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REAL INTERPOLATION WITH VARIABLE EXPONENT

DOUADI DRIHEM

We present the real interpolation with variable exponent and we prove
the basic properties in analogy to the classical real interpolation. More
precisely, we prove that under some additional conditions, this method
can be reduced to the case of fixed exponent. An application, we give
the real interpolation of variable Besov and Lorentz spaces as introduced
recently in Almeida and Hästö (J. Funct. Anal. 258 (5) 1628–2655, 2010)
and L. Ephremidze et al. (Fract. Calc. Appl. Anal. 11 (4) (2008), 407–
420).

1. Introduction

It is well known that real interpolation play an important role in several different
areas, especially for modern analysis and its theory started early in 1960’s by J–
L. Lions and J. Peetre. There are two ways for introducing the real interpolation
method. The first is the K–method and the second is the J–method. But the
spaces generated by the K– and J–methods are the same. For general literature
on real interpolation we refer to [4], [5], [18] and references therein.

In recent years, there has been growing interest in generalizing classical
spaces such as Lebesgue spaces, Sobolev spaces, Besov spaces and Triebel–
Lizorkin spaces to the case with either variable integrability or variable smooth-
ness. For instance, they appear in the study of variable exponent Riesz and
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Wolff potentials, see [3] where the authors use the real interpolation between
the spaces Lp(·) and L1. The motivation for the increasing interest in such spaces
comes not only from theoretical purposes, but also from applications to fluid dy-
namics, image restoration and PDE with non-standard growth conditions.

From these in this paper we present a variable version of real interpolation.
First we study the variable version of K–method, where we present some equiv-
alent norms for the space generated by this method and we prove their basic
properties in analogy to the fixed exponent. Secondly, we present the same anal-
ysis for the variable version of J–method and we prove the first main statement
of this paper. That is, under some additional conditions the spaces generated
by the K– and J–methods are the same. Since the reiteration theorem is one of
the most important general results in interpolation theory, we will give its proof.
Finally, we study the real interpolation of variable exponent Besov and Lorentz
spaces. Almost all of the material we present is due to [4] and [5]. Allowing
the exponent is vary from point to point will raise extra difficulties which, in
general, are overcome by imposing regularity assumptions on this exponent.

2. Preliminaries

As usual, we denote by Rn the n-dimensional real Euclidean space, N the col-
lection of all natural numbers and N0 = N∪{0}. The letter Z stands for the
set of all integer numbers. The expression f . g means that f ≤ cg for some
independent constant c (and non-negative functions f and g), and f ≈ g means
f . g . f .

By c we denote generic positive constants, which may have different values
at different occurrences. Although the exact values of the constants are usu-
ally irrelevant for our purposes, sometimes we emphasize their dependence on
certain parameters (e.g. cp, or c(p), means that c depends on p, etc.). Further
notation will be properly introduced whenever needed.

We denote by P(Rn) the set of all measurable functions p on Rn with
range in [1,∞[. We use the standard notation p− = ess–inf

x∈Rn
p(x) and p+ =

ess–sup
x∈Rn

p(x).

The variable exponent modular is defined by ρp(·)( f ) =
∫
Rn ρp(x)(| f (x)|)dx,

where ρp(t) = t p. The variable exponent Lebesgue space Lp(·) consists of mea-
surable functions f on Rn such that ρp(·)(λ f ) < ∞ for some λ > 0. We de-

fine the Luxemburg norm on this space by the formula ‖ f‖p(·) = inf
{

λ > 0 :

ρp(·)

(
f
λ

)
≤ 1
}

. A useful property is that ‖ f‖p(·) ≤ 1 if and only if ρp(·)( f )≤ 1,
see [8], Lemma 3.2.4.
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We say that g : Rn → R is locally log-Hölder continuous, abbreviated g ∈
Clog

loc (R
n), if there exists clog(g)> 0 such that

|g(x)−g(y)| ≤
clog(g)

log(e+1/ |x− y|)

for all x,y ∈ Rn. If

|g(x)−g(0)| ≤
clog(g)

ln(e+1/|x|)

for all x∈Rn, then we say that g is log-Hölder continuous at the origin (or has a
log decay at the origin). We say that g satisfies the log-Hölder decay condition,
if there exists g∞ ∈ R and a constant clog > 0 such that

|g(x)−g∞| ≤
clog

log(e+ |x|)

for all x ∈ Rn. We say that g is globally-log-Hölder continuous, abbreviated
g ∈Clog(Rn), if it is locally log-Hölder continuous and satisfies the log-Hölder
decay condition. The constants clog(g) and clog are called the locally log-Hölder
constant and the log-Hölder decay constant, respectively. We note that all func-
tions g ∈Clog

loc (R
n) always belong to L∞.

We refer to the recent monograph [6] for further properties, historical re-
marks and references on variable exponent spaces.

2.1. Technical lemmas

In this subsection we present some results which are useful for us. The following
lemma is from [8].

Lemma 2.1. Let A ⊂ Rn and p ∈ P(Rn) with p− < ∞. If η = ρp(·)( f χA) > 0
or p+ < ∞, then

min
{

η
1

p− ,η
1

p+
}
≤ ‖ f χA‖p(·) ≤max

{
η

1
p− ,η

1
p+
}
.

The next lemma is a Hardy-type inequality which is easy to prove.

Lemma 2.2. Let 0 < a < 1 and 0 < q≤∞. Let {εk}k be a sequences of positive
real numbers and denote δk = ∑

∞
j=−∞ a|k− j|ε j. Then there exists constant c >

0 depending only on a and q such that( ∞

∑
k=−∞

δ
q
k

)1/q
≤ c

( ∞

∑
k=−∞

ε
q
k

)1/q
.
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Putting

w(Q) =
∫

Q
w(x)dx,

we will make use of the following statement, see [9], Lemma 3.3 for w := 1.

Lemma 2.3. Let p ∈ P(R) and w be a weight function on R. Then, putting

p−Q = ess-inf
z∈Q

p(z)

for a cube Q = (a,b)⊂R with 0 < a < b < ∞, we have the following inequality:(
γm

w(Q)

∫
Q
| f (y)|w(y)dy

)p(x)

≤c max
(

1,(w(Q))
1− p(x)

p−

)
1

w(Q)

∫
Q

φ(y)w(y)dy

+
c ω(m,b)

w(Q)

∫
Q

g(x,y)w(y)dy

for some positive constant c > 0, all x ∈ Q and all f ∈ Lp(·)(w) with

‖ f‖Lp(·)(w) ≤ 1,

where we put

ω(m,b) = min(bm,1) , φ(y) = | f (y)|p(y)

and

g(x,y) =
(

e+
1
x

)−m

+

(
e+

1
y

)−m

,

or
ω(m,b) = min(bm,1) , φ(y) = | f (y)|p(0)

and

g(x,y) =
(

e+
1
x

)−m

χ{z∈Q:p(z)<p(0)}(x)

with p ∈ P(R) being log-Hölder continuous at the origin where

γm = e−4mclog(1/p) ∈ (0,1)

for every m > 0. In addition, we have the same estimate, when

ω(m,b) = 1, γm = e−mclog , φ(y) = | f (y)|p∞

and
g(x,y) = (e+ x)−m

χ{z∈Q:p(z)<p∞}(x)

with p ∈ P(R) satisfying the log-Hölder decay condition.
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The proof of this lemma is given in [11]. The next lemma is the continuous
version of Hardy-type inequality, see [7].

Lemma 2.4. Let s > 0. Let q ∈ P(R) be log-Hölder continuous both at the
origin and at infinity with 1≤ q− ≤ q+ < ∞. Let {εt}t be a sequence of positive
measurable functions. Let

ηt = ts
∫

∞

t
τ
−s

ετ

dτ

τ
and δt = t−s

∫ t

0
τ

s
ετ

dτ

τ
.

Then there exists constant c > 0 depending only on s, q−, clog(q) and q+ such
that

‖ηt‖Lq(·)((0,∞), dt
t )
+‖δt‖Lq(·)((0,∞), dt

t )
. ‖εt‖Lq(·)((0,∞), dt

t )
.

3. The K–Method

The fundamental notion of real interpolation is the K–functional, where it is due
to J. Peetre.

Definition 3.1. Let A0 and A1 be Banach spaces over K= R or C. We shall say
that A0 and A1 are compatible if there is a Hausdorff topological vector space Z
such that

A0,A1 ↪→ Z,

with continuous embeddings.

Let A0 and A1 be compatible. We will say that (A0,A1) is a compatible
couple. Then we can form their sum A0+A1 and their intersection A0∩A1. The
sum consists of all f ∈ Z such that we can write

f = f0 + f1

for some f0 ∈ A0 and f1 ∈ A1. Then A0 +A1 is a Banach space with norm
defined by

‖ f‖A0+A1
= inf

f= f0+ f1

(
‖ f0‖A0

+‖ f1‖A1

)
.

A0∩A1 is a Banach space with norm defined by

‖ f‖A0∩A1
= max

f= f0+ f1

(
‖ f0‖A0

,‖ f1‖A1

)
.

Let (A0,A1) be a compatible couple. With t > 0 fixed, put

K(t, f ;A0,A1) = inf
f= f0+ f1

(
‖ f0‖A0

+ t ‖ f1‖A1

)
, f ∈ A0 +A1,
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is the K–functional. For any f ∈ A0 +A1, K(t, f ;A0,A1) is a positive, in-
creasing and concave function of t. In particular

K(t, f ;A0,A1)≤max(1,
t
s
)K(s, f ;A0,A1), s, t > 0. (1)

If there is no danger of confusion, we shall write K(t, f ) = K(t, f ;A0,A1).

Definition 3.2. Let θ ∈ (0,1) and q ∈ P(R). Let (A0,A1) be a compatible cou-
ple. The space (A0,A1)θ ,q(·) consists of all f in A0+A1 for which the functional

‖ f‖(A0,A1)θ ,q(·)
=
∥∥t−θ K(t, f )

∥∥
Lq(·)((0,∞), dt

t )

is finite.

Definition 3.3. Let θ ∈ [0,1]. Let (A0,A1) be a compatible couple. The space
(A0,A1)θ ,∞ consists of all f in A0 +A1 for which the functional

‖ f‖(A0,A1)θ ,∞
= sup

t>0
t−θ K(t, f )

is finite.

In the next lemma we prove that the first definition can be given in discrete
version, where we need additional assumptions on q.

Lemma 3.4. Let (A0,A1) be a compatible couple and f ∈ A0 + A1. Let θ ∈
(0,1), f ∈ (A0,A1)θ ,q(·) and we put αv = K(2v, f ), v ∈ Z. Let q ∈ P(R) be
log-Hölder continuous both at the origin and at infinity. Then

‖ f‖(A0,A1)θ ,q(·)
≈
( 0

∑
v=−∞

2−vθq(0)
α

q(0)
v

) 1
q(0)

+
( ∞

∑
v=1

2−vθq∞α
q∞

v

) 1
q∞

.

Moreover,

‖ f‖(A0,A1)θ ,q(·)
≈
(∫ 1

0
t−θq(0)K(t, f )q(0) dt

t

) 1
q(0)

+
(∫ ∞

1
t−θq∞K(t, f )q∞

dt
t

) 1
q∞

.

Proof. We will do the proof in two steps and we need only to prove the first
statement.

Step 1. Let us prove that

S =
( 0

∑
v=−∞

2−vθq(0)
α

q(0)
v

) 1
q(0)

+
( ∞

∑
v=1

2−vθq∞α
q∞

v

) 1
q∞ . ‖ f‖(A0,A1)θ ,q(·)

. (2)
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By scaling argument, we need only to prove that

∞

∑
v=1

2−vθq∞

(
αv
)q∞ . 1 and

0

∑
v=−∞

2−vθq(0)(
αv
)q(0)

. 1

for any f ∈ (A0,A1)θ ,q(·) with ‖ f‖(A0,A1)θ ,q(·)
≤ 1. To prove the first estimate we

need to prove that

2−vθq∞

(
αv
)q∞ ≤

∫ 2v

2v−1

(
t−θ K(t, f )

)q(t) dt
t
+2−v = δ

for any v ∈ N. This claim can be reformulated as showing that(
δ
− 1

q∞ 2−vθ
αv
)q∞ =

( 1
log2

∫ 2v

2v−1
δ
− 1

q∞ 2−vθ
αv

dτ

τ

)q∞

. 1.

Using the property (1), we find that∫ 2v

2v−1
δ
− 1

q∞ 2−vθ
αv

dτ

τ
.
∫ 2v

2v−1
δ
− 1

q∞ τ
−θ K(τ, f )

dτ

τ
.

By Lemma 2.3 the last expression with power q(t) is bounded by

c
∫ 2v

2v−1
δ
− q(τ)

q∞

(
τ
−θ K(τ, f )

)q(τ) dτ

τ
+ c

for any t ∈ [2v−1,2v]. Since q is log-Hölder continuous at infinity, we find that

δ
− q(τ)

q∞ ≈ δ
−1, τ ∈ [2v−1,2v], v ∈ N. (3)

Therefore, from the definition of δ , we find that∫ 2v

2v−1
δ
− q(τ)

q∞

(
τ
−θ K(τ, f )

)q(τ) dτ

τ
. 1.

Now, let us prove the second estimate. We need to show that

2−vθq(0)(
αv
)q(0)

.
∫ 2v

2v−1

(
t−θ K(t, f )

)q(t) dt
t
+2v = δ

for any v≤ 0. This claim can be reformulated as showing that(
δ
− 1

q(0) 2−vθ
αv
)q(0)

=
( 1

log2

∫ 2v

2v−1
δ
− 1

q(0) 2−vθ
αv

dτ

τ

)q(0)
. 1.

The property (1), gives that∫ 2v

2v−1
δ
− 1

q(0) 2−vθ
αv

dτ

τ
.
∫ 2v

2v−1
δ
− 1

q(0) τ
−θ K(τ, f )

dτ

τ
.
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Again by Lemma 2.3,(∫ 2v

2v−1
δ
− 1

q(0) τ
−θ K(τ, f )

dτ

τ

)q(t)
.
∫ 2v

2v−1
δ
− q(τ)

q(0)
(
τ
−θ K(τ, f )

)q(τ) dτ

τ
+1

for any t ∈ [2v−1,2v] and any v ≤ 0. We use the logarithmic decay condition at
origin of q to show that

δ
− q(τ)

q(0) ≈ δ
−1, τ ∈ [2v−1,2v], v≤ 0.

Therefore, from the definition of δ , we find that∫ 2v

2v−1
δ
− q(τ)

q(0)
(
τ
−θ K(τ, f )

)q(τ) dτ

τ
. 1

for any v≤ 0. Hence, we proved (2).
Step 2. Let us prove that

‖ f‖(A0,A1)θ ,q(·)
. S.

This claim can be reformulated as showing that∫
∞

0

(
t−θ K(t,

f
S
)
)q(t) dt

t
. 1.

Now our estimate clearly follows from the inequalities∫ 2v

2v−1

(
t−θ K(t,

f
S
)
)q(t) dt

t
. 2−vθq∞

(αv

S

)q∞ +2−v = δ

for any v ∈ N and∫ 2v

2v−1

(
t−θ K(t,

f
S
)
)q(t) dt

t
. 2−vθq(0)(αv

S

)q(0)
+2v

for any v≤ 0. The first claim can be reformulated as showing that∫ 2v

2v−1

(
δ
− 1

q(t) t−θ K(t,
f
S
)
)q(t) dt

t
. 1.

We need only to show that

δ
− 1

q(t) t−θ K(t,
f
S
). 1

for any v ∈ N and any t ∈ [2v−1,2v]. From (1), the left-hand side is bounded by

δ
− 1

q(t) 2−θvK(2v,
f
S
),
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and from (3) we find that

δ
− 1

q(t) 2−θvK(2v,
f
S
). δ

− 1
q∞ 2−θvK(2v,

f
S
)≤ 1

for any v ∈ N. Similarly we estimate the second claim. Hence the lemma is
proved.

Let (A0,A1) be a compatible couple. Let θ ∈ [0,1], f ∈ (A0,A1)θ ,∞ and we
put αv = K(2v, f ), v ∈ Z. Then we have

‖ f‖(A0,A1)θ ,∞
≈ sup

v∈Z
2vθ

αv.

We present some important properties of the spaces (A0,A1)θ ,q(·).

Theorem 3.5. Let θ ∈ (0,1) and q∈P(R). Let (A0,A1) be a compatible couple
of Banach spaces. Then (A0,A1)θ ,q(·) is Banach space and

K(s, f ;A0,A1)≤ γθ ,q+,q−sθ ‖ f‖(A0,A1)θ ,q(·)

for any s > 0. Moreover we have

A0∩A1 ↪→ (A0,A1)θ ,q(·) ↪→ A0 +A1.

Proof. Let { fn}n be a sequence in A0 +A1 such that

∞

∑
n=1
‖ fn‖(A0,A1)θ ,q(·)

< ∞.

Since Lq(·)((0,∞), dt
t ) is a Banach space, the series ∑

∞
n=1 t−θ K(t, fn) converges

in Lq(·)((0,∞), dt
t ). Then clearly

∞

∑
n=1

t−θ K(t, fn)< ∞

for all t > 0. By the triangle inequality we have that

t−θ K(t,
∞

∑
n=1

fn)≤ t−θ
∞

∑
n=1

K(t, fn)

for all t > 0. Applying the Lq(·)((0,∞), dt
t )-norm to each side, we obtain

∥∥ ∞

∑
n=1

fn
∥∥
(A0,A1)θ ,q(·)

≤
∞

∑
n=1
‖ fn‖(A0,A1)θ ,q(·)

< ∞,
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which ensure that (A0,A1)θ ,q(·) is Banach space. By the property (1) we find
that

min(1,
t
s
)K(s, f )≤ K(t, f ), s, t > 0.

Therefore, ∥∥t−θ min(1,
t
s
)
∥∥

Lq(·)((0,∞), dt
t )

K(s, f )≤ ‖ f‖(A0,A1)θ ,q(·)
.

Let us prove that ∥∥t−θ min(1,
t
s
)
∥∥

Lq(·)((0,∞), dt
t )

& s−θ . (4)

We have ∥∥t−θ min(1,
t
s
)
∥∥

Lq(·)((0,∞), dt
t )
≥ s−θ

∥∥( t
s

)1−θ
∥∥

Lq(·)((0,s), dt
t )
,

and ∫ s

0

( t
s

)(1−θ)q(t) dt
t
≥
∫ s

0

( t
s

)(1−θ)q+ dt
t
=

1
(1−θ)q+

.

From Lemma 2.1, we find our claim (4). Therefore,

K(s, f )≤ γθ ,q+,q−sθ ‖ f‖(A0,A1)θ ,q(·)

for any s > 0. Taking s = 1, we obtain

‖ f‖A0+A1
. ‖ f‖(A0,A1)θ ,q(·)

.

Now since
K(t, f )≤min(1, t)‖ f‖A0∩A1

,

we find that
‖ f‖(A0,A1)θ ,q(·)

. ‖ f‖A0∩A1
.

Definition 3.6. Let (A0,A1) and (B0,B1) be two compatible couples of Banach
spaces and let T be a linear operator defined on A0 +A1 and taking values in
B0+B1. T is said be admissible with respect to the couples (A0,A1) and (B0,B1)
if, for each i = 1,0 the restriction of T to Ai maps Ai into Bi and furthermore is
a bounded operator from Ai into Bi :

‖T f‖Bi
≤ ‖T‖L(Ai,Bi)

‖ f‖Ai
, f ∈ Ai.

Notice that every admissible operator T with respect to the couples (A0,A1)
and (B0,B1) is bounded from A0 +A1 into B0 +B1.
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Theorem 3.7. Let θ ∈ (0,1) and q ∈ P(R). Let (A0,A1) and (B0,B1) be two
compatible couples of Banach spaces and let T be admissible with respect to
the couples (A0,A1) and (B0,B1). Then

T : (A0,A1)θ ,q(·) −→ (B0,B1)θ ,q(·)

and

‖T f‖(B0,B1)θ ,q(·)
≤max

(
‖T‖L(A0,B0)

,‖T‖L(A1,B1)

)
‖ f‖(A0,A1)θ ,q(·)

for all f ∈ (A0,A1)θ ,q(·).

Proof. Suppose that T : (A0,A1)−→ (B0,B1). Then

K(t,T f ;B0,B1) ≤ ‖T‖L(A0,B0)
K
(‖T‖L(A1,B1)

t

‖T‖L(A0,B0)

, f ;A0,A1

)
≤ max

(
‖T‖L(A0,B0)

,‖T‖L(A1,B1)

)
K(t, f ;A0,A1),

by the property (1). Multiplying by t−θ and then applying the Lq(·)((0,∞), dt
t )-

norm to each side we obtain the desired estimate.

Proposition 3.8. Let θ ∈ (0,1). Let (A0,A1) be a compatible couples of Banach
spaces.
(i) Let q,r ∈ P(R) with 1≤ q(·)≤ r(·)< ∞. Then

(A0,A1)θ ,q(·) ↪→ (A0,A1)θ ,r(·).

and
(A0,A1)θ ,q(·) ↪→ (A0,A1)θ ,∞

(ii) Let q ∈ P(R) be log-Hölder continuous both at the origin and at infinity
with q(0) = q∞. Then

(A0,A1)θ ,q(·) = (A1,A0)1−θ ,q(·).

(iii) Let q,r ∈ P(R) be log-Hö lder continuous both at the origin and at infinity
with q(0) = r(0) and q∞ = r∞. Then

(A0,A1)θ ,q(·) = (A0,A1)θ ,r(·).

(iv) If A1 ↪→ A0, then

(A0,A1)θ1,q(·) ↪→ (A0,A1)θ ,q(·) if 0 < θ ≤ θ1 < 1.

(v) If A0 = A1, with equal norm, then

(A0,A1)θ ,q(·) = A0.
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Proof. We prove (i). From Theorem 3.5, we obtain

(A0,A1)θ ,q(·) ↪→ (A0,A1)θ ,∞ and K(s, f ). sθ ‖ f‖(A0,A1)θ ,q(·)

for any f ∈ (A0,A1)θ ,q(·), any s > 0 with ‖ f‖(A0,A1)θ ,q(·)
6= 0 and this implies that∫

∞

0

(
t−θ K(t,

f
‖ f‖(A0,A1)θ ,q(·)

)
)r(t) dt

t

≤
∫

∞

0

(
t−θ K(t,

f
‖ f‖(A0,A1)θ ,q(·)

)
)q(t)(sup

t>0
t−θ K(t,

f
‖ f‖(A0,A1)θ ,q(·)

)
)r(t)−q(t) dt

t

.
∫

∞

0

(
t−θ K(t,

f
‖ f‖(A0,A1)θ ,q(·)

)
)q(t) dt

t
.

The last term is bounded since∥∥∥t−θ K(t,
f

‖ f‖(A0,A1)θ ,q(·)

)
∥∥∥

Lq(·)((0,∞), dt
t )

= 1,

which implies that,
‖ f‖(A0,A1)θ ,r(·)

. ‖ f‖(A0,A1)θ ,q(·)
.

Hence the property (i) is proved. To prove (ii) we use Lemma 3.4, the fact that

K(t, f ;A0,A1) = tK(t−1, f ;A1,A0), v > 0,

and q(0) = q∞. The property (iii) follows by Lemma 3.4. Now if A1 ↪→ A0 then
we have ‖ f‖A0

≤ c‖ f‖A1
for any f ∈ A1 and

K(t, f ) = ‖ f‖A0
,

if t > c. Then ∥∥t−θ K(t, f )
∥∥

Lq(·)((c,∞), dt
t )

. ‖ f‖A0
,

and ∥∥t−θ K(t, f )
∥∥

Lq(·)((0,∞), dt
t )

.
∥∥t−θ K(t, f )

∥∥
Lq(·)((0,c), dt

t )
+‖ f‖A0

.

Using the fact that

‖ f‖A0
.
∥∥t−θ1K(t, f )

∥∥
Lq(·)((c,∞), dt

t )
,

and 0 < θ ≤ θ1 < 1, we obtain

‖ f‖(A0,A1)θ ,q(·)
. ‖ f‖(A0,A1)θ1 ,q(·)

.

So, the property (iv) is proved. Now the property (v) is immediate. The proof is
complete.
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4. The J–Method

Let (A0,A1) be a compatible couple. With t > 0 fixed, put

J(t, f ;A0,A1) = inf
f= f0+ f1

(
‖ f0‖A0

, t ‖ f1‖A1

)
, f ∈ A0∩A1.

Notice that J(t, f ;A0,A1) is an equivalent norm on A0∩A1 for a given t > 0. If
there is no danger of confusion, we shall write J(t, f ) = J(t, f ;A0,A1). For any
f ∈ A0∩A1, J(t, f ) is a positive, increasing and convex function of t, such that

J(t, f )≤max(1,
t
s
)J(s, f ), (5)

and
K(t, f )≤min(1,

t
s
)J(s, f ). (6)

Now we define the interpolation space constructed by the J–method.

Definition 4.1. Let θ ∈ (0,1) and q ∈ P(R). Let (A0,A1) be a compatible cou-
ple. The space (A0,A1)θ ,q(·),J consists of all f in A0 +A1 that are representable
in the form

f =
∫

∞

0
u(t)

dt
t

(7)

where u(t) is measurable with values in A0∩A1 and

‖ f‖(A0,A1)θ ,q(·),J
= inf

∥∥t−θ J(t,u(t))
∥∥

Lq(·)((0,∞), dt
t )

< ∞,

where the infimum is taken over all u such that (7) holds.

Definition 4.2. Let θ ∈ (0,1). The space (A0,A1)θ ,∞,J consists of all f in A0 +
A1 that are representable in the form (7), where u(t) is measurable with values
in A0∩A1 and

‖ f‖(A0,A1)θ ,∞,J
= infsup

t>0
t−θ J(t,u(t))< ∞,

where the infimum is taken over all u such that (7) holds.

Lemma 4.3. Let (A0,A1) be a compatible couple and f ∈A0+A1. Let θ ∈ (0,1)
and q ∈ P(R) be log-Hölder continuous both at the origin and at infinity. Then
f ∈ (A0,A1)θ ,q(·),J if and only if there exist uv ∈ A0∩A1, v ∈ Z, with

f =
∞

∑
v=−∞

uv convergence in A0∩A1, (8)
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and such that

‖(J(2v,uv))v‖λ θ ,q(0),q∞

=
( 0

∑
v=−∞

2−vθq(0)J(2v,uv)
q(0)
) 1

q(0)
+
( ∞

∑
v=1

2−vθq∞J(2v,uv)
q∞

) 1
q∞

< ∞.

Moreover
‖ f‖(A0,A1)θ ,q(·),J

≈ inf
uv
‖(J(2v,uv))v‖λ θ ,q(0),q∞

,

where the infimum is extended over all sequences (uv)v satisfying (8).

Proof. Let f ∈ (A0,A1)θ ,q(·),J . Then we have a representation

f =
∫

∞

0
u(t)

dt
t
,

where u(t) is measurable with values in A0∩A1 and

‖ f‖(A0,A1)θ ,q(·),J
= inf

∥∥t−θ J(t,u(t))
∥∥

Lq(·)((0,∞), dt
t )

< ∞.

We set

uv =
∫ 2v+1

2v
u(t)

dt
t
, v ∈ Z.

Then we have

f =
∞

∑
v=−∞

uv.

Let us prove that

S({uv}) =
( 0

∑
v=−∞

2−vθq(0)
α

q(0)
v

) 1
q(0)

+
( ∞

∑
v=1

2−vθq∞α
q∞

v

) 1
q∞ (9)

.
∥∥t−θ J(t,u(t))

∥∥
Lq(·)((0,∞), dt

t )
,

with αv = J(2v,uv), v ∈ Z. We need only to prove that

∞

∑
v=1

2−vθq∞

( αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q∞ . 1,

and
0

∑
v=−∞

2−vθq(0)( αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q(0)
. 1.
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First let us prove that

2−vθq∞

(
αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q∞

≤
∫ 2v

2v−1

(
t−θ J(t,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
)q(t) dt

t
+2−v = δ

for any v ∈ N. This claim can be reformulated as showing that(
δ
− 1

q∞ 2−vθ αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q∞

. 1.

Using the property (5), we find that

δ
− 1

q∞ 2−vθ αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

.
∫ 2v

2v−1
δ
− 1

q∞ τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
dτ

τ
.

By Lemma 2.3,(∫ 2v

2v−1
δ
− 1

q∞ τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

dτ

τ

)q(t)

.
∫ 2v

2v−1
δ
− q(τ)

q∞

(
τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
)q(τ) dτ

τ
+1

for any t ∈ [2v−1,2v]. Since, q is log-Hölder continuous at the infinity we find
that

δ
− q(τ)

q∞ ≈ δ
−1, τ ∈ [2v−1,2v], v ∈ N. (10)

Therefore, from the definition of δ , we find that the last integral is dominated
by a constant independent on v ∈ N. Now, let us prove that

2−vθq(0)
(

αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q(0)

.
∫ 2v

2v−1

(
t−θ J(t,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
)q(t) dt

t
+2v = δ

for any v≤ 0. This claim can be reformulated as showing that(
δ
− 1

q(0) 2−vθ αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)q(0)
. 1.
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The property (5), gives that

δ
− 1

q(0) 2−vθ αv

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

≤
∫ 2v

2v−1
δ
− 1

q(0) τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
dτ

τ
.

Again by Lemma 2.3,(∫ 2v

2v−1
δ
− 1

q(0) τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
dτ

τ

)q(t)

.
∫ 2v

2v−1
δ
− q(τ)

q(0)
(
τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
dτ

τ

)q(τ) dτ

τ
+1

for any t ∈ [2v−1,2v] and any v ≤ 0. We use the logarithmic decay condition at
origin of q to show that

δ
− q(τ)

q(0) ≈ δ
−1, τ ∈ [2v−1,2v], v≤ 0.

Therefore and from the definition of δ , we find that∫ 2v

2v−1
δ
− q(τ)

q(0)
(
τ
−θ J(τ,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
)q(τ) dτ

τ
. 1.

Hence the left-hand side of (9) can be estimated by

c
∫

∞

0

(
t−θ J(t,

u(t)
‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt

t )

)
)q(t) dt

t
+ c.

The first term is bounded since∥∥∥t−θ J(t,
u(t)

‖t−θ J(t,u(t))‖Lq(·)((0,∞), dt
t )

)
∥∥∥

Lq(·)((0,∞), dt
t )

= 1.

Now in (9) taking the infimum, we conclude that

inf
uv
‖(J(2v,uv))v‖λ θ ,q(0),q∞

. ‖ f‖(A0,A1)θ ,q(·),J
.

Conversely, assume that

f =
∞

∑
v=−∞

uv and S = S({uv})< ∞.
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Let us prove that
‖ f‖(A0,A1)θ ,q(·),J

. S. (11)

Choose
u(t) =

uv

log2
, t ∈ [2v−1,2v].

Then f =
∫

∞

0 u(t)dt
t . This claim can be reformulated as showing that∫

∞

0

(
t−θ J(t,

u(t)
S

)
)q(t) dt

t
. 1.

Now our estimate clearly follows from the inequalities∫ 2v

2v−1

(
t−θ J(t,

u(t)
S

)
)q(t) dt

t
. 2−vθq∞

(αv

S

)q∞ +2−v = δ

for any v ∈ N and∫ 2v

2v−1

(
t−θ J(t,

u(t)
S

)
)q(t) dt

t
. 2−vθq(0)(αv

S

)q(0)
+2v = δ

for any v≤ 0. The first claim can be reformulated as showing that∫ 2v

2v−1

(
δ
− 1

q(t) t−θ J(t,
u(t)

S
)
)q(t) dt

t
. 1.

We need only to show that

δ
− 1

q(t) t−θ J(t,
u(t)

S
). 1

for any v ∈ N and any t ∈ [2v−1,2v]. The left-hand side is bounded by

δ
− 1

q(t) 2−θvJ(2v,
u(t)

S
).

From (10) we find that

δ
− 1

q(t) 2−θvJ(2v,
u(t)

S
). δ

− 1
q∞ 2−θvJ(2v,

uv

S
)≤ 1

for any v ∈ N and any t ∈ [2v−1,2v]. Similarly we estimate the second claim.
In (11) taking the infimum we conclude that

‖ f‖(A0,A1)θ ,q(·),J
. inf

uv
‖(J(2v,uv))v‖λ θ ,q(0),q∞

.
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We shall prove that the spaces generated by the K-and J-methods are the
same.

Theorem 4.4. Let (A0,A1) be a compatible couple. Let θ ∈ (0,1) and q∈P(R)
be log-Hölder continuous both at the origin and at infinity. Then

(A0,A1)θ ,q(·),J = (A0,A1)θ ,q(·),

with equivalence of norms.

Proof. Let f ∈ (A0,A1)θ ,q(·),J with f =
∫

∞

0 u(s)ds
s , where u(s) is measurable

with values in A0∩A1. By (6) we have

K(t, f )≤
∫

∞

0
K(t,u(s))

ds
s
≤
∫

∞

0
min(1,

t
s
)J(s,u(s))

ds
s
.

Applying Hardy inequality, Lemma 2.4, we get

‖ f‖(A0,A1)θ ,q(·)
. ‖ f‖(A0,A1)θ ,q(·),J

.

For the converse inequality, Lemma 3.3.2 of [5], and using Theorem 3.5, implies
the existence of a representation

f =
∞

∑
v=−∞

uv,

such that
J(2v,uv)≤ (γ + ε)K(2v, f )

for any v ∈ Z, ε > 0 and γ is a universal constant less than or equal 3. By
Lemmas 3.4 and 4.3 we get

‖ f‖(A0,A1)θ ,q(·),J
. ‖ f‖(A0,A1)θ ,q(·)

.

This completes the proof of this theorem.

Theorem 4.5. Let (A0,A1) be a compatible couple. Let θ ∈ (0,1) and q∈P(R)
be log-Hölder continuous both at the origin and at infinity. Then A0∩A1 is dense
in (A0,A1)θ ,q(·).

Proof. Let f ∈ (A0,A1)θ ,q(·). From Theorem 4.4 we have

f =
∞

∑
v=−∞

uv,
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where uv, v ∈ Z is measurable with values in A0∩A1 and

‖(J(2v,uv))v‖λ θ ,q(0),q∞
< ∞.

Then ∥∥∥ f − ∑
|v|≤N

uv

∥∥∥
(A0,A1)θ ,q(·)

≤
( ∞

∑
v=N

2−vθq∞J(2v,uv)
q∞

) 1
q∞

+
( −N

∑
v=−∞

2−vθq(0)J(2v,uv)
q(0)
) 1

q(0)
.

Therefore, ∥∥∥ f − ∑
|v|≤N

uv

∥∥∥
(A0,A1)θ ,q(·)

,

which tends to zero if N −→ ∞.

Definition 4.6. Let θ ∈ [0,1]. Let (A0,A1) be a compatible couple of normed
vector spaces. Suppose that X is an intermediate space with respect to (A0,A1).
Then we say that
(i) X is of class CK(θ ;A0,A1) if K(t, f ;A0,A1)≤Ctθ ‖ f‖X , f ∈ X ;
(ii) X is of class CJ(θ ;A0,A1) if ‖ f‖X ≤Ct−θ J(t, f ;A0,A1), f ∈ A0∩A1.
(iii) We say that X is of class C (θ ;A0,A1) if X is of class CK(θ ;A0,A1) and of
class CJ(θ ;A0,A1).

Let q ∈ P(R). From [5, Theorem 3.5.2], Theorem 3.5 and Proposition 3.8
we see that (A0,A1)θ ,q(·) is of class C (θ ;A0,A1) if θ ∈ (0,1).

We are now ready to prove the reiteration theorem, which is one of the most
important general results in interpolation theory.

Theorem 4.7. Let q ∈P(R) be log-Hölder continuous both at the origin and at
infinity. Let (A0,A1) and (X0,X1) be two compatible couples of normed linear
spaces, and assume that Xi (i = 0,1) are complete and of class C (θi;A0,A1),
where θ0,θ1 ∈ [0,1] and θ0 6= θ1. Put

θ = (1−η)θ0 +ηθ1, η ∈ (0,1).

Then
(A0,A1)θ ,q(·) = (X0,X1)η ,q(·)

with equivalence of norms. In particular, if θ0,θ1 ∈ (0,1), q0,q1 ∈ P(R) are
log-Hölder continuous both at the origin and at infinity and (A0,A1)θi,qi(·) are
complete then(

(A0,A1)θ0,q0(·),(A0,A1)θ1,q1(·)
)

η ,q(·) = (A0,A1)θ ,q(·)
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where
1

q(·)
=

θ0

q0(·)
+

θ1

q1(·)
.

Proof. We will do the proof in two steps.
Step 1. Let us prove that

(X0,X1)η ,q(·) ↪→ (A0,A1)θ ,q(·). (12)

Let f ∈ (X0,X1)η ,q(·). Then

f = f0 + f1, f0 ∈ X0, f1 ∈ X1.

Since Xi (i = 0,1) are of class C (θi;A0,A1) we have

K(t, f ;A0,A1) ≤ K(t, f0;A0,A1)+K(t, f1;A0,A1)≤ c(tθ0 ‖ f0‖X0
+ tθ1 ‖ f1‖X1

)

≤ ctθ0K(tθ1−θ0 , f ;X0,X1).

Therefore, from Lemma 3.4, we get

‖ f‖(A0,A1)θ ,q(·)
.

(∫ 1

0
t(θ0−θ)q(0)K(tθ1−θ0 , f ;X0,X1)

q(0) dt
t

) 1
q(0)

+
(∫ ∞

1
t(θ0−θ)q∞K(tθ1−θ0 , f ;X0,X1)

q∞
dt
t

) 1
q∞

.

Putting s = tθ1−θ0 and observing that η = θ−θ0
θ1−θ0

we find that

‖ f‖(A0,A1)θ ,q(·)
. ‖ f‖(X0,X1)η ,q(·)

,

which gives (12).
Step 2. Let us prove that

(A0,A1)θ ,q(·) ↪→ (X0,X1)η ,q(·). (13)

Assume that f ∈ (A0,A1)θ ,q(·). We choose a representation

f =
∞

∑
v=−∞

uv,

where uv, v ∈ Z is measurable with values in A0∩A1 and

‖(J(2v,uv))v‖λ θ ,q(0),q∞
< ∞.
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Applying (6), and that Xi (i = 0,1) are of class C (θi;A0,A1) we get for any
j ∈ Z,

2(θ0−θ) jK(2(θ1−θ0) j, f ;X0,X1)

≤ 2(θ0−θ) j
∞

∑
v=−∞

K(2(θ1−θ0) j,uv;X0,X1)

≤ 2(θ0−θ) j
∞

∑
v=−∞

min
(

1,2( j−v)(θ1−θ0)
)

J(2v(θ1−θ0),uv;X0,X1)

≤ 2−θ j
∞

∑
v=−∞

min
(

2( j−v)θ0 ,2( j−v)θ1
)

J(2v,uv;A0,A1).

The last term can be rewritten us

j

∑
v=−∞

2( j−v)(θ0−θ)2−vθ J(2v,uv;A0,A1)+
∞

∑
v= j+1

2( j−v)(θ1−θ)2−vθ J(2v,uv;A0,A1)

(14)
for any j ∈ Z. We treat the case j ≥ 0. The first sum can be rewritten us

0

∑
v=−∞

2( j−v)(θ0−θ)2−vθ J(2v,uv;A0,A1)+
j

∑
v=1

2( j−v)(θ0−θ)2−vθ J(2v,uv;A0,A1)

. 2 j(θ0−θ) sup
v≤0

(2−vθ J(2v,uv;A0,A1))+
j

∑
v=1

2( j−v)(θ0−θ)2−vθ J(2v,uv;A0,A1).

Applying Lemma 2.2 we get∥∥∥∥(2(θ0−θ) jK(2(θ1−θ0) j, f ;X0,X1)
)

j≥1

∥∥∥∥
λ θ ,q(0),q∞

. ‖(J(2v,uv))v‖λ θ ,q(0),q∞
.

Now if j ≤ 0, the second sum of (14) can be rewritten us

0

∑
v= j+1

2( j−v)(θ1−θ)2−vθ J(2v,uv;A0,A1)+
∞

∑
v=1

2( j−v)(θ1−θ)2−vθ J(2v,uv;A0,A1)

≤
0

∑
v= j+1

2( j−v)(θ1−θ)2−vθ J(2v,uv;A0,A1)+2 j(θ1−θ) sup
v≥1

(
2−vθ J(2v,uv;A0,A1)

)
.

Applying again Lemma 2.2 we get∥∥∥∥(2(θ0−θ) jK(2(θ1−θ0) j, f ;X0,X1)
)

j≤0

∥∥∥∥
λ θ ,q(0),q∞

. ‖(J(2v,uv))v‖λ θ ,q(0),q∞
.
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This prove the embedding (13) by taking the infimum in view of Theorem 4.3
and the fact that

‖ f‖(X0,X1)η ,q(·)
≈
( 0

∑
j=−∞

2(θ0−θ) jq(0)
α

q(0)
j

) 1
q(0)

+
( ∞

∑
j=1

2(θ0−θ) jq∞α
q∞

j

) 1
q∞

,

where
α j = K(2(θ1−θ0) j, f ;X0,X1), j ∈ Z.

This completes the proof of Theorem 4.7.

5. Application

In this section, we give a simple application of the results of the previous sec-
tions. We will present various real interpolation formulas in Besov spaces with
variable indices. The symbol S(Rn) is used in place of the set of all Schwartz
functions on Rn. We denote by S ′(Rn) the dual space of all tempered distri-
butions on Rn. The Fourier transform of a Schwartz function f is denoted by
F f . To define the variable Besov spaces, we first need the concept of a smooth
dyadic resolution of unity. Let Ψ be a function in S(Rn) satisfying Ψ(x) = 1
for |x| ≤ 1 and Ψ(x) = 0 for |x| ≥ 2. We define ϕ0 and ϕ1 by Fϕ0(x) = Ψ(x),
Fϕ1(x) = Ψ(x)−Ψ(2x) and

Fϕ j(x) = Fϕ1(2− jx) for j = 2,3, ....

Then {Fϕ j} j∈N0 is a smooth dyadic resolution of unity, ∑
∞
j=0Fϕ j(x) = 1 for

all x ∈Rn. Thus we obtain the Littlewood-Paley decomposition f = ∑
∞
j=0 ϕ j ∗ f

of all f ∈ S ′(Rn) (convergence in S ′(Rn)).
Let p,q ∈ P(Rn). The mixed Lebesgue-sequence space `

q(·)
> (Lp(·)) is de-

fined on sequences of Lp(·)-functions by the modular

ρ
`

q(·)
> (Lp(·))

(( fv)v) =
∞

∑
v=1

inf
{

λv > 0 : ρp(·)

( fv

λ
1/q(·)
v

)
≤ 1
}
.

The (quasi)-norm is defined from this as usual:

‖( fv)v‖`q(·)
> (Lp(·))

= inf
{

µ > 0 : ρ`q(·)(Lp(·))

( 1
µ
( fv)v

)
≤ 1
}
. (15)

If q+<∞, then we can replace (15) by the simpler expression ρ
`

q(·)
> (Lp(·))

(( fv)v)=
∞

∑
v=1

∥∥| fv|q(·)
∥∥ p(·)

q(·)
. The case p := ∞ can be included by replacing the last modular

by ρ
`

q(·)
> (L∞)

(( fv)v) =
∞

∑
v=1

∥∥ | fv|q(·)
∥∥

∞
.
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We define the following class of variable exponents P log(Rn) :=
{

p ∈ P :
1
p ∈Clog

}
, were introduced in [9, Section 2]. We define 1

p∞
:= lim|x|→∞

1
p(x) and

we use the convention 1
∞
= 0. Note that although 1

p is bounded, the variable
exponent p itself can be unbounded.

We state the definition of the spaces Bs(·)
p(·),q(·), which introduced and investi-

gated in [1].

Definition 5.1. Let
{
Fϕ j

}
j∈N0

be a resolution of unity, s : Rn→ R and p,q ∈
P(Rn). The Besov space Bs(·)

p(·),q(·) consists of all distributions f ∈ S ′(Rn) such
that

‖ f‖
Bs(·)

p(·),q(·)
=
∥∥∥(2 js(·)

ϕ j ∗ f ) j

∥∥∥
`

q(·)
> (Lp(·))

< ∞.

Taking s ∈R and q ∈ (0,∞] as constants we derive the spaces Bs
p(·),q studied

by Xu in [22]. We refer the reader to the recent papers [10], [13],[14] and [15]
for further details, historical remarks and more references on these function
spaces. For any p,q ∈ P log

0 (Rn) and s ∈ Clog
loc (R

n), the space Bs(·)
p(·),q(·) does not

depend on the chosen smooth dyadic resolution of unity {Fϕ j} j∈N0 (in the sense
of equivalent quasi-norms) and

S(Rn) ↪→ Bs(·)
p(·),q(·) ↪→S

′(Rn).

Moreover, if p,q,s are constants, we re-obtain the usual Besov spaces Bs
p,q,

studied in detail in [16], [17], [19], [20] and [21].
Applying Lemma 3.4 and using the same arguments of [2, Theorem 3.1] we

obtain.

Theorem 5.2. Let θ ∈ (0,1) and q∈P(R) be log-Hölder continuous both at the
origin and at infinity with q(0) = q∞. Let p,q0,q1 ∈P log(Rn) and α0,α1 ∈Clog

loc .
If 0 6= α0−α1 is constant, then

(Bα0(·)
p(·),q0(·),B

α1(·)
p(·),q1(·))θ ,q(·) = Bα(·)

p(·),q(0)

with α(·) = (1−θ)α0(·)+θα1(·). Moerover

(Bα(·)
p(·),r0

,Bα(·)
p(·),r1

)θ ,q(·) = Bα(·)
p(·),q(0),

with r0,r1 ∈ [1,∞] and
1

q(0)
=

1−θ

r0
+

θ

r1
.

Now we present some interpolation results in variable exponent Lorentz
spaces Lp(·),q(·)(Rn) introduced by [12].
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Definition 5.3. If f is a measurable function on Rn, then we define the non–
increasing rearrangement of f through

f ∗(t) = sup{λ > 0 : m f (λ )> t}

where m f is the distribution function of f .

Definition 5.4. Let p,q ∈ P(R). By Lp(·),q(·)(Rn) we denote the space of func-
tions f on Rn such that

‖ f‖Lp(·),q(·)(Rn) =
∥∥t

1
p(t)−

1
q(t) f ∗(t)

∥∥
Lq(·)([0,∞))

< ∞.

We refer to the recent paper [12] for further details on these scales of spaces.
We present an equivalent quasi-norm for the space Lp(·),q(·)(Rn), where the
proof is quite similar to that for Lemma 3.4.

Lemma 5.5. Let p,q ∈ P(R) be log-Hölder continuous both at the origin and
at infinity. Then

‖ f‖Lp(·),q(·)(Rn) ≈
( 0

∑
v=−∞

2−v q(0)
p(0) ( f ∗(2v))q(0)

) 1
q(0)

+
( ∞

∑
v=1

2−v q∞

p∞ ( f ∗(2v))q∞

) 1
q∞

.

Moreover,

‖ f‖Lp(·),q(·)(Rn) ≈
(∫ 1

0
t−

q(0)
p(0) ( f ∗(t))q(0) dt

t

) 1
q(0)

+
(∫ ∞

1
t−

q∞

p∞ ( f ∗(t))q∞
dt
t

) 1
q∞

.

Applying this lemma and [5, Theorem 5.2.1] we obtain.

Theorem 5.6. Let θ ∈ (0,1) and q ∈ P(R) be log-Hölder continuous both at
the origin and at infinity with q(0) = q∞. Then

(L1,L∞)θ ,q(·) = Lp,q(·)(Rn), p =
1

1−θ
.
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[22] J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math.

33 (2008), 511–522.

DOUADI DRIHEM
Department of Mathematics

Laboratory of Functional Analysis and Geometry of Spaces
M’sila University, M’sila, Algeria

e-mail: douadidr@yahoo.fr, douadi.drihem@univ-msila.dz


