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EXTENSIONS OF RINGS OVER 2-PRIMAL RINGS

E. HASHEMI - KH. KHALILNEZHAD - A. ALHEVAZ

For a set of endomorphisms Σ := {σ1, . . . ,σn} and derivations ∆ :=
{δ1, . . . ,δn}, we first introduce Σ-compatible ideals which are a general-
ization of Σ-rigid ideals and study the connections of the prime radical
and the upper nil radical of R with the prime radical and the upper nil
radical of the skew PBW extension. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijec-
tive skew PBW extension of an (Σ,∆)-compatible ring R. (i) It is shown
that if R is a (semi)prime ring, then A is a (semi)prime ring. (ii) If R is
a completely (semi)prime ring, then A is a completely (semi)prime ring.
(iii) If R is a strongly (semi)prime ring, then A is a strongly (semi)prime
ring. Also, we prove that R is 2-primal if and only if the skew PBW ex-
tension A is 2-primal if and only if nil(R) = nil∗(R;Σ∪∆) if and only
if nil(R)〈x1, . . . ,xn;Σ,∆〉 = nil∗(A) if and only if every minimal (Σ,∆)-
prime ideal of R is completely prime.

1. Introduction

Let R denote an associative ring with identity. We use nil∗(R), nil∗(R) and
nil(R), to denote the lower nil radical (i.e., the intersection of all prime ideals),
the upper nil radical (i.e. the sum of all nil ideals) and the set of all nilpotent
elements of R, respectively.
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A ring R is called 2-primal if nil∗(R) = nil(R) (see [4]). Every reduced
ring is obviously 2-primal. Moreover, 2-primal rings have been extended to the
class of rings which satisfy nil∗(R) = nil(R), but the converse does not hold
[5, Example 3.3]. Observe that R is a 2-primal ring if and only if nil∗(R) =
nil∗(R) = nil(R), if and only if nil∗(R) is a completely semiprime ideal (i.e.,
a2 ∈ nil∗(R) implies that a ∈ nil∗(R) for a ∈ R) of R. We refer to [4, 5, 11, 12,
14, 30, 31] for more details on 2-primal rings. Recall that a ring R is called
strongly prime if R is prime with no nonzero nil ideals. An ideal P of R is
strongly prime if R/P is a strongly prime ring. All (strongly) prime ideals are
taken to be proper. We say an ideal P of a ring R is minimal (strongly) prime if
P is minimal among (strongly) prime ideals of R. Note that (see [29])

nil∗(R) = ∩{P | P is a minimal strongly prime ideal of R}.

Recall that an ideal P of R is completely prime if ab ∈ P implies a ∈ P or b ∈ P
for a,b ∈ R. Every completely prime ideal of R is strongly prime and every
strongly prime ideal is prime.

Let σ be an endomorphism of R and δ a σ -derivation of R (so δ is an
additive map satisfying δ (ab) = δ (a)b + σ(a)δ (b)). The general (left) Ore
extension R[x;σ ,δ ] is the ring of polynomials over R in the variable x, with
coefficients written on the left of x and with termwise addition, subject to the
skew-multiplication rule xr = σ(r)x+ δ (r) for r ∈ R. If σ is an injective en-
domorphism of R, then we say R[x;σ ,δ ] is an Ore extension of injective type.
If σ is an identity map on R or δ = 0, then we denote R[x;σ ,δ ] by R[x;δ ] and
R[x;σ ], respectively.

An endomorphism σ of R is called a rigid endomorphism if aσ(a) = 0 im-
plies a = 0 for a ∈ R. A ring R is said to be σ -rigid if there exists a rigid
endomorphism σ of R (for more details see [15]). According to Hong et al.
[13], an σ -ideal I is called a σ -rigid ideal if aσ(a) ∈ I implies a ∈ I for a ∈ R.
Hong et al. in [13] studied some connections between the σ -rigid ideals of R
and the related ideals of Ore extensions. They also studied the relationship
of nil∗(R) (resp., nil∗(R)) and nil∗(R[x;σ ,δ ]) (resp., nil∗(R[x;σ ,δ ])), where
nil∗(R) (resp., nil∗(R)) is a σ -rigid ideal of R. They proved that if nil∗(R) (resp.,
nil∗(R)) is a σ -rigid δ -ideal of R, then nil∗(R[x;σ ,δ ])⊆ nil∗(R)[x;σ ,δ ] (resp.,
nil∗(R[x;σ ,δ ])⊆ nil∗(R)[x;σ ,δ ]).

Following [10], we say that R is σ -compatible if for each a,b ∈ R, ab = 0
if and only if aσ(b) = 0. Note that if R is σ -compatible, then σ is injective.
Moreover, R is said to be δ -compatible if for each a,b ∈ R, ab = 0 implies that
aδ (b) = 0. If R is both σ -compatible and δ -compatible, we say that R is (σ ,δ )-
compatible. Note that (σ ,δ )-compatible rings are a generalization of σ -rigid
ring to the more general case where R is not assumed to be reduced. According
to [8], an ideal I of R is called a σ -compatible ideal of R if for each a,b∈R, ab∈
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I if and only if aσ(b) ∈ I. Moreover, I is called a δ -compatible ideal if for each
a,b ∈ R, ab ∈ I implies aδ (b) ∈ I. If I is both σ -compatible and δ -compatible,
we say that I is an (σ ,δ )-compatible ideal. In [8], the connections between
nil∗(R) (resp., nil∗(R)) and that of nil∗(R[x;σ ,δ ]) (resp., nil∗(R[x;σ ,δ ])) are
studied, where nil∗(R) (resp., nil∗(R)) is an (σ ,δ )-compatible ideal of R.

In [21], the author continued the study of the radicals of Ore extensions
in case R is (σ ,δ )-compatible. He proved that if R is (σ ,δ )-compatible, then
R[x;σ ,δ ] is 2-primal if and only if R is 2-primal if and only if nil∗(R,σ ,δ ) =
nil(R) if and only if nil(R)[x;σ ,δ ] = nil∗(R[x;σ ,δ ]).

Other ring-theoretic extensions of a ring R are the Poincaré-Birkhoff-Witt
(PBW for short) which were defined by Bell and Goodearl [3]. The skew
Poincaré-Birkhoff-Witt (skew PBW for short) extensions introduced by Gallego
and Lezema [6] are a generalization of PBW extensions, which are more general
than Ore extensions of injective type. These extensions include several algebras
which can not be expressed as Ore extensions (universal enveloping algebras of
finite Lie algebras, diffusion algebras, etc.). More exactly, it has been shown
that skew PBW extensions contain various well-known groups of algebras such
as some types of Auslander-Gorenstein rings, some skew Calabi-Yau algebras,
quantum polynomials, some quantum universal enveloping algebras, etc. (see
[6, 22]).

In this paper, for a set of endomorphisms Σ := {σ1, . . . ,σn} and derivations
∆ := {δ1, . . . ,δn}, we first introduce Σ-compatible ideals which are a general-
ization of Σ-rigid ideals and study the connections of the prime radical and the
upper nil radical of R with the prime radical and the upper nil radical of the skew
PBW extension. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension
of an (Σ,∆)-compatible ring R. (i) It is shown that if R is a (semi)prime ring,
then A is a (semi)prime ring. (ii) If R is a completely (semi)prime ring, then A
is a completely (semi)prime ring. (iii) If R is a strongly (semi)prime ring, then
A is a strongly (semi)prime ring. Also, we prove that R is 2-primal if and only
if the skew PBW extension A is 2-primal if and only if nil(R) = nil∗(R;Σ∪∆) if
and only if nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A) if and only if every minimal (Σ,∆)-
prime ideal of R is completely prime.

2. Definitions and basic properties of skew PBW extensions

We start by recalling the definition of (skew) PBW extensions and present some
essential properties of these rings.

Let R and A be rings. According to Bell and Goodearl [3], we say that A is a
Poincaré-Birkhoff-Witt extension (also called a PBW extension) of R, denoted
by A := R〈x1, . . . ,xn〉, if the following conditions hold:
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1. R⊆ A;

2. There exist elements x1, . . . ,xn ∈ A such that A is a left free R-module,
with basis the basic elements Mon(A) := {xα = xα1

1 · · ·xαn
n | α = (α1, . . . ,

αn) ∈ Nn
0};

3. xir− rxi ∈ R for each r ∈ R and 1≤ i≤ n;

4. xix j− x jxi ∈ R+Rx1 + · · ·+Rxn, for any 1≤ i, j ≤ n.

Definition 2.1. [6, Definition 1] Let R and A be rings. We say that A is a skew
PBW extension of R (also called a σ -PBW extension) if the following conditions
hold:

1. R⊆ A;

2. There exist elements x1, . . . ,xn ∈ A such that A is a left free R-module,
with basis the basic elements Mon(A) := {xα = xα1

1 · · ·xαn
n | α = (α1, . . . ,

αn) ∈ Nn
0};

3. For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element ci,r ∈
R\{0} such that xir− ci,rxi ∈ R;

4. For each 1 ≤ i, j ≤ n there exists ci, j ∈ R \{0} such that x jxi− ci, jxix j ∈
R+Rx1 + · · ·+Rxn.

Under these conditions we will write A := σ(R)〈x1, . . . ,xn〉.

Proposition 2.2. [6, Proposition 3] Let A = σ(R)〈x1, . . . ,xn〉 be a skew PBW
extension of R. For each 1 ≤ i ≤ n, there exists an injective endomorphism
σi : R→ R and a σi-derivation δi : R→ R such that xir = σi(r)xi + δi(r), for
each r ∈ R.

Let A be a skew PBW extension of a ring R. By using Proposition 2.2, we
denote A by R〈x1, . . . ,xn;Σ,∆〉. We recall the following definition (cf. [6]).

Definition 2.3. Let A = R〈x1, . . . ,xn;Σ,∆〉 be the skew PBW extension of a ring
R.

1. A is called quasi-commutative if the conditions (3) and (4) in Definition
2.1 are replaced by (3′): for each 1≤ i≤ n and all r ∈ R\{0} there exists
ci,r ∈ R \ {0} such that xir = ci,rxi; (4′): for any 1 ≤ i, j ≤ n there exists
ci, j ∈ R\{0} such that x jxi = ci, jxix j

2. A is called bijective if σi is bijective for each 1≤ i≤ n, and ci, j is invertible
for any 1≤ i < j ≤ n.
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Clearly any PBW extension is a skew PBW extension. Many important class
of rings and algebras are skew PBW extensions, for example:

Example 2.4. 1. Any skew polynomial ring R[x;σ ,δ ], with σ injective, is
a skew PBW extension; in this case, we have R[x;σ ,δ ] ∼= σ(R)〈x〉. If
additionally δ = 0, then R[x;σ ] is quasi-commutative. Any iterated skew
polynomial ring R[x1;σ1,δ1] · · · [xn;σn,δn] is a skew-PBW extension if it
satisfies the following conditions:

• for 1≤ i≤ n, σi is injective;

• for every r ∈ R and 1≤ i≤ n, σi(r),δi(r) ∈ R;

• for i < j, σ j(xi) = cxi +d, with c,d ∈ R and c has a left inverse;

• for i < j, δ j(xi) ∈ R+Rx1 + · · ·+Rxn.
then, R[x1;σ1,δ1] · · ·R[xn;σn,δn] is a skew PBW extension. Under these
assumptions, we have

R[x1;σ1,δ1] · · ·R[xn;σn,δn]∼= σ(R)〈x1, . . . ,xn〉 .

In particular, any Ore extension R[x1;σ1,δ1] · · · [xn;σn,δn] is a skew PBW
extension, when for 1≤ i≤ n, σi is injective. Note that in Ore extensions
for every r∈R and 1≤ i≤ n, σi(r),δi(r)∈R, and for i< j, σ j(xi)= xi and
σ j(xi) = 0. An important subclass of Ore extension are the Ore algebras,
i.e., R = k[t1, . . . , tm]andm≥ 1. Thus, we have

k[t1, . . . , tm][x1;σ1,δ1] · · · [xn;σn,δn]∼= σ(k[t1, . . . , tm])〈x1, . . . ,xn〉 .

2. Let k be a ring and q ∈ k a central unit. Then the quantum n-space
is the ring Oq(kn), generated by k together with n additional elements
x1, . . . ,xn which commute with all elements of k, and such that xix j =
qx jxi for all i < j . Clearly Oq(k2) = k[y][x;σ ], where k[y] is a poly-
nomial ring and σ is the monomorphism of k[y] such that σ = 1 on
k and σ(y) = qy; we have also Oq(kn) = k[x1][x2;σ2][x3;σ3] . . . [xn;σn],
where k[x1] is an ordinary polynomial ring and σi is a monomorphism of
k[x1][x2;σ2][x3;σ3] . . . [xi−1;σi−1], for 2 6 i 6 n.

3. Let k be a ring and q ∈ k a central unit. Then the nth quantized Weyl alge-
bra over k is the ring An(k,q) generated by k together with 2n additional
elements x1, . . . ,xn,y1, . . . ,yn which commute with all elements of k, and
such that xiyi−qyixi = 1 for 1≤ i≤ n, and xix j = x jxi, yiy j = y jyi, xiy j =
y jxi for all i, j, i 6= j. Clearly A1(k,q) = k[y1][x1;σ ,δ ], where k[y1] is a
polynomial ring and σ is the monomorphism of k[y1] such that σ = 1 on k
and σ(y1) = qy1, and δ is the q-difference operator [7, page 371]. The nth
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quantized Weyl algebra, An(k,q) over k, can also be viewed as an iterated
skew polynomial ring.

4. Quantum plane Oq(k2). Let q ∈ k∗. The quantized coordinate ring of k2

is a k-algebra, denoted by Oq(k2), presented by two generators x,y and
the relation xy = qyx. We have Oq(k2)∼= σ(k)〈x,y〉.

5. The algebra of q-differential operators Dq,h[x,y]. Let q,h ∈ k,q 6= 0;
consider k[y][x;σ ,δ ], where σ(y) := qy and δ (y) := h. By definition of
skew polynomial ring we have xy = σ(y)x+ δ (y) = qyx+ h, and hence
xy−qyx = h. Therefore, Dq,h[x,y]∼= σ(k)〈x,y〉.

6. Algebra of linear partial differential operators. The n-th Weyl algebra
An(k) over k coincides with the k-algebra of linear partial differential
operators with polynomial coefficients k[t1, . . . , tn]. As we have seen, the
generators of An(k) satisfy the following relations:

tit j = t jti, ∂i∂ j = ∂ j∂i, 1≤ i < j ≤ n,

∂ jti = ti∂ j +δi j, 1≤ i, j ≤ n,

where δi j is the Kronecker symbol. Therefore σ(k)〈t1, . . . , tn;∂1, . . . ,∂n〉.

A detailed list of examples of skew PBW extensions is presented in [17, 18,
22, 23, 25, 26].

Now, we give some examples of skew PBW extensions which can not be
expressed as Ore extensions (a more complete list can be found in [17, 22]).

Example 2.5.

1. Let k be a commutative ring and g a finite dimensional Lie algebra over
k with basis {x1, . . . ,xn}; the universal enveloping algebra of g, denoted
by U(g), is a PBW extension of k (see [17]). In this case, xir−rxi = 0 and
xix j−x jxi = [xi,x j]∈ g= k+kx1+ · · ·+kxn, for any r ∈ k and 1≤ i, j≤ n.

2. Let k,g,{x1, . . . ,xn} and U(g) be as in the previous example; let R be a
k-algebra containing k. The tensor product A := R⊗k U(g) is a PBW
extension of R, and it is a particular case of a more general construction,
the crossed product R∗U(g) of R by U(g), that is also a PBW extension
of R (see [20]).

3. The twisted or smash product differential operator ring k#σU(g), where
g is a finite-dimensional Lie algebra acting on k by derivations, and σ is
Lie 2-cocycle with values in k.
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Definition 2.6. [6, Definition 6] Let A be a skew PBW extension of R with
endomorphisms σi, 1≤ i≤ n and σi-derivations δi as in Proposition 2.2.

1. For α = (α1, . . . ,αn) ∈ Nn
0,σ

α := σ
α1
1 . . .σαn

n ,δ α := δ
α1
1 . . .δ αn

n , |α| :=
α1 + · · ·+αn. If β = (β1, . . . ,βn) ∈ Nn

0; then α +β := (α1 +β1, . . . ,αn +
βn).

2. For X = xα ∈Mon(A),exp(X) := α and deg(X) := |α|. The symbol �
will denote a total order defined on Mon(A) (a total order on Nn

0). For an
element xα ∈Mon(A),exp(xα) := α ∈ Nn

0. If xα � xβ but xα 6= xβ , we
write xα � xβ .
Every element f ∈ A can be expressed uniquely as f = a0 +a1X1 + · · ·+
amXm, with ai ∈ R\{0}, and Xm � ·· · � X1. With this notation, we define
lm( f ) := Xm, the leading monomial of f ; lc( f ) := am, the leading coef-
ficient of f ; lt( f ) := amXm, the leading term of f ; exp( f ) := exp(Xm),
the order of f ; and E( f ) := {exp(Xi) | 1 ≤ i ≤ t}. Note that deg( f ) :=
max{deg(Xi)}t

i=1. Finally, if f = 0, then lm(0) := 0, lc(0) := 0, lt(0) := 0.
We also consider X � 0 for any X ∈Mon(A).

Remark 2.7. [6, Remark 2]

1. Since that Mon(A) is a R-basis for A, the elements ci,r and ci, j in the
Definition 2.1 are unique.

2. If r = 0, then ci,0 = 0. Moreover, in Definition 2.1(4), ci,i = 1.

3. Let i < j, there exist c j,i,ci, j ∈ R such that xix j−c j,ix jxi ∈ R+Rx1+ · · ·+
Rxn and x jxi−ci, jxix j ∈R+Rx1+ · · ·+Rxn, but since Mon(A) is a R-basis
then 1 = c j,ici, j, i.e., for every 1≤ i < j ≤ n, ci, j has a left inverse and c j,i

has a right inverse.

4. Each element f ∈ A−{0} has a unique representation in the form f =
c1X1 + · · ·+ ctXt , with ci ∈ R−{0} and Xi ∈Mon(A), 1≤ i≤ t.

Skew PBW extensions can be characterized in the following way.

Theorem 2.8. [6, Theorem 7] Let A be a polynomial ring over R with respect
to {x1, . . . ,xn}. Then A is a skew PBW extension of R if and only if the following
conditions are satisfied:

1. For each xα ∈Mon(A) and every 0 6= r ∈ R, there exist unique elements
rα :=σα(r)∈R\{0}, pα,r ∈A, such that xαr = rαxα + pα,r, where pα,r =
0 or deg(pα,r)< |α| if pα,r 6= 0. If r is left invertible, so is rα .
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2. For each xα ,xβ ∈Mon(A) there exist unique elements cα,β ∈R and pα,β ∈
A such that xαxβ = cα,β xα+β + pα,β , where cα,β is left invertible, pα,β = 0
or deg(pα,β )< |α +β | if pα,β 6= 0.

We remember also the following facts [6, Remark 8].

Remark 2.9.

1. A left inverse of cα,β will be denoted by c
′

α,β . We observe that if α = 0

or β = 0, then cα,β = 1 and hence c
′

α,β = 1.

2. We observe if A is a skew PBW extension quasi-commutative, then from
Theorem 2.8, we conclude that pα,r = 0

and pα,β = 0, for every 0 6= r ∈ R and every α,β ∈ Nn
0.

3. From Theorem 2.8, we get also that if A is a bijective skew PBW exten-
sion, then cα,β is invertible for any α,β ∈ Nn

0.

In the next proposition, we will look more closely at the form of the poly-
nomials pα,r and pα,β which appear in Theorem 2.8.

Remark 2.10. [24, Remark 2.10 ]

1. Let xn be a variable and αn an element of N0. Then we have

xαn
n r = σ

αn
n (r)xαn

n +
αn

∑
j=1

xαn− j
n δn(σ

j−1
n (r))x j−1

n , σ
0
n := idR (1)

and so

xαn
n r = σ

αn
n (r)xαn

n + xαn−1
n δn(r)+ xαn−2

n δn(σn(r))xn + xαn−3
n δn(σ

2
n (r))x

2
n

+ · · ·+ xnδn(σ
αn−2
n (r))xαn−2

n +δn(σ
αn−1
n (r))xαn−1

n , σ
0
n := idR.

Note that

pαn,r =xαn−1
n δn(r)+ xαn−2

n δn(σn(r))xn + xαn−3
n δn(σ

2
n (r))x

2
n

+ · · ·+ xnδn(σ
αn−2
n (r))xαn−2

n +δn(σ
αn−1
n (r))xαn−1

n ,

where pαn,r = 0 or deg(pαn,r) < |αn| if pαn,r 6= 0. It is clear that
exp(pαn,r) ≺ αn. Again, using (2.1) in every term of the product xαn

n r
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above, we obtain

xαn
n r = σ

αn
n (r)xαn

n +σ
αn−1
n (δn(r))xαn−1

n +
αn−1

∑
j=1

xαn−1− j
n δn(σ

j−1
n (δn(r)))x j−1

n

+

[
σ

αn−2
n (δn(σn(r)))xαn−2

n +
αn−2

∑
j=1

xαn−2− j
n δn(σ

j−1
n (δn(σn(r))))x j−1

n

]
xn

+

[
σ

αn−3
n (δn(σ

2
n (r)))x

αn−3
n +

αn−3

∑
j=1

xαn−3− j
n δn(σ

j−1
n (δn(σ

2
n (r))))x

j−1
n

]
x2

n

+ · · ·+
[
σn(δn(σ

αn−2
n (r)))xn +δn(δn(σ

αn−2
n (r)))

]
xαn−2

n

+δn(σ
αn−1
n (r))xαn−1

n ,

which shows that

lc(pαn,r) = ∑
αn
p=1 σ

αn−p
n (δn(σ

p−1
n (r))).

In this way, we can see that lc(pαn,r) involves elements obtained evaluat-
ing σn and δn in the element r of R.

2. Let α = (α1, . . . ,αn) ∈ Nn
0,r ∈ R and xα = xα1

1 · · ·xαn
n . Then

xα1
1 xα2

2 · · ·x
αn−1
n−1 xαn

n r =σ
α1
1 (· · ·(σαn

n (r)))xα1
1 xα2

2 · · ·x
αn
n

+ p
α1,σ

α2
2 (···(σαn

n (r)))x
α2
2 · · ·x

αn
n

+ xα1
1 p

α2,σ
α3
3 (···(σαn

n (r)))x
α3
3 · · ·x

αn
n

+ xα1
1 xα2

2 p
α3,σ

α4
4 (···(σαn

n (r)))x
α4
4 · · ·x

αn
n

+ · · ·+ xα1
1 xα2

2 · · ·x
αn−2
n−2 pαn−1,σ

αn
n (r)x

αn
n

+ xα1
1 · · ·x

αn−1
n−1 pαn,r.

Considering the leading coefficients of xα1
1 xα2

2 · · ·xαn
n r we can write this
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term as

= σ
α1
1 (· · ·(σαn

n (r)))xα1
1 · · ·x

αn
n

+

[
α1

∑
p=1

σ
α1−p
1 (δ1(σ

p−1
1 (σα2

2 (σα3
3 (· · ·(σαn

n (r)))))))

]
x

deg(p
α1,σ

α2
2 (···(σαn

n (r)))
)

1

xα2
2 · · ·x

αn
n

+

[
α2

∑
p=1

σ
α1
1 (σα2−p

2 (δ2(σ
p−1
2 (σα3

3 (· · ·(σαn
n (r)))))))

]
xα1

1 x
deg(p

α2 ,σ
α3
3 (···(σαn

n (r)))
)

2

xα3
3 · · ·x

αn
n

+

[
α3

∑
p=1

σ
α1
1 (σα2

2 (σα3−p
3 (δ3(σ

p−1
3 (σα4

4 (· · ·(σαn
n (r))))))))

]
xα1

1 xα2
2

x
deg(p

α3 ,σ
α4
4 (···(σαn

n (r)))
)

3 xα4
4 · · ·x

αn
n + · · ·

+

[
αn−1

∑
p=1

σ
α1
1 (· · ·(σαn−2

n−2 (σ
αn−1−p
n−1 (δn−1(σ

p−1
n−1 (σ

αn
n (r)))))))

]
xα1

1 · · ·x
αn−2
n−2

x
deg(p

αn−1 ,σ
αn
n (r))

n−1 xαn
n

+

[
αn

∑
p=1

σ
α1
1 (· · ·(σαn−1

n−1 (σ
αn−p
n (δn(σ

p−1
n (r)))))))

]
xα1

1 · · ·x
αn−1
n−1 xdeg(pαn ,r)

n

+other terms of degree less than deg(p
α1,σ

α2
2 (···(σαn

n (r))))

+α2 + · · ·+αn

+other terms of degree less than α1 +deg(p
α2,σ

α3
3 (···(σαn

n (r))))

+α3 + · · ·+αn

+other terms of degree less than α1 +α2 +deg(p
α3,σ

α4
4 (···(σαn

n (r))))

+α4 + · · ·+αn

...

+other terms of degree less than α1 + · · ·+αn−2 +deg(pαn−1,σ
αn
n (r))

+αn

+other terms of degree less than α1 + · · ·+αn−1 +deg(pαn,r).

Therefore we can see that the polynomials p
α1,σ

α2
2 (···(σαn

n (r))),
p

α2,σ
α3
3 (···(σαn

n (r))), p
α3,σ

α4
4 (···(σαn

n (r))), . . . , pαn−1,σ
αn
n (r), and pαn,r in the ex-

pression above for the term xα1
1 xα2

2 · · ·x
αn−1
n−1 xαn

n r, involve elements obtained
evaluating σ ’s and δ ’s in the element r of R.
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3. Let Xi := xαi1
1 · · ·xαin

n , Yj := xβ j1
1 · · ·x

β jn
n and ai,b j ∈ R. Then

aiXib jYj =aiσ
αi(b j)xαixβ j +ai pαi1,σ

αi2
i2 (···(σαin

in (b j)))
xαi2

2 · · ·x
αin
n xβ j

+aix
αi1
1 p

αi2,σ
αi3
3 (···(σαin

in (b j)))
xαi3

3 · · ·x
αin
n xβ j

+aix
αi1
1 xαi2

2 p
αi3,σ

αi4
i4 (···(σαin

in (b j)))
xαi4

4 · · ·x
αin
n xβ j

+ · · ·+aix
αi1
1 xαi2

2 · · ·x
αi(n−2)

i(n−2)p
αi(n−1),σ

αin
in (b j)

xαin
n xβ j

+aix
αi1
1 · · ·x

αi(n−1)

i(n−1)pαin,b j x
β j

As we saw above, the polynomials p
α1,σ

α2
2 (···(σαn

n (r))), p
α2,σ

α3
3 (···(σαn

n (r))),
p

α3,σ
α4
4 (···(σαn

n (r))), . . . , pαn−1,σ
αn
n (r), and pαn,r, involve elements of R ob-

tained evaluating σ j and δ j in the element r of R. So, when we compute
every summand of aiXib jYj we obtain products of the coefficient ai with
several evaluations of b j in σ ’s and δ ’s depending of the coordinates of
αi.

3. Compatible ideals and radicals of skew PBW extensions

Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of a ring R with
a set of endomorphisms Σ := {σ1, . . . ,σn} and derivations ∆ := {δ1, . . . ,δn}.

According to Reyes [24], Σ is called a rigid endomorphisms family if
aσα(a) = 0 implies a = 0 for each a ∈ R and α ∈ Nn

0, where σα is as men-
tioned in the Definition 2.6. A ring R is called Σ-rigid if there exists a rigid
endomorphisms family Σ of R.

In [9] (and independently in [27]), the authors defined Σ-compatible rings,
which are a generalization of Σ-rigid rings. A ring R is called Σ-compatible
if for each a,b ∈ R and α ∈ Nn

0, ab = 0⇔ aσα(b) = 0, moreover, R is said
to be ∆-compatible if for each a,b ∈ R and α ∈ Nn

0, ab = 0⇒ aδ α(b) = 0,
where σα and δ α are as mentioned in Definition 2.6. If R is both Σ-compatible
and ∆-compatible, we say that R is (Σ,∆)-compatible. In this case, clearly the
endomorphism σi is injective for every 1 ≤ i ≤ n. In [9, Lemma 3.3 ], the
authors showed that R is Σ-rigid if and only if R is Σ-compatible and reduced.
Thus Σ-compatible rings are a generalization of Σ-rigid rings to the more general
case where R is not assumed to be reduced.

In this section, motivated by the above facts, for a set of endomorphisms
Σ := {σ1, . . . ,σn} of a ring R, we first define Σ-compatible ideals in R which
are a generalization of Σ-rigid ideals and investigate the relationship of nil∗(R)
and nil∗(R) with the prime radical and the upper nil radical of the skew PBW
extension of R, respectively. Then, we prove our main result by providing a
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necessary and sufficient condition that a skew PBW extension is (semi)prime,
completely (semi)prime and strongly (semi)prime. For some other related re-
sults, we refer the reader to consult [1].

Definition 3.1. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of a ring
R, where ∆ := {δ1, . . . ,δn} and Σ := {σ1, . . . ,σn}.

1. We say that an ideal I of R is Σ-ideal if σα(I)⊆ I; I is ∆-ideal if δ α(I)⊆ I;
I is Σ-invariant if σ−α(I) = I for each α ∈ Nn

0, where σα and δ α is as
mentioned in the Definition 2.6. If I is both Σ and ∆-ideal, we say that I
is (Σ,∆)-ideal.

2. For an Σ-ideal I, we say that I is Σ-rigid if aσα(a) ∈ I implies a ∈ I for
each a ∈ R and α ∈ Nn

0.

3. For an ideal I, we say that I is Σ-compatible if for each a,b ∈ R and
α ∈ Nn

0, ab ∈ I ⇔ aσα(b) ∈ I. Moreover, I is said to be ∆-compatible
ideal if for each a,b∈ R and α ∈Nn

0, ab∈ I⇒ aδ α(b)∈ I, where σα and
δ α are as mentioned in the Definition 2.6. If I is both Σ-compatible and
∆-compatible, then we say that I is (Σ,∆)-compatible.

Clearly, R is a Σ-rigid ring if and only if {0} is Σ-rigid ideal of R. Also, R
is a Σ-compatible (resp., ∆-compatible) ring if and only if {0} is Σ-compatible
(resp., ∆-compatible) ideal of R.

Let I ⊆ R. We denote the set of all elements of A with coefficients in I by
I 〈x1, . . . ,xn〉. If A is a skew PBW extension of a ring R and I is an (Σ,∆)-ideal
of R, then by using Remark 2.10, one can show that I 〈x1, . . . ,xn〉 is an ideal of
A and we denote it by I 〈x1, . . . ,xn;Σ,∆〉.

If I is an (Σ,∆)-ideal of R, then for every 1≤ i≤ n, σi : R/I→ R/I defined
by σi(a+ I) = σi(a) + I is an endomorphism and δi : R/I → R/I defined by
δi(a+ I) = δi(a)+ I is an σi-derivation.

Lemma 3.2. Let I be an Σ-compatible ideal of a ring R. Then I is Σ-invariant.

Proof. It is sufficient to prove that σ
−1
t (I) = I for every 1 ≤ t ≤ n. Let a ∈

σ
−1
t (I). Then σt(a) ∈ I. Since I is Σ-compatible ideal, 1σt(a) ∈ I implies a ∈ I.

Thus I is an Σ-invariant ideal of R.

Proposition 3.3. Let I be an (Σ,∆)-compatible ideal of R and a,b ∈ R. Then we
have the following:

1. If ab ∈ I then aσα(b) ∈ I and σα(a)b ∈ I for each α ∈ Nn
0.

2. If ab ∈ I then σα(a)δ β (b),δ β (a)σα(b) ∈ I for each α,β ∈ Nn
0.
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3. If aσθ (b) ∈ I or σθ (a)b ∈ I for some θ ∈ Nn
0, then ab ∈ I.

Proof. (1) It is sufficient to prove that if ab ∈ I then aσt(b) ∈ I and σt(a)b ∈ I
for every 1≤ t ≤ n. If ab ∈ I, then σt(a)σt(b) ∈ I, since I is an Σ-ideal. Hence
by Σ-compatibility of I, σt(a)b ∈ I for every 1≤ t ≤ n.

(2) It is sufficient to prove that δt(a)σt(b) ∈ I for every 1≤ t ≤ n. If ab ∈ I,
then by (1) and ∆-compatibility of I, σt(a)δt(b) ∈ I for every 1≤ t ≤ n. Hence
δt(a)b = δt(ab)−σt(a)δt(b) ∈ I for every 1≤ t ≤ n. Thus δt(a)b ∈ I for every
1≤ t ≤ n. Since I is an Σ-compatible ideal, δt(a)σt(b) ∈ I for every 1≤ t ≤ n.

(3) It is enough to show that aσt(b) ∈ I or σt(a)b ∈ I for every 1 ≤ t ≤ n,
then ab ∈ I. Let σt(a)b ∈ I for every 1 ≤ t ≤ n. Then by Σ-compatibility of I,
σt(a)σt(b) ∈ I and so σt(ab) ∈ I for every 1 ≤ t ≤ n. Hence ab ∈ I, since I is
Σ-invariant, by Lemma 3.2.

Theorem 3.4. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
R and I an (Σ,∆)-compatible semiprime ideal of R. Assume that f = a0+a1X1+
· · ·+amXm, g = b0 +b1Y1 + · · ·+btYt ∈ A. Then the following are equivalent:

1. f Ag⊆ I 〈x1, . . . ,xn;Σ,∆〉;

2. aiRb j ⊆ I for each i, j.

Proof. (1)⇒ (2). Let f = a0+a1X1+ · · ·+amXm, g = b0+b1Y1+ · · ·+btYt ∈
A, where ai ∈ R, 1≤ i≤ m, am 6= 0, with Xi = xαi = xαi1

1 · · ·xαin
n , Xm � Xm−1 �

·· · � X1, and b j ∈ R, 1≤ j≤ t, bt 6= 0, with Yj = xα j = xα j1
1 · · ·x

α jn
n , Yt �Yt−1 �

·· · � Y1. Assume that f Ag⊆ I 〈x1, . . . ,xn;Σ,∆〉. Then

(a0 +a1X1 + · · ·+amXm)c(b0 +b1Y1 + · · ·+btYt) ∈ I 〈x1, . . . ,xn;Σ,∆〉 (2)

for each c ∈ R, and hence

“other terms of order less than”+amXmcbtYt ∈ I 〈x1, . . . ,xn;Σ,∆〉 .

By Theorem 2.8, we have

amXmcbtYt = am[σ
αm(cbt)xαm + pαm,cbt ]x

βt

= amσ
αm(cbt)xαmxβt +am pαm,cbt x

βt

= amσ
αm(cbt)[cαm,βt x

αm+βt + pαm,βt ]+am pαm,cbt x
βt

= amσ
αm(cbt)cαm,βt x

αm+βt +amσ
αm(cbt)pαm,βt +am pαm,cbt x

βt ,

where pαm,cbt = 0 or deg(pαm,cbt ) < |αm| if pαm,cbt 6= 0 and pαm,βt = 0 or
deg(pαm,βt ) < |αm +βt | if pαm,βt 6= 0. Since A is bijective so by using Remark
2.9, from the equality lc( f Ag)= amσαm(cbt)cαm,βt ∈ I we obtain amσαm(cbt)∈ I
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and hence amcbt ∈ I, since I is an (Σ,∆)-compatible ideal. Also by Remark
2.10, we can see that the polynomial pαm,cbt involve elements obtained evaluat-
ing σ ’s and δ ’s in the element cbt of R. Thus am pαm,cbt , amσαm(cbt)pαm,βt ∈ I,
by Proposition 3.3. If we replace c by cbt−1dame in Eq. (2), where c,d,e ∈ R,
then we get

(a0 +a1X1 + · · ·+amXm)cbt−1dame(b0 +b1Y1 + · · ·+btYt) ∈ I 〈x1, . . . ,xn;Σ,∆〉 .

Hence by a similar argument as above, we have

amσ
αm(cbt−1damebt−1)cαm,βt−1 ∈ I,

and amσαm(cbt−1damebt−1) ∈ I. Then amcbt−1damebt−1 ∈ I, since I is
Σ-compatible. Thus (RamRbt−1)

2 ⊆ I. Hence (RamRbt−1) ⊆ I, since I is
semiprime. Continuing in this way, we obtain amRbk ⊆ I, for k = 0,1, . . . , t.
Hence by (Σ,∆)-compatibility of I, we get (a0 + a1X1 + · · ·+ amXm)A(b0 +
b1Y1 + · · ·+ btYt) ⊆ I 〈x1, . . . ,xn;Σ,∆〉. Then by using induction on |αm + βt |,
we obtain aiRb j ⊆ I for each i, j.

(2)⇒ (1). It follows from Proposition 3.3.

Corollary 3.5. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
R and I a (semi)prime (Σ,∆)-compatible ideal of R. Then I 〈x1, . . . ,xn;Σ,∆〉 is a
(semi)prime ideal of A.

Proof. Suppose that I is a prime (Σ,∆)-compatible ideal of R. Let f = a0 +
a1X1 + · · · + amXm, g = b0 + b1Y1 + · · · + btYt ∈ A such that f Ag ⊆
I 〈x1, . . . ,xn;Σ,∆〉, where ai ∈ R, 1≤ i≤m, am 6= 0, with Xi = xαi = xαi1

1 · · ·xαin
n ,

Xm� Xm−1� ·· · �X1, and b j ∈ R, 1≤ j≤ t, bt 6= 0, with Yj = xα j = xα j1
1 · · ·x

α jn
n ,

Yt � Yt−1 � ·· · � Y1. Then by Theorem 3.4, we have aiRb j ⊆ I for each i, j.
Now let g 6∈ I 〈x1, . . . ,xn;Σ,∆〉 and hence b j 6∈ I for some j. Since I is prime
we have ai ∈ I for each i = 0,1, . . . ,m. Thus f ∈ I 〈x1, . . . ,xn;Σ,∆〉. Therefore
I 〈x1, . . . ,xn;Σ,∆〉 is a prime ideal of A.

Corollary 3.6. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
an (Σ,∆)-compatible ring R. If R is a (semi)prime ring, then A is a (semi)prime
ring.

Theorem 3.7. If each minimal prime ideal of R is (Σ,∆)-compatible, then
nil∗(R)〈x1, . . . ,xn;Σ,∆〉 is (Σ,∆)-compatible ideal of R and nil∗(A) ⊆
nil∗(R)〈x1, . . . ,xn;Σ,∆〉

Proof. The result follows from Corollary 3.5.
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Theorem 3.8. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
R and P a completely (semi)prime (Σ,∆)-compatible ideal of R. Then
P〈x1, . . . ,xn;Σ,∆〉 is a completely (semi)prime ideal of A.

Proof. Assume that P is a completely prime ideal of R. So R/P is domain and
hence it is a reduced ring. Then R/P is a (Σ,∆)-compatible ring and so R/P is
a Σ-rigid, by [9, Lemma 3.5]. Let f = a0 +a1X1 + · · ·+amXm, g = b0 +b0Y1 +
· · ·+ b0Yt ∈ R/P

〈
x1, . . . ,xn;Σ,∆

〉
such that f g = 0. Then by [24, Proposition

3.6], f = 0 or g = 0, which implies that R/P
〈
x1, . . . ,xn;Σ,∆

〉
is domain. It

is easy to see that the mapping ψ : R〈x1, . . . ,xn;Σ,∆〉 → R/P
〈
x1, . . . ,xn;Σ,∆

〉
defined by ψ( f ) = f is a ring homomorphism. Thus

R〈x1, . . . ,xn;Σ,∆〉/P〈x1, . . . ,xn;Σ,∆〉 ∼= R/P
〈
x1, . . . ,xn;Σ,∆

〉
.

Therefore P〈x1, . . . ,xn;Σ,∆〉 is a completely prime ideal of A.

Corollary 3.9. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
an (Σ,∆)-compatible ring R. If R is a completely (semi)prime ring, then A is a
completely (semi)prime ring.

Proof. It follows from Theorem 3.8.

Corollary 3.10. Let A=R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
R and nil∗(R) an Σ-rigid ∆-ideal of R. Then nil∗(A)⊆ nil∗(R)〈x1, . . . ,xn;Σ,∆〉.

Theorem 3.11. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension of
R and P a strongly (semi)prime (Σ,∆)-compatible ideal of R. Then
P〈x1, . . . ,xn;Σ,∆〉 is a strongly (semi)prime ideal of A.

Proof. Notice that by Corollary 3.5, P〈x1, . . . ,xn;Σ,∆〉 is a prime ideal of A and
hence

R〈x1, . . . ,xn;Σ,∆〉/P〈x1, . . . ,xn;Σ,∆〉 ∼= R/P
〈
x1, . . . ,xn;Σ,∆

〉
is a prime ring. Now, we show that {0} is the only nil ideal of
R/P

〈
x1, . . . ,xn;Σ,∆

〉
. Let I be a nil ideal of R/P

〈
x1, . . . ,xn;Σ,∆

〉
and I0 be

the set of all leading coefficients of elements of I. First we prove that I0 is
an ideal of R/P. Clearly I0 is a left ideal of R/P. Let a ∈ I0 and r ∈ R/P.
Then there exists f = a0 +a1X1 + · · ·+amXm ∈ I with a = am. Hence ( f r)m =
(a0r+a1X1r+ · · ·+amXmr)m = 0

for some non-negative integer m. By Theorem 2.8 and Remark 2.9, we
have a σ

αm(ra)σ2αm(ra) . . .σ (m−1)αm(ra)σmαm(r) = 0, since it is the leading
coefficient of ( f r)m = 0. Since R/P is Σ-compatible, (ar)m = 0 and hence I0 is
an ideal of R/P. Also clearly I0 is a nil ideal of R/P. Hence I0 = 0 and so I = 0.
Therefore P〈x1, . . . ,xn;Σ,∆〉 is a strongly (semi)prime (Σ,∆)-compatible ideal
of A.
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Corollary 3.12. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension
of an (Σ,∆)-compatible ring R. If R is a strongly (semi)prime ring, then A is a
strongly (semi)prime ring.

Corollary 3.13. If k is a completely (semi)prime and (Σ,∆)-compatible ring,
then the quantum n-space Oq(kn) is a completely (semi)prime ring.

Corollary 3.14. If R is a strongly (semi)prime and (Σ,∆)-compatible ring, then
nth quantized Weyl algebra over R is a strongly (semi)prime ring.

Theorem 3.15. If each minimal strongly prime ideal of R is (Σ,∆)-compatible
and A = R〈x1, . . . ,xn;Σ,∆〉 is a bijective skew PBW extension of a ring R, then
nil∗(A)⊆ nil∗(R)〈x1, . . . ,xn;Σ,∆〉.

Proof. The result follows from Theorem 3.11.

Corollary 3.16. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a bijective skew PBW extension
and nil∗(R) a Σ-rigid ∆-ideal of R. Then nil∗(A)⊆ nil∗(R)〈x1, . . . ,xn;Σ,∆〉.

4. Skew PBW extensions of 2-primal rings

In the theory of rings, it is an important issue to investigate the coincidence of
certain radicals on a given class of rings. There are some papers in the literature
where the property of being 2-primal has been studied for skew PBW exten-
sions. Also, different radicals of these extensions have been characterized (see,
[19, 28]).

Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of a ring R with a set
of endomorphisms Σ := {σ1, . . . ,σn} and derivations ∆ := {δ1, . . . ,δn}. In this
section, we continue the study of the radicals of skew PBW extensions, in case
R is (Σ,∆)-compatible. Our main results in this section shows that the 2-primal
condition on R is preserved by skew PBW extensions.

Proposition 4.1. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an Σ-
compatible ring R and nil(R) a ∆-ideal of R. Then nil(A) ⊆ nil(R)
〈x1, . . . ,xn;Σ,∆〉.

Proof. Let f = a0 + a1X1 + · · ·+ amXm be a nil element of A, where ai ∈ R,
1≤ i≤m, am 6= 0, with Xi = xαi = xαi1

1 · · ·xαin
n , Xm�Xm−1� ·· · �X1. Then there

exists t ≥ 0 such that f t = 0. Thus by Remark 2.9, we have amσαm(am)σ
2αm(am)

. . .σ (t−1)αm(am) = 0. Since R is Σ-compatible, at
m = 0 and hence am ∈ nil(R).

Now let us write f = q+amxαm with q ∈ A and deg(q) < |αm|. Then 0 = f t =
qt + h, for some h ∈ A. Note that, when we compute every summand of h we
obtain products of the coefficient am in σ ’s and δ ’s depending of the coordinates
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of αm. Since am ∈ nil(R) and nil(R) is (Σ,∆)-ideal, h ∈ nil(R)〈x1, . . . ,xn;Σ,∆〉.
Thus qt ∈ nil(R)〈x1, . . . ,xn;Σ,∆〉, and so am−1σαm−1(am−1) . . .σ

(t−1)αm−1(am−1)
∈ nil(R) and by using [9, Lemma 3.3 ], am−1 ∈ nil(R). By continuing this
process, we get ai ∈ nil(R), for each 1≤ i≤ m, and the proof is complete.

Corollary 4.2. Keeping all of the notations from the Example 2.4, let R be an Σ-
compatible ring and nil(R) a ∆-ideal of R. Then nil(R[x1;σ1,δ1] . . . [xn;σn,δn])
⊆ nil(R)[x1;σ1,δ1] . . . [xn;σn,δn].

Corollary 4.3. [21, Proposition 2.2] Let R be an σ -compatible ring and nil(R)
a δ -ideal of R. Then nil(R[x;σ ,δ ])⊆ nil(R)[x;σ ,δ ].

Let R be a ring, End(R;+) the ring of additive endomorphisms of R and
Φ a subset of End(R;+). Recall that an ideal I of R is Φ-ideal if ϕ(I) ⊆ I for
any ϕ ∈ Φ. A Φ-ideal P 6= R is a Φ-prime ideal if for any Φ-ideals I and J
such that IJ ⊆ P, we have either I ⊆ P or J ⊆ P. We shall use the notation
I /Φ R (resp., P/

′
Φ

R) to express the fact that I is a Φ-ideal (resp., P is a Φ-prime
ideal) of R. We write PΦ = Spec(R;Φ) for the set of all Φ-prime ideals of R
and rad(R;Φ) = ∩P∈PΦ

P for the Φ-prime radical. By definition, R is Φ-prime
(resp., Φ semiprime) if {0} is Φ-prime (resp., if rad(R;Φ) = 0)

A sequence (a0,a1, . . . ,an, . . .) of elements of R is called a Φ-m-sequence if
for any i ∈ N there exist ϕi,ϕ

′
i ∈ Φ and ri ∈ R such that ai+1 = ϕi(ai)riϕ

′
i (ai).

An element a ∈ R is called strongly Φ-nilpotent if every Φ-m-sequence starting
with a eventually vanishes. If Φ = idR we recover the corresponding classical
notions. In the following, we recall the definition of a lower nil radical by
transfinite induction from (for more details see [16]).
• L0 = L0(R;Φ) = {0}
• L1 = L1(R;Φ) = ∑I∈NΦ

I where NΦ = {I /Φ R|I is nilpotent }.
(L1 /Φ R and any ϕ ∈Φ induces an additive endomorphism of R/L1)
• Lα = Lα(R;Φ) = {r ∈ R|r+Lβ (R;Φ) ∈ L1(R/Lβ (R;Φ);Φ)} if α = β +1
• Lα = Lα(R;Φ) = ∪β<αLβ (R;Φ) if α is a limit ordinal.

There exists an ordinal β such that Lβ (R;Φ)=Lβ+1(R;Φ) and we put L(R;Φ)=
Lβ (R;Φ).

Lemma 4.4. [16, Proposition 1.11] Keeping the above notation, we have:

L(R;Φ) = rad(R;Φ) = {a ∈ R |a is strongly Φ-nilpotent }.

Lemma 4.5. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of a ring R.
Then rad(R;Σ∪∆)〈x1, . . . ,xn〉 ⊆ rad(A).

Proof. We follow the ideas presented in [16, Lemma 5.1 ].
The inclusion can be proved by transfinite induction, using the description

of rad(R;Σ∪∆) given before Lemma 4.4, as follows:
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Let f ∈ L1 〈x1, . . . ,xn;Σ,∆〉. Then we have f ∈ I 〈x1, . . . ,xn;Σ,∆〉 for some
nilpotent (Σ,∆)-ideal. So I 〈x1, . . . ,xn;Σ,∆〉 ⊆ rad(A), since I 〈x1, . . . ,xn;Σ,∆〉
is itself a nilpotent ideal of R〈x1, . . . ,xn;Σ,∆〉. In particular f ∈ rad(A) and
L1 〈x1, . . . ,xn;Σ,∆〉 ⊆ rad(A). Now assume that Lα 〈x1, . . . ,xn;Σ,∆〉 ⊆ rad(A)
for all α < β .

Let β = α + 1 for some α . Then we have the following chain of isomor-
phisms and inclusions

Lβ 〈x1, . . . ,xn;Σ,∆〉/Lα 〈x1, . . . ,xn;Σ,∆〉 ∼= Lβ/Lα 〈x1, . . . ,xn;Σ,∆〉
= L1 (R/Lα)〈x1, . . . ,xn;Σ,∆〉
⊆ rad (R/Lα 〈x1, . . . ,xn;Σ∪∆〉)
∼= rad(R〈x1, . . . ,xn;Σ∪∆〉)/Lα 〈x1, . . . ,xn;Σ,∆〉 .

Now, by induction hypothesis, it is not hard to see that Lβ 〈x1, . . . ,xn;Σ,∆〉 ⊆
rad(R〈x1, . . . ,xn;Σ∪∆〉).

If β is a limit ordinal, Lβ = ∪α<β Lα and so, by induction hypothesis, we
have Lβ 〈x1, . . . ,xn;Σ,∆〉 ⊆ rad(R〈x1, . . . ,xn;Σ∪∆〉).

Proposition 4.6. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an
Σ-compatible ring R.

1. If nil(R) = nil∗(R;Σ∪∆), then A is 2-primal.

2. If nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A), then A is 2-primal.

Proof. (1) Suppose that R is Σ-compatible and nil(R) = nil∗(R;Σ∪∆). Since
nil∗(R;Σ∪∆) is (Σ,∆)-ideal, so nil(A) ⊆ nil(R)〈x1, . . . ,xn;Σ,∆〉 = nil∗(R;Σ∪
∆)〈x1, . . . ,xn〉, by Proposition 4.1. On the other hand, by Lemma 4.5, nil∗(R;Σ∪
∆)〈x1, . . . ,xn〉 ⊆ nil∗(A) and then A is 2-primal.

(2) Suppose that nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A). Hence nil(R) is an ideal
of R. Let a ∈ nil(R). Since A is skew PBW extension of R, we have σi(a)xi +
δi(a) = xia ∈ nil(R)〈x1, . . . ,xn;Σ,∆〉 for every 1 ≤ i ≤ n, by Proposition 2.2.
Hence δi(a) ∈ nil(R) for every 1 ≤ i ≤ n, since nil(R) is an Σ-ideal of R. This
means that δ α(a) ∈ nil(R) and so nil(R) is ∆-ideal. Therefore by Proposition
4.1, nil(A)⊆ nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A), which implies that A is 2-primal.

Theorem 4.7. Let A= R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an (Σ,∆)-
compatible ring R. Then A is 2-primal if and only if nil(R) = nil∗(R;Σ∪∆) if
and only if nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A).

Proof. First we prove that A is 2-primal if and only if nil(R) = nil∗(R;Σ ∪
∆). If nil(R) = nil∗(R;Σ∪∆) then A is 2-primal, by Proposition 4.6. For the
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backward direction, assume that A is 2-primal. So by Lemma 4.5, nil∗(R;Σ∪
∆)〈x1, . . . ,xn〉 ⊆ nil∗(A) = nil(A). Hence nil∗(R;Σ∪∆) ⊆ nil(R). Since A is
2-primal, R is 2-primal because each subring of a 2-primal ring is 2-primal, by
[4]. Now, let a ∈ nil(R) = nil∗(R). Thus a is strongly nilpotent and hence each
m-sequence starting with a eventually vanishes. So each {Σ,∆}-m-sequence
starting with a eventually vanishes, by [9, Lemma 3.3]. Thus a is strongly
{Σ,∆}-nilpotent and a ∈ nil∗(R;Σ∪∆), by Lemma 4.4, as desired. Now, let
nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A). Then by Proposition 4.6, A is 2-primal. Con-
versely, suppose that A is 2-primal. Hence nil(R) = nil∗(R;Σ ∪ ∆) and so
nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(R;Σ∪∆)⊆ nil∗(A), by Lemma 4.5. On the other
hand, by Proposition 4.1, nil∗(A) = nil(A) ⊆ nil(R)〈x1, . . . ,xn;Σ,∆〉, and the
proof is complete.

Corollary 4.8. Let A=R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an (Σ,∆)-
compatible ring R. Then A is 2-primal if and only if R is 2-primal and nil(R)
〈x1, . . . ,xn;Σ,∆〉= nil(A).

Proof. Let A be a 2-primal ring. Then R is 2-primal and nil(R)〈x1, . . . ,xn;Σ,∆〉
= nil(A), by Theorem 4.7. For the backward direction, by a similar argument as
used in the proof of Theorem 4.7, we can see that nil(R)⊆ nil∗(R;Σ∪∆). Thus
by Lemma 4.5, nil(A) = nil(R)〈x1, . . . ,xn;Σ,∆〉 ⊆ nil∗(R;Σ∪∆)〈x1, . . . ,xn〉 ⊆
nil∗(A), and the proof is complete.

By a similar proof that is employed in [21, Lemma 2.7], we can prove the
following.

Lemma 4.9. Assume that R is a reduced (Σ,∆)-compatible ring. Let P be a
minimal (Σ,∆)-prime ideal of R. Then P is completely prime.

Theorem 4.10. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an
(Σ,∆)-compatible ring R. Then A is 2-primal if and only if every minimal (Σ,∆)-
prime ideal of R is completely prime.

Proof. Suppose that A is 2-primal. Then R = R/nil∗(R;Σ∪∆) is reduced, by
Theorem 4.7. Let P be a minimal (Σ,∆)-prime ideal of R; then P is a minimal
(Σ,∆)-prime ideal of R. So by Lemma 4.9, P is completely prime, since R/P∼=
R/P. Conversely, let every minimal (Σ,∆)-prime ideal of R is completely prime.
Assume that {Pi}i∈I be the family of all minimal (Σ,∆)-prime ideals of R. So
nil∗(R;Σ∪∆) =

⋂
i∈I Pi and then R/nil∗(R;Σ∪∆) embeds in ∏i∈I R/Pi. Thus

R/nil∗(R;Σ∪∆) is reduced and hence nil(R)⊆ nil∗(R;Σ∪∆). On the other hand,
since nil∗(R;Σ∪∆)〈x1, . . . ,xn〉 ⊆ nil∗(A)⊆ nil(A), then nil∗(R;Σ∪∆)⊆ nil(R).
Therefore nil(R)= nil∗(R;Σ∪∆) and the proof is complete by Theorem 4.7.
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Theorem 4.11. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an
(Σ,∆)-compatible ring R. Then A is 2-primal if and only if R is 2-primal.

Proof. Suppose that R is 2-primal and let a ∈ nil(R) = nil∗(R). So a is strongly
nilpotent. Since R is (Σ,∆)-compatible, a is strongly (Σ,∆)-nilpotent. Then
by Lemma 4.4, a ∈ nil∗(R;Σ∪∆) and so nil(R) ⊆ nil∗(R;Σ∪∆). Also clearly
nil∗(R;Σ∪∆)⊆ nil(R). Therefore, by using Theorem 4.7, the result follows.

Corollary 4.12. Let A = R〈x1, . . . ,xn;Σ,∆〉 be a skew PBW extension of an
(Σ,∆)-compatible ring R. Then the following are equivalent:

1. R is 2-primal.

2. A is 2-primal.

3. nil(R) = nil∗(R;Σ∪∆).

4. nil(R)〈x1, . . . ,xn;Σ,∆〉= nil∗(A).

5. R is 2-primal and nil(R)〈x1, . . . ,xn;Σ,∆〉= nil(A).

6. every minimal (Σ,∆)-prime ideal of R is completely prime.

Corollary 4.13. If k is a 2-primal and (Σ,∆)-compatible ring, then the quantum
n-space Oq(kn) is 2-primal.

Corollary 4.14. Keeping all of the notations from the Example 2.4, if R is a
2-primal and (Σ,∆)-compatible ring, then the iterated skew polynomial ring
R[x1;σ1,δ1] . . . [xn;σn,δn] is 2-primal.

Corollary 4.15. If R is a 2-primal and (Σ,∆)-compatible ring, then the nth quan-
tized Weyl algebra over R is 2-primal.
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