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A SPECTRAL THEORY FOR DISCONTINUOUS
STURM-LIOUVILLE PROBLEMS ON THE WHOLE LINE

BILENDER P. ALLAHVERDIEV - HUSEYIN TUNA

In this study, we consider the singular discontinuous Sturm-Liouville
problem on the whole line with transmission conditions. For this problem
the existence of a spectral matrix-valued function is proved. A Parseval
equality and an expansion formula are given for such a problem.

1. Introduction

The eigenfunction expanding theorems play an important role in solving bound-
ary value problems related to partial differential equations When the method
of separation of variables is applied to partial differential equations, we get a
Sturm-Liouville problem. Thus, we consider the problem of expanding an arbi-
trary function as a series of eigenfunctions. Such problems for various differen-
tial operators were investigated by a number of authors (see [5]-[9], [12]-[13],
[16], [24] and the references therein).

The discontinuous Sturm-Liouville problems have been discussed for a long
time and several results on these problems have been obtained (see, e.g., [1-5,
7, 10-13, 15, 17-23, 25-28] and the references therein). Such problems arise
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in the theory of heat and mass transfer (see [18]), radio science (see [19]) and
geophysics (see [15]). In the literature, there is much research on regular dis-
continuous Sturm-Liouville problems (see [1, 11, 20-23, 26-28] ). However,
the related results for the singular problem are not so rich (see [2-4, 10, 25] ).
In [17], Li, Sun and Hao investigated a singular Sturm-Liouville problem with
transmission conditions at finite interior points. They gave a definition of Weyl
function for such problems in the case of the limit circle case. In [5], the au-
thors studied a singular Sturm-Liouville problem with transmission condition on
semi-infinite interval. They established an expansion formula in eigenfunctions
in terms of the spectral function.

In this paper, we study a singular discontinuous Sturm-Liouville problem
on the whole line with transmission conditions. We prove the existence of a
spectral matrix-valued function for such a problem. A Parseval equality and an
expansion formula are given in this problem on the whole line.

2. Main Results

Let us consider the Sturm-Liouville expression

t(y) := —(p(x)y") +4qx)y, x € (a,c) U(c,b),

where I} := [a,c), L = (¢,b], —»<a<0<c<b<eand [ :=LUL. We
assume that the points a, b and ¢ are regular for the differential expression 7.
On the other hand, p and ¢ are real-valued, Lebesgue measurable functions on
I and %,q € L'(Iy), k = 1,2. The point c is regular if %,q € L'[c—¢,c+g] for
some € > 0. Now we consider the Sturm-Liouville equation

T(y) =24y, x€l, (D

with the boundary conditions
y(a)cos B+ (py') (a)sinp =0, B € R:= (—c0,0), 2)
y(b)cosa+ (py') (b)sina =0, a €R, (3)

and transmission conditions
Y (c+)=CY (c—), Y = < yy, ),CGMZ(R), detC =8 >0, (4)

where M, (R) denotes the set of all 2 x 2 matrices with entries from R.
Now, we introduce the Hilbert space Hy = L*(I;) + L* (1) with the inner

product
— 1
mo= [ Veaxy [ gar, v =4
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where

_ [ ), xen [ e, xen
f(X)_{ J(x), xebh’ g(x)—{ ¢Px), xebh.

Let us denote by D the linear set of all functions y € H; such that y and py’
are locally absolutely continuous functions on /, the one-sided limits y(c+), (py’) (c%)
exist and are finite, and 7(y) € H;. The operator T defined by Ty = 7(y) is called
the maximal operator T on H;.

For two arbitrary functions y,z € D, we have the Green’s formula given by

b b
[z [ e @ar=pdde- - dat b~ bider, O

where [y, 2] = y(x)(pz') (x) — (py) (x)z(x) (x €1).
We will denote by

(1)
i (x,A) = ¢i(2)(x’l)7 reh ,i=1,2
(Pi (x7l)7 erZ

the solutions of the equation defined by (1) which satisfy the initial conditions

¢1(0,4) =0, (pg1) (0,A) =1, $:(0,4) =1, (p93) (0,A) =0,  (6)
and transmission conditions

Bl d)=Caile2), @ = (AL ). )
CeM;(R), detC=6>0,i=1,2.

In [11-13, 26, 27] the authors proved that the regular boundary value problem
defined by (1)-(4) is self-adjoint and has a compact resolvent, so it has a purely
discrete spectrum.

Let A, (n=1,2,...) be the (real) eigenvalues and

V), xen
n(X) =13 Ty n=1,2,..
Y (x) {yﬁ,z)(x), xeh ( )

the corresponding real-valued eigenfunctions of the problem defined by (1)-(4).
Since the solutions ¢; and ¢, are linearly independent, we get

yn (X) = cndr (5, A) +dpna (x,4,) (n=1,2,...).
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Let f € H; be a real-valued function. If we apply the Parseval equality (see
[12], [13]) to the function f, then we obtain

/ac (f(l) (x)>2dx+y/cb (f(Z)
;{/ £ dx—l—}// 1 2)(x)dx}2

{<f,yn my’ = Z{ ) cnd (- 20) + 2 (5 2)) i, Y

I
[ agk

Ci {<f() ;1 ('7)’71»1'11 }2

I
agki

3
Il
—_

+2 ilcndn]ﬁ] {<f() 7¢j ("A”»Hl}

" ild,%{<f<.>,¢z<.,zn>>m}2. ®

Now, we will define the step function p;j ;5 (i,j=1,2) on (a,b) by
_ *Zl<l,,<06121, for2 <0
Hinas(4) = { Yo<i,<aCn  ford >0,
— d, forA <0
1) = Y <2, <0 Cnlln, >
Hi2ap (A) { Yo<a,<iCndn, ford >0,
M2, (A) = W21,ap (A),

1 0 () = —Yaen<0dr, forA <0
el Yo<i,<ad:, ford >0.

From the equality (8), we obtain

/ @ (x))zdxﬂ/cb (5 (x)>2dx _ /Ziﬁjiﬁ(xm (A)ditijan (1),
)

where

Fz(z‘) - <f()7¢l(72‘)>H| (i: 172)'
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A function f defined on an interval [a;, b] is said to be of bounded variation
if there is a constant C > 0 such that

Y 1 () — f ) <€
k=1

for every partition
ar =xp<x1 <..<xy =b

of [a1,b1] by points of subdivision xg,xp, ..., X,.

Let f be a function of bounded variation. Then, by the fotal variation of f
by

on [ay,b1], denoted by \/ (f), we mean the quantity

ai

by

\/ (f) = sup kzl 1 () — f (o)

ap

where the least upper bound is taken over all (finite) partitions of the interval
la1,by] (see [14]).
Now, we will prove a lemma.

Lemma 2.1. There exists a positive constant A = A (&), & > 0 such that

4
V {tijap (A} <A (i,j=1,2), (10)
=&

where A does not depend on a and b.

Proof. Since the functions ¢i[J 1 (x,A) (i,j = 1,2) (where yl! denotes py’ and
y[% denotes y) are both continuous with respect to x € [a,¢) and A € R, it follows
from (6) that

¢4[j*1} (0,A) = &,

1

where §;; is the Kronecker delta. Thus for any € > O there exists a k with
0 < k < ¢ such that

¢,~U7” (xal) - 5ij

<e, €>0, A <& xe0,k]. (11)

Let f; (.) be a nonnegative function such that f (.) vanishes outside the interval
(0,k) with the property

/kfk(x)dle, (12)
0

and let fkm (x) be a continuos function on [a,c).
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Now, if we apply the Parseval equality (9) to the functions f; [s=1] ( ) (s=1,2),
then we get

/( Jra 2dx>/ Y. Fi (1) iy ()it (1),
él] 1
where .
)= [ )02 dx
and
M= [ et A a=— [ 7ol )
By using the inequality (11) and the equality (12), we obtain
|Fis (L) — 65| < €, i,s=1,2, |A]| <&. (13)
Now by applying the Parseval equality (9) to the functions f,ES_u (x) (s=1,2),

we get

/ (A () 2dx > / Z o 8) (85— €)dltijap (M) (14)

l]l

If we take s = 1 in the inequality (14), we have

k & 13
/0 £2(x)dx > (1—(«3)2/_‘5 1o (l)+8(1+8)/_§du127a7b(l)

¢ 3
8(1+8)/_€d‘li21,a’b(7t)+82/_5 dunap (1)

=(1—&)” (W1ap (&) — Hitap(—E))

g
+2e(1+€) \/ {ti2ap (A)} + € (22,0 (§) — M2, (—E)).
&

Since

S
V/ (81200 (1)} < 3 (1110 (8) 11,00 (—8) F 200 (&) — firnn (<))
-

15)
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we get

/(;kka (x)dx > (267 —3e+ 1) {ti1,0p (&) — Wi1.ap (—€)}

+2¢e(e—1){H2ap(8) — H22ap (—E)}- (16)
Putting s = 2 in (14), we get

/k(fk[l] (x))2dx > (2€* =3+ 1) {220 (§) — M22,app (—E)}

0
+2e(e— 1) {145 (&) = U110 (—8)}- (17)
If we add the inequalities (16) and (17), then we get

/fk dx+/ x))2dx

2 ull,a,b(é)_ulha,b(_é)
= (2e—1) { FH2.ap(8) — 224 (=) }

Hence we obtain the assertion of the lemma for the functions py; 5 (A) and
U224 (A) relying on their monotonicity. From (15), we get the assertion of the
lemma for the function f1j5 45 (1) . O]

Now, we recall the following theorems of Helly.

Theorem 2.2 ([14]). Let (wy,),cr be a uniformly bounded sequence of real non-
decreasing functions on a finite interval ay < A < by. Then there exists a subse-
quence (Wy, ), and a nondecreasing function w such that

limw, (A)=w(A), a1 <A <by.
k—o0

Theorem 2.3 ([14]). Assume that (wy),cy is a real, uniformly bounded se-
quence of nondecreasing functions on a finite interval a; < A < by, and suppose
that

r}glgown(?t) =w(d), a1 <A <bh.

If f is any continuous function ona; <A < by, then

lim f )dw, (A / f(A)dw(A

n—yoo

Let p be any nondecreasing function on —eo < A < oo. Denote by Lf, (R) the
Hilbert space of all functions f : R — R which are measurable with respect to
the Lebesgue-Stieltjes measure defined by p and such that

[ e <o,
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with the inner product

— [ _r@)eap ).

We introduce the Hilbert space H := L2 (Q) +L* (Q,) , (1 := (—o0,¢), Qs :
(¢,0)) with the inner product

va—/f dx—i—}’/f

where

(), xeQ [ eM), xeq
f(x)_{ f(z)(x)’ xEQ, ) g(x)—{ g(z)(x)’ xeQ,. .

The main results of this paper are the following three theorems for the sin-
gular Sturm-Liouville equation 7 (y) = Ay, (x € Q) with the transmission con-
ditions defined by (4).

Theorem 2.4. Let f € H be a real-valued function. Then, there exist monotonic
functions 11 (L) and Uy (A) which are bounded over every finite interval, and
a function Wy (A) which is of bounded variation over every finite interval with
the property (Parseval equality)

/Cm (f(l)(x)>2dx+y/:) (f(Z) X dx—/ Z F(A)F;(A)dui; (A),

- i,j=1
(18)
where

F)=lim [ 10 @e" ma)dx+y [ 1 )0 (x2)ax

n—seo | _p,
(i =1,2) (generalized Fourier transforms of f).

We note that the matrix-valued function g = (w; ,)12 j=1 (12 = Moy ) is called
a spectral function for the equation 7(y) = Ay, (x € Q) with the transmission
conditions defined by (4).

Proof. Assume that the real-valued function

_ | £k, xeq
fn(X)—{ 20, xe

satisfies the following conditions:
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1) fu (x) vanishes outside the interval [—n,c) U (c,n], where a < —n < ¢ <
n<b.

2) The functions f; (x) and (pf;) (x) have continuous derivatives.

3) fn (x) satisfies the condition defined by (4).
If we apply the Parseval equality to f, (x), we get

/_C(fél)(x))zdx+v/"(f£ zdx—Z{fn yom. (19

Via integrating by parts twice, we obtain

[ A @ @ty / 72 )y (x)dx
— i [ = () @+ gl
" Y/ 7 [ Py )'(x>+q<x>y,<3>]dx
— i [ (™) @ a0
s [ (o) @+ a5

)zk< (pf'l) ()+61(x)fn(~),yk>g,

Thus we have

Z {fn yk Hl}

A >s

, 2
{(= () O+ 1) v, |

< IV () O+ a@ A0 3 )
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1 re N 2
-3/ [— (p") (X)+q(X)f,5”] dx

ﬂ/ [ P () +q(x )f(z)rdx

By using the formula (19), we obtain

—s<M<s

/_,1 dx+7’/ x “dr- )3 {<fn(-)ayk>H1}2‘

c !/ 2
<a [ |- (A" 0rawa) as

2
ﬂ/[ pfy +q(>f<ﬂ dx.
Furthermore, we have

Y AU oom)

—s<M<s

= Y {(a() et (M) +didn (A, )

—s<M<s

:/ Z Fm d."luab(l)

Sij=1

where

( ) <fn() ¢l< )>H| (i:172)'
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Consequently, we get

‘ 10 (A0 @) det g (47 @)
— f‘_YSZ,%j:l Fin (A) Fjp (M) dpijap (A)

/ 2
<& IS {— (pi") () +a (0 f,$1>] dx (20)

’ 2
+x7 ! [— (p£) 0 +a ) fé”] dx.

By Lemma 2.1 and Theorems 2.2 and 2.3, we can find sequences {a;} and
{br}, where a; — —oo and by — oo, such that the sequence of functions L; 4, », (1)
converges to a monotone function p;; (A). Passing to the limit (with respect to
ax — —oo and by — oo) in the inequality (20), we get

_1<f£‘><x)>2dx+y["(fé Pax— [ SZFM duu(l)‘

i,j=1

2

<x:[ |- (pfé”’)’(x)w(x)f,i”] dx

s2J_

27/{ pfY) (%) + q(X)ff)rdx.

As 5§ — oo, we get

[ G wrasey "6 copae= [ Y. Fiu () F (M) ity (1),

i, j=1

Now let (1)( )
] fYx), xey
f(x) - { f(z) (x)7 = Qz

be a real-valued function and f € H. Choose functions {fy (x)} satisfying the
conditions 1-3 and such that

lim [ (0 (x) = £V (1)) %dx + lim y/ ) (x))2dx = 0.

N—o ) o N—oo

Let

/f,7 ) (x,2) dx+y/ A2 )0 (x, 1) dx (i=1,2).
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Then, we have
[ cpaey [ @Ras= [T ¥ B2 By Ry ().
— ¢ i,j=1

Since
[0 =1 ey [T 0 - £ ()P 0

as 1M1, MNy — oo, we obtain

| Z i (R) Fin, (A) ~ i (1) Ej, (1)}t (3)

= /_;(ff()}) (x) _fr(,i) (x))2dx+ y/cw(fé?) (x) _f%) (X))de 0

as 11, M2 — oo. Therefore, there exist limit functions F; (i = 1,2) which satisfy
the equality

/_Cm (f(l)(x)>2dx+y/cm (f(Z) X dx—/ Z F(A)F;(A)dui; (A),

> j=1

by the completeness of the space Lft (R).
Now we will show that, for each i € {1,2}, the sequence (Kp;) defined by

Kni (A /f i x?L dx+’}//f i)(x,l)dx

converges to F; as 11 — oo, in the metric of the space Li (R). Now let g be
another function in H. By a similar argument, G; (A1) (i = 1,2) can be defined
via the function g.

It is obvious that

/C (f(l) (x) — g™V (x))de+ y/:o (f(z) (x) — @ (x))zdx

—oo

[ Y 1) (F,(A) = Gy () by ()

i,j=1
Now let

g(x):{ fgf)’ RIS [_TI?C)U(C’TI]

otherwise.
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Then, we have

[ % {0~ Ky 00 (05 0) ~ Ky () iy )

*i,j=1

:[;n <f(1) (x))zdx—i—}//: (f(Q) (x))zdx—>0 (M — o0,

which proves that (Kp;) converges to F; in Lﬁ (R) for each i € {1,2},as n —
oo, O

Theorem 2.5. Suppose that the real-valued functions f and g are in H, and
F;(A) and G;(A) (i = 1,2) are their generalized Fourier transforms, respec-
tively. Then, we have

/ £ dx—l—y/ 2 (x)g® (x)dx

—/ Z Fi (4 A)dpij (),

i,j=1
which is called the generalized Parseval equality.

Proof. 1tis clear that F = G are the transforms of f F g. Therefore, we have

[ (r0w+g dx+y/ ¢ () dx
_/ A)+Gi(A)) (Fj(A) +G;(A))dpij (R),
[ (f<1><x>_gl ) vty [T (170962 0) ax
_/ X 1 —Gi(A)) (Fj(A)— G (A))dui; (A).

Subtracting one of these equalities from the other one, we get the desired result.
O

Theorem 2.6. Let f be a real-valued function and f € H. Then, the integrals

[ ¥ A6 e a)du @) (=12 o

i, j=1
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converge to f in H. Consequently, we have the formula

/ ZF )0 (x,A)du;; (A),

—%ij=1
which is called the expansion formula.

Proof. For any positive number s, set

/ZF )9 (x,A)dp;j (A),

i,j=1
where

_ [ AV, xeq
fs(x)_{ 00, xeq

Now let g € H be a real-valued function which is equal to zero outside the finite
interval [—7,c)U ( 7]. Thus we obtain

fc ) (x)g" dx+y/ 72 (x) g (x)dx =

/ (/ L E@® (o, A) dpsij (M) gV (x)dx

Sij=1

vy [ (/Y Y E(2)e (x x)dul,u)) ¢ ()

i,j=1

. 00 (6, 2) g (x) dx }
- H (A J du;; (A
/_Si,jz_lF( ){ +?’ch¢](2) (x,4) g (x) dx # )

/ G, (A)ds; (A) (22)
—Sij=1
From Theorem 2.5, we have

[ r0weh @axry [ 1O g% (ax

- [ Y F(A)G; (A)dp (1), 23)

*i,j=1
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By (22) and (23), we have

[0 @ =0 w0 Wty [0 @)= £ () (0

—oo

2
= [ Y EMGA)duy ().

|)L‘>Si,j:1

If we apply this equality to the function

g<x>={ FO)=f(), x€[=s,0)U(c,s]

0, otherwise,

then we get

[0 =1 )y (72 00~ £ ()

—o0

2
= Y F(A)F;(A)dui;(A).

|M>s i,j=1

Letting s — oo yields the expansion result. OJ
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