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A SPECTRAL THEORY FOR DISCONTINUOUS
STURM-LIOUVILLE PROBLEMS ON THE WHOLE LINE

BILENDER P. ALLAHVERDIEV - HÜSEYIN TUNA

In this study, we consider the singular discontinuous Sturm-Liouville
problem on the whole line with transmission conditions. For this problem
the existence of a spectral matrix-valued function is proved. A Parseval
equality and an expansion formula are given for such a problem.

1. Introduction

The eigenfunction expanding theorems play an important role in solving bound-
ary value problems related to partial differential equations When the method
of separation of variables is applied to partial differential equations, we get a
Sturm-Liouville problem. Thus, we consider the problem of expanding an arbi-
trary function as a series of eigenfunctions. Such problems for various differen-
tial operators were investigated by a number of authors (see [5]-[9], [12]-[13],
[16], [24] and the references therein).

The discontinuous Sturm-Liouville problems have been discussed for a long
time and several results on these problems have been obtained (see, e.g., [1-5,
7, 10-13, 15, 17-23, 25-28] and the references therein). Such problems arise
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in the theory of heat and mass transfer (see [18]), radio science (see [19]) and
geophysics (see [15]). In the literature, there is much research on regular dis-
continuous Sturm-Liouville problems (see [1, 11, 20-23, 26-28] ). However,
the related results for the singular problem are not so rich (see [2-4, 10, 25] ).
In [17], Li, Sun and Hao investigated a singular Sturm-Liouville problem with
transmission conditions at finite interior points. They gave a definition of Weyl
function for such problems in the case of the limit circle case. In [5], the au-
thors studied a singular Sturm-Liouville problem with transmission condition on
semi-infinite interval. They established an expansion formula in eigenfunctions
in terms of the spectral function.

In this paper, we study a singular discontinuous Sturm-Liouville problem
on the whole line with transmission conditions. We prove the existence of a
spectral matrix-valued function for such a problem. A Parseval equality and an
expansion formula are given in this problem on the whole line.

2. Main Results

Let us consider the Sturm-Liouville expression

τ(y) :=−(p(x)y′)′+q(x)y, x ∈ (a,c)∪ (c,b),

where I1 := [a,c), I2 := (c,b], −∞ < a < 0 < c < b < ∞ and I := I1 ∪ I2. We
assume that the points a, b and c are regular for the differential expression τ.
On the other hand, p and q are real-valued, Lebesgue measurable functions on
I and 1

p ,q ∈ L1(Ik), k = 1,2. The point c is regular if 1
p ,q ∈ L1[c− ε,c+ ε] for

some ε > 0. Now we consider the Sturm-Liouville equation

τ (y) = λy, x ∈ I, (1)

with the boundary conditions

y(a)cosβ +
(

py′
)
(a)sinβ = 0, β ∈ R := (−∞,∞) , (2)

y(b)cosα +
(

py′
)
(b)sinα = 0, α ∈ R, (3)

and transmission conditions

Y (c+) =CY (c−) , Y =

(
y
y′

)
,C ∈M2(R), detC = δ > 0, (4)

where M2 (R) denotes the set of all 2×2 matrices with entries from R.

Now, we introduce the Hilbert space H1 = L2 (I1)
·
+ L2 (I2) with the inner

product

〈 f ,g〉H1 :=
∫ c

a
f (1)g(1)dx+ γ

∫ b

c
f (2)g(2)dx, γ =

1
δ
,
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where

f (x) =
{

f (1)(x), x ∈ I1

f (2)(x), x ∈ I2
, g(x) =

{
g(1)(x), x ∈ I1

g(2)(x), x ∈ I2.

Let us denote by D the linear set of all functions y ∈ H1 such that y and py′

are locally absolutely continuous functions on I, the one-sided limits y(c±),(py′)(c±)
exist and are finite, and τ(y)∈H1. The operator T defined by Ty= τ(y) is called
the maximal operator T on H1.

For two arbitrary functions y,z ∈ D, we have the Green’s formula given by∫ b

a
τ (y)zdx−

∫ b

a
yτ (z)dx = [y,z]c−− [y,z]a +[y,z]b− [y,z]c+, (5)

where [y,z]x = y(x)(pz′)(x)− (py′)(x)z(x) (x ∈ I) .
We will denote by

φi (x,λ ) =

{
φ
(1)
i (x,λ ) , x ∈ I1

φ
(2)
i (x,λ ) , x ∈ I2

, i = 1,2

the solutions of the equation defined by (1) which satisfy the initial conditions

φ1 (0,λ ) = 0,
(

pφ
′
1
)
(0,λ ) = 1, φ2 (0,λ ) = 1,

(
pφ
′
2
)
(0,λ ) = 0, (6)

and transmission conditions

Φi (c+,λ ) =CΦi (c−,λ ) , Φi =

(
φi (x,λ )

(pφ ′i )(x,λ )

)
, (7)

C ∈M2 (R) , detC = δ > 0, i = 1,2.

In [11-13, 26, 27] the authors proved that the regular boundary value problem
defined by (1)-(4) is self-adjoint and has a compact resolvent, so it has a purely
discrete spectrum.

Let λn (n = 1,2, ...) be the (real) eigenvalues and

yn (x) =

{
y(1)n (x) , x ∈ I1

y(2)n (x) , x ∈ I2
(n = 1,2, ...)

the corresponding real-valued eigenfunctions of the problem defined by (1)-(4).
Since the solutions φ1 and φ2 are linearly independent, we get

yn (x) = cnφ1 (x,λn)+dnφ2 (x,λn) (n = 1,2, ...) .
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Let f ∈ H1 be a real-valued function. If we apply the Parseval equality (see
[12], [13]) to the function f , then we obtain∫ c

a

(
f (1) (x)

)2
dx+ γ

∫ b

c

(
f (2) (x)

)2
dx

=
∞

∑
n=1

{∫ c

a
f (1) (x)y(1)n (x)dx+ γ

∫ b

c
f (2) (x)y(2)n (x)dx

}2

=
∞

∑
n=1
{〈 f ,yn〉H1}

2 =
∞

∑
n=1
{〈 f (.) ,cnφ1 (.,λn)+dnφ2 (.,λn)〉H1}

2

=
∞

∑
n=1

c2
n {〈 f (.) ,φ1 (.,λn)〉H1}

2

+2
∞

∑
n=1

cndn
2
∏
j=1

{
〈 f (.) ,φ j (.,λn)〉H1

}

+
∞

∑
n=1

d2
n{〈 f (.) ,φ2 (.,λn)〉H1}2. (8)

Now, we will define the step function µi j,a,b (i, j = 1,2) on (a,b) by

µ11,a,b (λ ) =

{
−∑λ<λn<0 c2

n, for λ ≤ 0
∑0≤λn<λ c2

n, for λ > 0,

µ12,a,b (λ ) =

{
−∑λ<λn<0 cndn, for λ ≤ 0
∑0≤λn<λ cndn, for λ > 0,

,

µ12,a,b (λ ) = µ21,a,b (λ ) ,

µ22,a,b (λ ) =

{
−∑λ<λn<0 d2

n , for λ ≤ 0
∑0≤λn<λ d2

n , for λ > 0.

From the equality (8), we obtain∫ c

a

(
f (1) (x)

)2
dx+ γ

∫ b

c

(
f (2) (x)

)2
dx =

∫
∞

−∞

2

∑
i, j=1

Fi (λ )Fj (λ )dµi j,a,b (λ ) ,

(9)
where

Fi (λ ) = 〈 f (.) ,φi (.,λ )〉H1 (i = 1,2) .
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A function f defined on an interval [a1,b1] is said to be of bounded variation
if there is a constant C > 0 such that

n

∑
k=1
| f (xk)− f (xk−1)| ≤C

for every partition
a1 = x0 < x1 < ... < xn = b1

of [a1,b1] by points of subdivision x0,x1, ...,xn.
Let f be a function of bounded variation. Then, by the total variation of f

on [a1,b1], denoted by
b1∨
a1

( f ) , we mean the quantity

b1∨
a1

( f ) := sup
n

∑
k=1
| f (xk)− f (xk−1)| ,

where the least upper bound is taken over all (finite) partitions of the interval
[a1,b1] (see [14]).

Now, we will prove a lemma.

Lemma 2.1. There exists a positive constant Λ = Λ(ξ ) , ξ > 0 such that

ξ∨
−ξ

{
µi j,a,b (λ )

}
< Λ (i, j = 1,2) , (10)

where Λ does not depend on a and b.

Proof. Since the functions φ
[ j−1]
i (x,λ ) (i, j = 1,2) (where y[1] denotes py′ and

y[0] denotes y) are both continuous with respect to x∈ [a,c) and λ ∈R, it follows
from (6) that

φ
[ j−1]
i (0,λ ) = δi j,

where δi j is the Kronecker delta. Thus for any ε > 0 there exists a k with
0 < k < c such that∣∣∣φ [ j−1]

i (x,λ )−δi j

∣∣∣< ε, ε > 0, |λ |< ξ , x ∈ [0,k] . (11)

Let fk (.) be a nonnegative function such that fk (.) vanishes outside the interval
(0,k) with the property ∫ k

0
fk (x)dx = 1, (12)

and let f [1]k (x) be a continuos function on [a,c).
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Now, if we apply the Parseval equality (9) to the functions f [s−1]
k (x) (s = 1,2) ,

then we get ∫ k

0
( f [s−1]

k (x))2dx≥
∫

ξ

−ξ

2

∑
i, j=1

Fis (λ )Fjs (λ )dµi j,a,b (λ ) ,

where

Fi1 (λ ) =
∫ k

0
fk (x)φi (x,λ )dx,

and

Fi2 (λ ) =
∫ k

0
f [1]k (x)φi (x,λ )dx =−

∫ k

0
fk (x)φ

[1]
i (x,λ )dx.

By using the inequality (11) and the equality (12), we obtain

|Fis (λ )−δis|< ε, i,s = 1,2, |λ |< ξ . (13)

Now by applying the Parseval equality (9) to the functions f [s−1]
k (x) (s = 1,2),

we get ∫ k

0
( f [s−1]

k (x))2dx≥
∫

ξ

−ξ

2

∑
i, j=1

(δis− ε)(δ js− ε)dµi j,a,b (λ ) . (14)

If we take s = 1 in the inequality (14), we have∫ k

0
f 2
k (x)dx≥ (1− ε)2

∫
ξ

−ξ

dµ11,a,b (λ )+ ε (1+ ε)
∫

ξ

−ξ

dµ12,a,b (λ )

+ ε (1+ ε)
∫

ξ

−ξ

dµ21,a,b (λ )+ ε
2
∫

ξ

−ξ

dµ22,a,b (λ )

= (1− ε)2 (µ11,a,b (ξ )−µ11,a,b (−ξ ))

+2ε (1+ ε)
ξ∨
−ξ

{µ12,a,b (λ )}+ ε
2 (µ22,a,b (ξ )−µ22,a,b (−ξ )) .

Since

ξ∨
−ξ

{µ12,a,b (λ )} ≤
1
2
[µ11,a,b (ξ )−µ11,a,b (−ξ )+µ22,a,b (ξ )−µ22,a,b (−ξ )] ,

(15)
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we get ∫ k

0
f 2
k (x)dx≥

(
2ε

2−3ε +1
)
{µ11,a,b (ξ )−µ11,a,b (−ξ )}

+2ε (ε−1){µ22,a,b (ξ )−µ22,a,b (−ξ )} . (16)

Putting s = 2 in (14), we get∫ k

0
( f [1]k (x))2dx≥

(
2ε

2−3ε +1
)
{µ22,a,b (ξ )−µ22,a,b (−ξ )}

+2ε (ε−1){µ11,a,b (ξ )−µ11,a,b (−ξ )} . (17)

If we add the inequalities (16) and (17), then we get∫ k

0
f 2
k (x)dx+

∫ k

0
( f [1]k (x))2dx

≥ (2ε−1)2
{

µ11,a,b (ξ )−µ11,a,b (−ξ )
+µ22,a,b (ξ )−µ22,a,b (−ξ )

}
.

Hence we obtain the assertion of the lemma for the functions µ11,a,b (λ ) and
µ22,a,b (λ ) relying on their monotonicity. From (15), we get the assertion of the
lemma for the function µ12,a,b (λ ) .

Now, we recall the following theorems of Helly.

Theorem 2.2 ([14]). Let (wn)n∈N be a uniformly bounded sequence of real non-
decreasing functions on a finite interval a1 ≤ λ ≤ b1. Then there exists a subse-
quence (wnk)k∈N and a nondecreasing function w such that

lim
k→∞

wnk (λ ) = w(λ ) , a1 ≤ λ ≤ b1.

Theorem 2.3 ([14]). Assume that (wn)n∈N is a real, uniformly bounded se-
quence of nondecreasing functions on a finite interval a1 ≤ λ ≤ b1, and suppose
that

lim
n→∞

wn (λ ) = w(λ ) , a1 ≤ λ ≤ b1.

If f is any continuous function on a1 ≤ λ ≤ b1, then

lim
n→∞

∫ b1

a1

f (λ )dwn (λ ) =
∫ b1

a1

f (λ )dw(λ ) .

Let ρ be any nondecreasing function on−∞ < λ < ∞. Denote by L2
ρ (R) the

Hilbert space of all functions f : R→ R which are measurable with respect to
the Lebesgue-Stieltjes measure defined by ρ and such that∫

∞

−∞

f 2 (λ )dρ (λ )< ∞,
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with the inner product

( f ,g)
ρ

:=
∫

∞

−∞

f (λ )g(λ )dρ (λ ) .

We introduce the Hilbert space H :=L2 (Ω1)
·
+L2 (Ω2) , (Ω1 :=(−∞,c), Ω2 :=

(c,∞)) with the inner product

〈 f ,g〉H :=
∫ c

−∞

f (1)g(1)dx+ γ

∫
∞

c
f (2)g(2)dx,

where

f (x) =
{

f (1)(x), x ∈Ω1

f (2)(x), x ∈Ω2
, g(x) =

{
g(1)(x), x ∈Ω1

g(2)(x), x ∈Ω2.
.

The main results of this paper are the following three theorems for the sin-
gular Sturm-Liouville equation τ (y) = λy, (x ∈ Ω) with the transmission con-
ditions defined by (4).

Theorem 2.4. Let f ∈H be a real-valued function. Then, there exist monotonic
functions µ11 (λ ) and µ22 (λ ) which are bounded over every finite interval, and
a function µ12 (λ ) which is of bounded variation over every finite interval with
the property (Parseval equality)

∫ c

−∞

(
f (1) (x)

)2
dx+ γ

∫
∞

c

(
f (2) (x)

)2
dx =

∫
∞

−∞

2

∑
i, j=1

Fi (λ )Fj (λ )dµi j (λ ) ,

(18)
where

Fi (λ ) = lim
n→∞

∫ c

−n
f (1) (x)φ

(1)
i (x,λ )dx+ γ

∫ n

c
f (2) (x)φ

(2)
i (x,λ )dx,

(i = 1,2) (generalized Fourier transforms of f ).

We note that the matrix-valued function µ = (µi j)
2
i, j=1 (µ12 = µ21) is called

a spectral function for the equation τ (y) = λy, (x ∈ Ω) with the transmission
conditions defined by (4).

Proof. Assume that the real-valued function

fn(x) =

{
f (1)n (x), x ∈Ω1

f (2)n (x), x ∈Ω2

satisfies the following conditions:
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1) fn (x) vanishes outside the interval [−n,c)∪ (c,n] , where a < −n < c <
n < b.

2) The functions fn (x) and (p f ′n)(x) have continuous derivatives.
3) fn (x) satisfies the condition defined by (4).

If we apply the Parseval equality to fn (x), we get∫ c

−n
( f (1)n (x))2dx+ γ

∫ n

c
( f (2)n (x))2dx =

∞

∑
k=1
{〈 fn (.) ,yk〉H1}

2 . (19)

Via integrating by parts twice, we obtain∫ c

a
f (1)n (x)y(1)k (x)dx+ γ

∫ b

c
f (2)n (x)y(2)k (x)dx

=
1
λk

∫ c

a
f (1)n (x)

[
−
(

py(1)′k

)′
(x)+q(x)y(1)k

]
dx

+
1
λk

γ

∫ b

c
f (2)n (x)

[
−
(

py(2)′k

)′
(x)+q(x)y(2)k

]
dx

=
1
λk

∫ c

a

[
−
(

p f (1)′n

)′
(x)+q(x) f (1)n

]
y(1)k dx

+
1
λk

γ

∫ b

c

[
−
(

p f (2)′n

)′
(x)+q(x) f (2)n

]
y(2)k dx

=
1
λk
〈−
(

p f ′n
)′
(.)+q(x) fn (.) ,yk〉H1 .

Thus we have
∑
|λk|≥s

{〈 fn (.) ,yk〉H1}
2

≤ 1
s2 ∑
|λk|≥s

{
〈−
(

p f ′n
)′
(.)+q(x) fn (.) ,yk〉H1

}2

≤ 1
s2

∞

∑
k=1

{
〈−
(

p f ′n
)′
(.)+q(x) fn (.) ,yk〉H1

}2
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=
1
s2

∫ c

−n

[
−
(

p f (1)′n

)′
(x)+q(x) f (1)n

]2

dx

+
1
s2 γ

∫ n

c

[
−
(

p f (2)′n

)′
(x)+q(x) f (2)n

]2

dx.

By using the formula (19), we obtain

∣∣∣∣∣
∫ c

−n

(
f (1)n (x)

)2
dx+ γ

∫ n

c

(
f (2)n (x)

)2
dx− ∑

−s≤λk≤s
{〈 fn (.) ,yk〉H1}

2

∣∣∣∣∣
≤ 1

s2

∫ c

−n

[
−
(

p f (1)′n

)′
(x)+q(x) f (1)n

]2

dx

+
1
s2 γ

∫ n

c

[
−
(

p f (2)′n

)′
(x)+q(x) f (2)n

]2

dx.

Furthermore, we have

∑
−s≤λk≤s

{〈 fn (.) ,yk〉H1}
2

= ∑
−s≤λk≤s

{〈 fn (.) ,ckφ1 (.,λk)+dkφ2 (.,λk)〉H1}
2

=
∫ s

−s

2

∑
i, j=1

Fin (λ )Fjn (λ )dµi j,a,b (λ ) ,

where

Fin (λ ) = 〈 fn (.) ,φi (.,λ )〉H1 (i = 1,2) .
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Consequently, we get∣∣∣∣∣
∫ c
−n

(
f (1)n (x)

)2
dx+ γ

∫ n
c

(
f (2)n (x)

)2
dx

−
∫ s
−s ∑

2
i, j=1 Fin (λ )Fjn (λ )dµi j,a,b (λ )

∣∣∣∣∣
≤ 1

s2

∫ c
−n

[
−
(

p f (1)′n

)′
(x)+q(x) f (1)n

]2

dx

+ 1
s2 γ
∫ n

c

[
−
(

p f (2)′n

)′
(x)+q(x) f (2)n

]2

dx.

(20)

By Lemma 2.1 and Theorems 2.2 and 2.3, we can find sequences {ak} and
{bk} , where ak→−∞ and bk→∞, such that the sequence of functions µi j,ak,bk (λ )
converges to a monotone function µi j (λ ) . Passing to the limit (with respect to
ak→−∞ and bk→ ∞) in the inequality (20), we get∣∣∣∣∣

∫ c

−n
( f (1)n (x))2dx+ γ

∫ n

c
( f (2)n (x))2dx−

∫ s

−s

2

∑
i, j=1

Fin (λ )Fjn (λ )dµi j (λ )

∣∣∣∣∣
≤ 1

s2

∫ c

−n

[
−
(

p f (1)′n

)′
(x)+q(x) f (1)n

]2

dx

+
1
s2 γ

∫ n

c

[
−
(

p f (2)′n

)′
(x)+q(x) f (2)n

]2

dx.

As s→ ∞, we get∫ c

−n
( f (1)n (x))2dx+ γ

∫ n

c
( f (2)n (x))2dx =

∫
∞

−∞

2

∑
i, j=1

Fin (λ )Fjn (λ )dµi j (λ ) .

Now let

f (x) =
{

f (1)(x), x ∈Ω1

f (2)(x), x ∈Ω2

be a real-valued function and f ∈ H. Choose functions { fη (x)} satisfying the
conditions 1-3 and such that

lim
η→∞

∫ c

−∞

( f (1) (x)− f (1)η (x))2dx+ lim
η→∞

γ

∫
∞

c
( f (2) (x)− f (2)η (x))2dx = 0.

Let

Fiη (λ ) =
∫ c

−∞

f (1)η (x)φ
(1)
i (x,λ )dx+ γ

∫
∞

c
f (2)η (x)φ

(2)
i (x,λ )dx (i = 1,2) .
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Then, we have

∫ c

−∞

( f (1)η (x))2dx+ γ

∫
∞

c
( f (2)η (x))2dx =

∫
∞

−∞

2

∑
i, j=1

Fiη (λ )Fjη (λ )dµi j (λ ) .

Since ∫ c

−∞

( f (1)η1 (x)− f (1)η2 (x))2dx+ γ

∫
∞

c
( f (2)η1 (x)− f (2)η2 (x))2dx→ 0

as η1,η2→ ∞, we obtain

∫
∞

−∞

2

∑
i=1

[Fiη1 (λ )Fjη1 (λ )−Fiη2 (λ )Fjη2 (λ )]dµi j (λ )

=
∫ c

−∞

( f (1)η1 (x)− f (1)η2 (x))2dx+ γ

∫
∞

c
( f (2)η1 (x)− f (2)η2 (x))2dx→ 0

as η1,η2→ ∞. Therefore, there exist limit functions Fi (i = 1,2) which satisfy
the equality

∫ c

−∞

(
f (1) (x)

)2
dx+ γ

∫
∞

c

(
f (2) (x)

)2
dx =

∫
∞

−∞

2

∑
i, j=1

Fi (λ )Fj (λ )dµi j (λ ) ,

by the completeness of the space L2
µ (R) .

Now we will show that, for each i ∈ {1,2} , the sequence (Kη i) defined by

Kη i (λ ) =
∫ c

−η

f (1) (x)φ
(1)
i (x,λ )dx+ γ

∫
η

c
f (2) (x)φ

(2)
i (x,λ )dx,

converges to Fi as η → ∞, in the metric of the space L2
µ (R) . Now let g be

another function in H. By a similar argument, Gi (λ ) (i = 1,2) can be defined
via the function g.

It is obvious that∫ c

−∞

(
f (1) (x)−g(1) (x)

)2
dx+ γ

∫
∞

c

(
f (2) (x)−g(2) (x)

)2
dx

=
∫

∞

−∞

2

∑
i, j=1

{
(Fi (λ )−Gi (λ ))(Fj (λ )−G j (λ ))

}
dµi j (λ ) .

Now let

g(x) =
{

f (x) , x ∈ [−η ,c)∪ (c,η ]
0, otherwise.
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Then, we have∫
∞

−∞

2

∑
i, j=1

{
(Fi (λ )−Kη i (λ ))(Fj (λ )−Kη j (λ ))

}
dµi j (λ )

=
∫ −η

−∞

(
f (1) (x)

)2
dx+ γ

∫
∞

η

(
f (2) (x)

)2
dx→ 0 (η → ∞) ,

which proves that (Kη i) converges to Fi in L2
µ (R) for each i ∈ {1,2} , as η →

∞.

Theorem 2.5. Suppose that the real-valued functions f and g are in H, and
Fi (λ ) and Gi (λ ) (i = 1,2) are their generalized Fourier transforms, respec-
tively. Then, we have∫ c

−∞

f (1) (x)g(1) (x)dx+ γ

∫
∞

c
f (2) (x)g(2) (x)dx

=
∫

∞

−∞

2

∑
i, j=1

Fi (λ )G j (λ )dµi j (λ ) ,

which is called the generalized Parseval equality.

Proof. It is clear that F∓G are the transforms of f ∓g. Therefore, we have∫ c

−∞

(
f (1) (x)+g(1) (x)

)2
dx+ γ

∫
∞

c

(
f (2) (x)+g(2) (x)

)2
dx

=
∫

∞

−∞

2

∑
i, j=1

(Fi (λ )+Gi (λ ))(Fj (λ )+G j (λ ))dµi j (λ ) ,

∫ c

−∞

(
f (1) (x)−g(1) (x)

)2
dx+ γ

∫
∞

c

(
f (2) (x)−g(2) (x)

)2
dx

=
∫

∞

−∞

2

∑
i, j=1

(Fi (λ )−Gi (λ ))(Fj (λ )−G j (λ ))dµi j (λ ) .

Subtracting one of these equalities from the other one, we get the desired result.

Theorem 2.6. Let f be a real-valued function and f ∈ H. Then, the integrals

∫
∞

−∞

2

∑
i, j=1

Fi (λ )φ j (x,λ )dµi j (λ ) (i, j = 1,2) (21)
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converge to f in H. Consequently, we have the formula

f (x) =
∫

∞

−∞

2

∑
i, j=1

Fi (λ )φ j (x,λ )dµi j (λ ) ,

which is called the expansion formula.

Proof. For any positive number s, set

fs (x) =
∫ s

−s

2

∑
i, j=1

Fi (λ )φ j (x,λ )dµi j (λ ) ,

where

fs(x) =

{
f (1)s (x), x ∈Ω1

f (2)s (x), x ∈Ω2
.

Now let g ∈H be a real-valued function which is equal to zero outside the finite
interval [−τ,c)∪ (c,τ] . Thus we obtain∫ c

−τ

f (1)s (x)g(1) (x)dx+ γ

∫
τ

c
f (2)s (x)g(2) (x)dx =

∫ c

−τ

(∫ s

−s

2

∑
i, j=1

Fi (λ )φ
(1)
j (x,λ )dµi j (λ )

)
g(1) (x)dx

+ γ

∫
τ

c

(∫ s

−s

2

∑
i, j=1

Fi (λ )φ
(2)
j (x,λ )dµi j (λ )

)
g(2) (x)dx

=
∫ s

−s

2

∑
i, j=1

Fi (λ )

{ ∫ c
−τ

φ
(1)
j (x,λ )g(1) (x)dx

+γ
∫

τ

c φ
(2)
j (x,λ )g(2) (x)dx

}
dµi j (λ )

=
∫ s

−s

2

∑
i, j=1

Fi (λ )G j (λ )dµi j (λ ) (22)

From Theorem 2.5, we have∫ c

−∞

f (1) (x)g(1) (x)dx+ γ

∫
∞

c
f (2) (x)g(2) (x)dx

=
∫

∞

−∞

2

∑
i, j=1

Fi (λ )G j (λ )dµi j (λ ) . (23)
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By (22) and (23), we have∫ c

−∞

( f (1) (x)− f (1)s (x))g(1) (x)dx+ γ

∫
∞

c
( f (2) (x)− f (2)s (x))g(2) (x)dx

=
∫
|λ |>s

2

∑
i, j=1

Fi (λ )G j (λ )dµi j (λ ) .

If we apply this equality to the function

g(x) =
{

f (x)− fs (x) , x ∈ [−s,c)∪ (c,s]
0, otherwise,

then we get∫ c

−∞

( f (1) (x)− f (1)s (x))2dx+ γ

∫
∞

c
( f (2) (x)− f (2)s (x))2dx

=
∫
|λ |>s

2

∑
i, j=1

Fi (λ )Fj (λ )dµi j (λ ) .

Letting s→ ∞ yields the expansion result.
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