comments, while Section 5 is an appendix containing the
tree-like representations of the graphs P(ε), B(ν, κ) and S(ν, κ).

2. Preliminaries.

We first consider some results belonging to graph perturbations (see, for
example, [8], Chapter 6). Of course, we are mainly interested to see how the
index of a graph is changed under the relocation of its edges.

Let e be an edge of a graph G . Assume first that e = rs , and that r is
not adjacent to t . A relocation of type R1 (in fact, a rotation around r ) consists
of a deletion of the edge e followed by an addition of the edge e′ = rt . Next,
assume that e = st , and that two vertices, say u and v ({u, v} ∩ {s, t} = ∅),
are not adjacent. A relocation of type R2 consists of a deletion of the edge e
followed by an addition of the edge e′ = uv.

The basic argument to be used in the next proof, is the following descrip-
tion of the largest eigenvalue of any hermitian matrix. In particular, let here A
be the adjacency matrix of a graph G . Then, as well known (see, for example,
[8]), we have

(1) λ(G) = sup
||x||=1

xT Ax.

The following lemma now easily follows.

Lemma 2.1. Let G ′ be a graph obtained from a connected graph G (of order
ν) by one of the relocations as above. Let x = (x1, x2, . . . , xν)T be the Perron
eigenvector of G. Then we have:

(i) if xt ≥ xs then λ(G ′) > λ(G) (for R1);
(ii) if xuxv ≥ xsxt then λ(G ′) > λ(G) (for R2).
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Proof. Consider only (i) (the proof of (ii) is almost the same and will be omitted
here because this result is not needed later on). Without loss of generality,
assume that ||x || = 1. Then we have:

λ(G ′)−λ(G) = sup
||y||=1

yT A′y− xT Ax ≥ xT A′x− xT Ax = xT (A′ − A)x = �.

Further, we easily get � = 2xr (xt − xs ). So, λ(G ′) ≥ λ(G). The equality holds
if and only if � = 0 and x is an eigenvector of G ′. But then we easily get that
the eigenvalue equation does not hold (in G ′) for the vertices s and t , and the
proof follows. �

In what follows we will give a new characterization of graphs whose index
is maximal within the graphs of fixed size (but not necessarily order).

Theorem 2.2. Let G be a graph of a fixed size, and assume that its index is
maximal. Then G does not contain, as induced subgraph, any of the graphs:
2K2, P4 and C4 .

Proof. Let H be an induced subgraph of G , equal to one of the graphs supposed
to be forbidden. Let v be a vertex of H whose weight (with respect to x) is
minimal. Let u be a vertex of H adjacent to v, while w a vertex of H non-
adjacent to u. So we have that u is adjacent to v, but non-adjacent to w, and in
addition that x(v) ≤ x(w). It is a matter of routine to check that such triplet of
vertices always exists in H (provided H is one of the graphs in question). But
then (see Lemma 2.1(i)) we can rotate the edge uv around u to the non-edge
uw to get a graph (say G ′), with a greater index, a contradiction. �

The above result deserves some comments.

Firstly, the graphs having no 2K2, nor P4 as induced subgraphs were
already studied in literature (see, for example, [2], [13]). In the spectral graph
theory, they already appear in the context of the second largest eigenvalue.
Graphs for which the second largest eigenvalue is too small (actually, less than
the golden section, i.e.

√
5−1
2 , or some smaller numbers) were investigated to

some extent. In [10], these graphs are represented by the so called expression
trees (see below). In [11] all graphs having together with their complements the
second largest eigenvalue less than golden section were found. These graphs
belong to the class of graphs for which C4 , in addition to 2K2 and P4, is
forbidden.

Secondly, graphs with maximal index from Theorem 2.2 are not necessar-
ily connected. They can have one non-trivial component and certain number of
isolated vertices (note, just 2K2 is forbidden). The question we can now pose
is what happens if we require that a graph G (from Theorem 2.2) is connected.
Then we need some additional considerations.
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Theorem 2.2’. Let G be a connected graph of a fixed order and size, and
maximal index. Then G does not contain, as an induced subgraph, any of the
graphs: 2K2, P4 and C4 .

Proof. We will follow the previous proof. If G ′, as defined there, is connected
we are done. Assume now that G ′ is disconnected. If so, uv must be a bridge in
G , and then G − uv consists of two components, say G1 and G2, such that, say
u and w are in G1, and v is in G2. Since G has a maximal index, x(u) > x(s)
for any s ∈ V (G1) other than u. (Notice, otherwise we can rotate the edge vu
around v to the non-edge vs to get a graph with a greater index). Consider
now a vertex t , adjacent to w, belonging to a (say, the shortest) path between u
and w. Then we can rotate the edge wt around w to the non-edge wu to get a
connected graph with a greater index, a contradiction. �

We now introduce some notation and necessary results from [10] in order
to keep the paper more self-contained.

A rooted tree T is the tree with one vertex, say r (also called the root),
distinguished. In describing some relations between the vertices of a rooted
tree, we shall use (besides the usual terminology) the terminology of family
trees. Thus all vertices of T are the descendants of the root r , while r is their
ancestor. We can also imagine that the edges of a tree are oriented from the root
to its descendants. If f is joined with s by an (oriented) edge, then s is regarded
as a son of f (while f is the father of s). The vertices without sons are called
leaves; other vertices, except the root, are called internal vertices. Two vertices
of a tree are called incomparable if they are not connected by an oriented path.
The height of a tree T , also denoted by h(= h(T )), is the maximal distance
between the root and the leaves.

Weighted rooted trees (with weights assigned to vertices) were used in [10]
in representing graphs from the class, called C, which is defined as follows:

(i) ∅ ∈ C (∅ being an empty graph);
(ii) if G ∈ C, then G ∪ K1 ∈ C;
(iii) if G1,G2 ∈ C, then G1∇G2 ∈ C

Of course, these rules can be repeated only finitely many times.
Here ∇ denotes the join of two graphs, while ∪ refers to union of two

disjoint graphs. Notice that G1∇G2 = G1 ∪ G2, and also that these two (graph)
operations are associative.

Remark. An alternative way to describe graphs from the class C is in terms of
minimal forbidden induced subgraphs. Actually, C is a class of graphs having
no induced subgraphs equal to 2K2 or P4.
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To any graph G from C we may associate a weighted rooted tree TG (also
called an expression tree of G) in the following way:

if H = (H1∇H2∇ · · ·∇Hm) ∪ nK1 is any subexpression of a
graph G (i.e. a graph obtained by using the above rules), then a
subtree TH with a root v corresponds to H ; n(= w(v)) is a weight
of v, whereas for each i (i = 1, 2, . . . ,m) there is a vertex vi (a son
of v) representing a root of Hi .

Conversely, given a tree TG , we get G by assigning to each vertex of TG ,
say v, a co-clique of order w(v); vertices from two co-cliques are adjacent if
and only if these co-cliques originated from the incomparable vertices of TG .

Remark. It is also worth mentioning (see [10], Lemma 3.4) that this represen-
tation may be turned into a canonical one. Then all vertices except possibly
the root have non-zero weights, and each father has at least two sons. If so,
then any canonical representation determines the graph up to isomorphism. The
corresponding tree is called the canonical expression tree.

To fix some new ideas, consider a graph G from C defined as follows:

G = ((((2K1∇(K1∇K1)) ∪ K1))∇(K1∇K1∇K1)) ∪ 2K1
Clearly, G can be represented (in a more compressed form) as follows:

G = ((((2K1∇K2) ∪ K1))∇K3) ∪ 2K1.

In Fig. 1(a) G is represented by its canonical expression tree; in Fig. 1(b)
this tree is turned to a compressed form (namely, some vertices of the tree are
joined together). More generally, we can now say that white vertices (as earlier)
correspond in G to co-cliques, while black vertices (after the compression)
correspond in G to cliques - in both cases, their weights determine the orders
of co-cliques, or cliques. The main idea used here is to represent “brothers”
which are leaves of weight one by a common vertex. We will also say that this
compressed tree is a coloured expression tree, or CET for short. It is assumed to
be a canonical one, if it cannot be simplified (in the same sense as uncoloured
ones).

We will now use the fact (see Theorems 2.2 and 2.2’) that C4 is forbidden
in any graph G withmaximal index. This fact is reflected in the TG as follows: if
two vertices of such a tree are incomparable, then at least one must be a leaf, and
at least one must be of weight one (otherwise, in both situations, C4 appears).
Thus, we can easily conclude that each father has at most one son whose weight
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Fig. 1: Representations of the graph G .

is greater than one, and that all other sons are the leaves of weight one. So if
we start from the root, and use this argument, then the compressed form of our
tree gets the following structure: all white vertices can be put into chain-like
patten, and each of them has a pendant edge whose other end is a black vertex
(see Fig. 2(b)), which will be also a model for drawing the (canonical) CETs in
the situations when three graphs from Theorem 2.2 (or 2.2’) are forbidden.

It can be also easily verified that any graph which can be represented by a
CET of the later form, does not contain as an induced subgraph, besides 2K2
and P4, C4 as well. So we can say that any graph with maximal index (with a
fixed order and size, connected or disconnected) can be represented (uniquely)
by its canonical CET.

We can now summarize the above considerations as follows: Graphs in
G(ν, ε) (disconnected or connected) with maximal index can be characterized
by minimal forbidden subgraphs as in Theorems 2.2 and 2.2’. They can be
represented by the canonical CETs as above. Therefrom, their structure is
completely determined. If isolated vertices are ignored, they are generally split
graphs, and due to some further structural properties (implied from their tree-
like representation) they will be called nested split graphs.

Remark. The above characterization is equivalent to the characterization (in
terms of the adjacency matrix) given by R. A. Brualdi and A. J. Hoffman (see
[3]). Namely, the graphs in question admit the labelling (of vertices) in which
their adjacency matrix takes the stepwise form. We recall here that a (0, 1)
symmetric matrix A = (ai j ) (with zeroes at the main diagonal) is in the stepwise
form if it satisfies the condition:

(∗) if i < j and ai j = 1 then ast = 1 whenever s < t ≤ j and s ≤ i.
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We now introduce some parameters of the NSGs. Firstly, any NSG, say
G , is completely determined by the following 2h parameters

(m1, . . . ,mh; n1, . . . , nh),

in fact, the vertex weights in the canonical CET; see also Fig. 2(b).
Note, if some of these parameters are equal to zero, we can then turn that

tree into the canonical one to get the “canonical” parameters. Here, in fact, mi

is the order of i-th co-clique (whose vertex set will be denoted by Ui ), while
nj is the order of j -th clique (whose vertex set will be denoted by Vj ) (see also
Fig. 2(a)).

We next put

Ms =
s∑

i=1
mi , Nt =

t∑

j=1
nj (1 ≤ s, t ≤ h)

So, the corresponding graph G is of order ν = Mh + Nh , and size ε =∑h
k=1 mkNk + (Nh

2

)
.

In Fig. 2 an NSG and its expression tree are depicted. The white circles
correspond to co-cliques, while the black ones to cliques (their vertex sets are
indicated); here, the line between any two circles means that any two vertices
belonging to corresponding circles are mutually adjacent.

In Section 5 (see Figs. 5–7) one can find the representations of the graphs
P(ε), B(ν, κ) and S(ν, κ) defined in Section 1.

Remark. We will now mention a result of P. Rowlinson (see [9]) which gives
an additional condition for graphs with a fixed number of edges to be maximal.
This condition, provided (*) is satisfied, reads:

(**) If
(i) g < p < q < k, and
(ii) agk = 1, agj = 0 whenever j > k, aik = 0 whenever i > g, and
(iii) apq = 0, apj = 1 whenever p < j < q , aiq = 1 whenever i < p,
then p + q ≤ g + k + 1.

It is based on relocation R2 (actually, the edge e = gk is relocated to the
position of the non-edge f = pq ). In proving (**) an elegant rearrangement of
eigenvector components is used in getting the inequality required in Theorem
2.1(ii) (see [9] for more details). Here we will give an equivalent form of (**),
based on the parameters introduced for the NSGs.

If 1 ≤ s < t ≤ h−1 then Mt −Ms−1 ≥ Nt − Ns +1; in addition, if t = h
and mh ≥ 2 then Mt − Ms−1 ≥ Nt − Ns + 2.
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Fig. 2: An NSG and its representation.

3. Modifications of NSGs.

We will now focus our attention on some modifications of NSGs which
keep them within the same class. Notice first that any induced subgraph of an
NSG, is (again) an NSG. For spanning subgraphs, this is not true (in general).
Actually, a deletion (or an addition) of an edge can give a graph which is not an
NSG. In the next two theorems we will give criteria under which, for a given
nested split graph G and an edge e, the graphs G ± e are (or are not) NSGs.

For this aim, we assume in what follows that e = pq , and that s and t are
another two vertices (if any) such that H , the subgraph (of G) induced by these
four vertices, is equal (in G ± e) to one of the graphs: 2K2, P4 and C4 .

Theorem 3.1. Let G be an NSG, and let e = pq be its edge. Then G − e is an
NSG if and only if (a) p ∈Ui , q ∈ Vi for some i(1 ≤ i ≤ h), or (b) p, q ∈ Vh
provided |Uh | = 1.

Proof. Firstly, we have that either p ∈ Ui , q ∈ Vj (with i ≥ j ), or p ∈ Vi ,
q ∈ Vj . We now assume that p ∈Ui , q ∈ Vj , where i > j . Take then that s ∈ Vi ,
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t ∈Uj . If so, H − e = P4, and G − e is not an NSG. Assume next that p ∈ Vi ,
q ∈ Vj . If i 
= j , take that s ∈Ui , t ∈Uj . But then H − e = P4, and G − e is
not an NSG. If i = j < h (or i = j = h and |Uh | > 1), take that s ∈Ui , t ∈Uh

(resp. s, t ∈Uh ). Then H − e = C4 , and G − e is not an NSG.
Consider now the converse. Then we have to prove that P4 and C4 cannot

appear in G − e (this is obvious for 2K2; otherwise, G contains P4). Assume
now to the contrary, i.e. that H − e = P4 or C4 .

Suppose first that (a) holds. Let s be a vertex adjacent (in H ) to p and q
(such a vertex must exist, if H − e is as taken above). Then s ∈ Vk for some
k ≤ i . Since t is non-adjacent (in H ) to s , t ∈Ul for some l < k. But then t
is an isolated vertex of H , a contradiction. Suppose next that (b) holds. Then
we can take the single vertex from Uh and, say p, from Vh and exchange their
positionswithin these sets. If this is done, then this case is reduced to the former
one. Thus, none of the forbidden subgraphs appears in G − e. This completes
the proof. �
Remark. From the above proof, we see that (b) is a special case of (a) that
appears if Uh = {p}; call it (b’). Further, it is noteworthy that Mh and Nh do
not change if (a) but not (b’) holds; if (b) or (b’) holds then Mh is increased by
one, while Nh is decreased by one.

Remark. In Fig. 3 we show how some details in the CETs are changed in
a more general case, namely if more than one edge is deleted. Extending the
case (a) of Theorem 3.1, we delete kl edges which join k vertices from Ui to l
vertices in Vi (for some 1 ≤ i ≤ h). Note, if h′ is the height of a new tree, then
it is equal to h + 1 if mi − k and ni − l are non-zero, or to h if either mi − k
or ni − l is equal to zero, or to h − 1 if both mi − k and ni − l are zero (in the
latter two situations the obtained trees are not canonical; see Fig. 3(a) for more
details). The case (b) can be extended as well. If |Uh | = 1, we can delete (in
G) a complete graph Kk from the clique induced by the vertex set Vh . Note, if
h′ is the height of a new tree, then it is equal to h if nh − k+1 is non-zero, or to
h − 1 if nh − k + 1 is zero (in the latter case the obtained tree is not canonical;
see Fig. 3(b) for more details). The procedure to make such trees canonical
will be explained in one of the remarks that follow. Finally, it is also possible
to combine (a) and (b) (with mh = 1) and to delete Knh+1 from the last level to
get a CET of some NSG. More generally, we can also delete all edges from the
h-th level (or, to repeat this in turns).

Theorem 3.2. Let G be an NSG, and let e = pq be its non-edge. Then G + e
is an NSG if and only if (a) p ∈Ui , q ∈ Vi+1 for some i(1 ≤ i ≤ h − 1), or (b)
p ∈Uh−1, q ∈Uh provided |Uh | = 1, or (c) p, q ∈Uh.
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Fig. 3: A change in a CET (if edges are deleted).

Proof. Firstly, we have that either p ∈Ui , q ∈ Vj (with j ≥ i + 1), or p ∈Ui ,
q ∈Uj . We now assume that p ∈Ui , q ∈ Vj , where j > i + 1. Take then that
s ∈ Ui+1 , t ∈ Vi+1. If so, H + e = P4, and G + e is not an NSG. Assume
next that p ∈ Ui , q ∈ Uj . If i, j ≤ h − 1, take that s ∈Uh , t ∈ Vh . But then
H + e = 2K2, and G+ e is not an NSG. If, say i ≤ h−1, j = h and |Uh | > 1,
take that s ∈ Uh , t ∈ Vh . But then H + e = P4, and G + e is not an NSG.
If i ≤ h − 2, j = h and |Uh | = 1, take that s ∈ Uh−1 , t ∈ Vh−1. But then
H + e = P4, and G + e is not an NSG.

Consider now the converse. Then we have to prove that 2K2 and P4 cannot
appear in G + e (this is obvious for C4 ; otherwise, G contains P4). Assume
now to the contrary, i.e. that H + e = 2K2 or P4.

Suppose first that (a) holds. Let s be a vertex non-adjacent (in H ) to p
and q (such a vertex must exit, if H + e is as taken above). Then s ∈ Uk for
some k ≤ i . Since t is adjacent (in H ) to s , t ∈ Vl for some l ≤ k. But



360 S. K. SIMIĆ - E. M. LI MARZI - F. BELARDO

then t is adjacent to all vertices of H , a contradiction. Suppose next that (b)
holds. But then we can take q (from Uh ) and any vertex from Vh , and exchange
their positions within these sets. If this is done, then this case is reduced to the
former one. Finally, suppose that (c) holds. Let again, as above, s be a vertex
non-adjacent (in H ) to p and q . Then s ∈Uk for some k. Since t is adjacent
(in H ) to s , t ∈ Vl for some l ≤ k. But then t is adjacent to all vertices of H ,
a contradiction. Thus, none of the forbidden subgraphs appears in G + e. This
completes the proof. �

Remark. From the proof, we see that (b), as in Theorem 3.1, is a special case
of (a) that appears if Uh = {p}; call it again (b’). Further, it is noteworthy that
Mh and Nh do not change if (a) but not (b’) holds; if (b) or (b’) holds then Mh

is increased by one, while Nh is decreased by one. Finally, if (c) holds, then Mh

is decreased by one, while Nh is increased by one.

Remark. In Fig. 4 we show how some details in the CETs are changed in a
more general case, namely if more than one edge is added. Extending the case
(a) of Theorem 3.2, we add kl edges which join k vertices from Ui to l vertices
in Vi+1 (for some 1 ≤ i ≤ h − 1) Note, if h′ is the height of a new tree,
then it is equal to h + 1 if mi − k and ni+1 − l are non-zero, or to h if either
mi − k or ni+1 − l is equal to zero, or to h − 1 if both mi − k and ni+1 − l are
zero (in the latter two situations the obtained trees are not canonical; see Fig.
4(a,b) for more details). Note, the case (b) can be extended as well, but it can
be considered as a special case of (a) (with q ∈ Vh and l = 1). We will now
consider (c). It can be extended by adding edges between vertices of Uh so that
they induce an arbitrary NSG. If, in particular, they induce Kk , we then get the
easiest situation. If so, and if h′ is the height of a new tree, then it is equal to
h + 1 if mh − k is non-zero, or to h if mi − k is equal to zero (in the latter
situation the obtained tree is not canonical; see Fig. 4(c) for more details). The
procedure to make such trees canonical is explained in the next remark.

Remark. It is worth mentioning how some CETs are changed if some vertices
(other than a root), after deletion or addition of edges, get the zero weights. We
will then consider the following cases:

(a) u is a white internal vertex: Now the subtree with u as a root is moved up
by one level. Then u is identified with its father, while the brother of u and
the (black) son of u are identified.

(b) v is a black vertex not on the last level: Now consider u the white brother
of v. Then the same applies as in (a).
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Fig. 4: A change in a CET (if edges are added).

(c) u is a white leaf: Consider now v, the brother of u. If w(v) = 1 then v is
identified with a father of u (or v); if w(v) > 1, then we put w(u) = 1,
while w(v) is decreased by one (in respect to the previous value).

(d) v is a black leaf on the last level: Consider now u, the brother of v. Now
v deleted, while u is identified with its father.

Note also, that the weight of the vertex obtained by the identification of two
vertices is the sum of their weights.

Let G be an NSG. We finally consider the situation when some edges
are deleted (from G), while some other ones added (to G). Let E∗ be the
edges being deleted, while F∗ the edges being added. Then G becomes
G∗ = G − E∗ + F∗ . If |E∗| = |F∗|, as we will assume, then, in fact, G∗ is
obtained from G by a relocation of some edges. In further we will assume that
the edge sets E∗ and F∗ are disjoint (have no common vertices). According
to the above remarks we will assume that they induce in G or in G∗ either
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a complete graph, or a complete bipartite graph. Under these conditions the
structures of TG and TG∗ are related in accordance of Fig. 3 and 4. In fact, TG is
changed to TG−E ∗ (see Fig. 3), and then TG−E ∗ is changed to TG−E ∗+F ∗(= TG∗)
(see Fig. 4). We also note here that in this case the heights of TG and TG∗ can
differ at most by two.

Remark. A natural question now arises: Are there any other (more general)
means for transforming an NSG to any other NSG? For example, for NSGs
of height two and fixed bi-partition (i.e. (M2, N2)) the number of edges is of
the form

(N2
2

) + M2N2 − m1n2. So, it is easy to see that each factorization of
c(= m1n2) can give rise to a new NSG. The (open) question is whether such
relocations can be deduced from the ones mentioned above.

4. Concluding Remarks.

Here we will give some general remarks. The problem of identifying
graphs from H(ν, ε) with maximal index is still open (according to some
sources, it is open for more than 40 years). It can be viewed as a problem of
combinatorial optimization, where we are searching (in a discrete set) an object
being extremal in some sense. For this reason an interactionwith computers will
be very important. The obtained results can be viewed as tools for examining the
search space in a more efficient way. Namely, instead of examining the complete
space H(ν, ε), we will restrict us to its subset of NSGs, and moreover, we have
a mechanism to jump from any NSG to its “neighbours”. So far, we have not
got a result which states that the complete space of NSGs can be traversed by
doing step by step certain types of local modifications. Note, such a situation
appears with graphs with fixed degree sequences; then, each one can be obtained
from any other by a sequence of local switchings - see, for example, [12], p.
45. By the way, it can be interesting to mention that each NSG is uniquely
determined by its degree sequence, as can be easily deduced either from the
form of its adjacency matrix (stepwise form) or from the minimal forbidden
subgraphs (which do not allow any local switching).

We will now mention some experimental results. By a computer search
(conducted by A. Obuljen) it was noticed that for small values of ν and fixed κ

maximal graphs are of the type B(ν, κ), while for large values of ν there exists a
function (defining the transition value, say g) so that maximal graphs for ν ≤ g
are of type B(ν, κ), while for ν ≥ g of type S(ν, κ). In a particular case, for
κ = (d−1

2

) − 1 and d ∈ {5, . . . , ν − 1}, this fact was proved by F.K. Bell (see,
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[1]); the corresponding function reads:

g(d) = 1

2
d(d + 5)+ 7+ 32

d − 4
+ 16

(d − 4)2
.

In addition, it was also noticed for ν big enough that the indices of the above
two types of graphs are (surprisingly) very close to each other.

Finally, we mention two conjectures:

(i) h ≤ 3 for any maximal graph;
(ii) if ε ≤ (

ν−1
2

) + 1 then n1 = 1.

Remark. So far we have shown that that 2K2, P4 and C4 are minimal forbid-
den (induced) subgraphs for graphs with maximal index belonging to H(ν, ε).
A sensible question is to ask: are there any other such graphs? For ex-
ample, if conjecture (i) from above is true then the graph with parameters
(1, 1, 1, 1; 1, 1, 1, 1), or

(((((K2 ∪ K1)∇K1) ∪ K1)∇K1) ∪ K1)∇K1
is one such graph.

The research on this topic is in progress. In our next paper, we will consider
the bounds on the index of the NSGs.

5. Appendix.

Here we show, as announced in Section 2, the (canonical) CETs for the
graphs P(ε), B(ν, κ) and S(ν, κ) introduced in Section 1 (see Figs. 5–7).

Note, all these representations are canonical ones.
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Fig. 5: Representation of P(ε) (ε = (
ν−1
2

) + r; 1 ≤ r ≤ ν − 1).
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Fig. 6: Representation of B(ν, κ) (κ + 1 = (d−1
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) + r; 0 ≤ r ≤ d − 2).
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