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SOME RESULTS ON SIMPLE COMPLETE IDEALS
HAVING ONE CHARACTERISTIC PAIR

SILVIO GRECO - KARLHEINZ KIYEK

Let @ be a regular local two-dimensional ring, and let m = (x, y) be
its maximal ideal. Let m > n > 1 be coprime integers, and let p be
the integral closure of the ideal (x™, y"). Then p is a simple complete m-
primary ideal, and its value semigroup is generated by m, n. We construct
a minimal system of generators {zo, ..., z,} of p, and from this we get a
minimal system of generators of ‘3, the polar ideal of p, consisting of n = 6
elements. In particular, we show that p and ‘3 are monomial ideals. When
o = k[[ x, y 1], a ring of formal power series over an algebraically closed
field « of characteristic zero, this implies the following. There exists a non-
empty Zariski-open subset U of «"*! such that for every u = (ug, ..., u,) €
U the linear combination fu := ) ;_,u;z; is a general element of p and
dfu/dy is a general element of the polar ideal ‘3.

Keywords: simple complete ideals — polar ideal — value semigroup — two-
dimensional regular local rings — valuation associated to a simple ideal —
minimal system of generators — monomial ideals

Introduction.

Let C be a curve in affine (x, y)-plane with equation F(x, y) = 0. One of
the classical methods to study C and its singularities consists in considering the
polar curves of C, namely the curves whose equations are linear combinations
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of the partial derivatives of F (see e.g. [7]). This point of view has had modern
important developments, see e.g. [2], [3], [4], [5], and also [6].

The notion of polarity extends in a natural way to linear systems, and
provides a useful tool for the local study of a linear system at a base point. The
natural setting for this study is the theory of complete (i.e. integrally closed)
ideals in two-dimensional regular local rings (cf. Zariski [20], appendix 5 and
the papers [15], [17] of Lipman) and the notion of polar ideal of a complete
ideal introduced by Lipman [16] (see section 4 for the definition).

The aim of this paper is to make some steps toward a concrete understand-
ing of complete ideals and of their polar ideals, addressing a very natural ques-
tion: how does one construct explicit generators of a simple complete ideal p
contained in the two-dimensional regular local ring «, and of its polar ideal ‘3.

We solve the problem for the ideals which arise as the integral closure of
(x™, y™), where {x, y} is a regular system of parameters of « and m > n > 1
are coprime integers. These ideals are among the simple complete ideals having
just one characteristic pair (see section 1), which are the easiest ones. Also with
this restriction things are fairly complicated, as we shall see.

The paper is organized as follows. The first two sections are preliminary.
In section 1 we collect some basic definitions and results on complete ideals,
while in section 2 we give some general facts on monomial ideals.

The first main result is proved in section 3 (see prop. (3.6)]. Here we
construct a numerical function oy, ,, explicitly computable in terms of m and
n, which allows to determine a minimal system of monomial generators of p
consisting of monomials in x and y. The fact that p is a monomial ideal with
respect to x and y is a particular case of [14], so our main point is the explicit
algorithm.

In section 4 we show first two general results about our ideal p, which
imply, in particular, that 3 is a monomial ideal. Our second main result (cf.
(4.4)) gives an explicit construction of a minimal set of monomial generators
of B, obtained by a finer study of the function o, ,. As consequences we get
some expected facts in the classical case (namely o = «[[x, y]], where « is
an algebraically closed field): for example a “general element” of ‘B can be
obtained as a polar of a general element of p.

We want to remark explicitly that our results do not apply to arbitrary
simple complete ideals with one characteristic pair. Indeed such an ideal is
not, in general, the integral closure of an ideal of the form (x™, y") as above.
This follows by the characterization given in remark (3.13).
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1. Preliminary results.

1.1. The setting. We use the notation introduced by Lipman (cf. [15], [16],
[17]); cf. also [11]). Let K be a field, and denote by 2 := Q(K) the set of
all two-dimensional regular local subrings of K having K as field of quotients.
The elements of 2 will be called points, and denoted by lower case greek letters
a, B, .... For a € Q we denote by m, the maximal ideal of «, by ord,, the order
function of «, and by «, the residue field o/m,, of «.

(1) Let o be a point, and consider the canonical homomorphism of graded
rings

@ Ry, o) = gry (@) = ke[ X, Y]

from the Rees ring R(m,, o) of o with respect to m,, to the associated graded
ring gry, («); note that gry, (or) is a polynomial ring «,[ X, y] in two indetermi-
nates x, y over the field «,, [ here {x, y} is a system of generators of m,, and we
have put X := x mod m2, y := y mod m2 ]. The set P, of homogeneous prime
ideals of height one of gry, (o) corresponds uniquely to the set of closed point
of Proj(R(m,, @)); the local ring of such a point is called a quadratic transform
of a. Let p € Py, and let B, be the quadratic transform of « corresponding to
p- Then B, € Q and it dominates «, and [, : a] := [kp, * Kel is finite.

Let o C B be distinct points in €2. Then there exists a uniquely determined
sequence

a=o0Sas - Ga, =8

where, for i € {1, ..., n}, o; is a quadratic transform of «;_;. In particular, 8
dominates «, and [B : ] := [kp : k] is finite.

(2) Let @ € Q2. The set of non-zero complete [ = integrally closed ] ideals of
« is a semigroup under multiplication, and every complete ideal is, in a unique
way, a product of simple complete ideals (an ideal is called simple if it is not the
product of two proper ideals) (cf. [20], p. 386, Th. 3). We denote the monoid
of complete m,-primary ideals of a by MC(«), and its subset of simple ideals

by MCS(x).
(3) To each non-zero ideal a of o € 2, it is associated its characteristic
ideal c(a): if ord,(a) =: s, then c(a) is generated by the greatest common

divisor of all the elements f mod m$*! € (gry,, (@))s where f runs through the

set of elements of a of order s; it is a homogeneous principal ideal in gry,, ().
An mg-primary complete ideal different from the maximal ideal is simple only
if ¢(a) is a positive power of a prime ideal p € P, ( cf. [20], p. 386). Let
p € P,; the monoid of complete m,-primary ideals whose characteristic ideal
is a positive power of p will be denoted by MC(c, p), and its subset of simple
ideals by MCS(«, p).
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(4) Let p be a simple complete m,-primary ideal. Then p determines a
quadratic sequence

a=a0G G- Ga, = By

the extension of the order function of B, to a valuation v := v, of K is called
the valuation defined by p, and

[y i={@@) [zea\ {0}

is called the semigroup of p. We call p residually rational if [8, : a] = 1;
in this case I'y C Ny is a subsemigroup of Ny which can be considered as
the value semigroup of a plane irreducible algebroid curve ( cf. [11], (8.18)
and (8.19) ). We say—in accordance with the terminology used in the case of
plane irreducible algebroid curves —that p has g characteristic pairs if T', has
a minimal system of generators consisting of g + 1 elements.

(5) Let « C B be points in 2. To an ideal a in «, it is associated its
transform af C B (cf. [16], p. 206-207 for the definition of ideal transform
and its properties ).

Remark 1.2. In the sequel, we use the following results.

(1) Let o be a point, and let a be a complete m,-primary ideal. Then we
have (by the length formula of Hoskin and Deligne, cf. [15], Th. (3.1), and by a
result of Huneke and Sally, cf. [13], Th. 2.1, or [15], Cor. (3.2) )

bula/a) = Y 318 - alordy(@ords(a®) + 1),

Boa
u(a) :=dim, (a/mya) = ord,(a) + 1.
(2) Let a be a point, let p € P, and let B := B,,. The map
ar af : MC(a, p) — MC(B)

is an isomorphism of monoids, and the inverse map is given by the inverse
transform. The restriction induces a bijective map MCS(«, p) —> MCS(B)
(cf. [20], p. 388, (A) ).

(3) Let o be a point, and let a be a non-zero ideal of &. Then a and its
integral closure @ in « have the same order, and a is simple iff @ is simple (the
first part is easy, and for the second part cf. [20], p. 368, Lemma 6, and p. 388,
(A)). (For any ideal ¢ of a ring S, we denote by ¢ its integral closure in S.)

(4) Let « be a point, and let B be a point with 8 D «. Then we have (as is
easy to check) .

o’ = ab.
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1.3. Euler polynomials. We define
0-1:=0, Qo:=1,
and for i > 1 let the Euler polynomials Q; € Z[ Ty, ..., T; ] be defined by
Qi(Ty,....T) =T1Qi(T2, ..., T)) + Qi 2(T3, ..., T)).
It is well known that for every i € N we have

Qi(Ty, ... THQio(To, ... Tic) —

— Qi (T, ... Ti_)Qi (T2, ..., T)) = (=1),
Qi(Ty,....T)) = Qi(T;, ..., Th),
Qi(Ty,....T) =T, Qi (T, ..., Ti—1) + Qio(Ty, ..., Ti—2),
Qi(Ty,....Ti1, )= Q; (T, ..., Ti2, Ti 1 + 1.

These results will be used tacitly.

1.4. Euler polynomials and continued fractions. Let n(, n; be natural inte-
gers, and let

ng = SNy + np, Ny = Spnp + N3, ..., N1 = Sk

with integers n; > np, > --- > n; > 1 and non-negative integers si, ..., S
with s; > 2 be the Euclidean algorithm for ng, ny; in particular, we have
n; = gcd(ng, ny). The integer k will be denoted also by k(m, n). Then we
have the continued fraction expansion

no
— =[5, ..., 5]
nj
1
=5+ 1
S
2 s3+ 1
1
S
Sk
o Ok(s1, - 80)
Os—1(s2, ..., 5)
The integers Qi(si, ..., Sx), Qk—1(s2, ..., sx) are coprime, and for n; :=

ng/ng, n’ :=n;/n; we have
1

I’l(/) = Qk(sl, ey Sk), n’l = Qk_l(sz, ey Sk).
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2. Ideals generated by monomials.

2.1 Monomial ideals. Let R := «[xy, ..., x,] be the polynomial ring over
the field « in n indeterminates xy, . .., x,, and let m be the ideal of R generated
by x1,...,x,. The ring of formal power series R = k[[x1, ..., x,]] is the
completion of R in the m-adic topology; let m = mR. For every § =
(s oo ) eND let x? = x' oo xh,

Leta = (x%,...,x%) with §;,...,8, € Nj be a monomial ideal in R.
We say that § € Nj} is an exponent of a if x’ € a. An element f € R lies in a
iff every term of f lies in a, and a admits a unique minimal set of monomial
generators (cf. [1], Ex. 1.4.11 and 1.4.13).

Let A = A(a) be the set of exponents of a; then a is the linear span
of the monomials x? with § € A. For any subset A C R" we denote by
conv(A) C R” the convex hull of A. Defining A := conv(A) N N2, we
have the following: The integral closure a of a is a monomial ideal which
has {§ | 8§ € A} as set of exponents (cf. [8], Ex. 4.23 ). In particular,
since conv(A) = conv({di, ..., 8;}) + R (cf. [19], Lemma 4.3), we have

A = (conv({8y, ..., 8, ) + R NN,

The following result should be well-known. Its easy proof is left to the
reader.

Lemma 2.2. An m-primary ideal b in R is integrally closed in R iff b =bR
is integrally closed in R. Moreover, if a is any m-primary ideal in R, then we

o~

have aR = a.

Proposition 2.3. Let a be an m-primary ideal in R which is generated by
monomials.

(1) A power series f lies in a iff every term of f lies in a.

(2) Letmy,...,my be asystem of monomials in R which generates a.
Then a monomial m lies in a iff m = m;m’ for some i €{1,...,h} and a
monomial m’.

(3) The integral closure a of a is generated by monomials. We have

A(a) = conv(A(a)) N NG.

Proof. (1) Let ag be the ideal in R generated by the monomials in a; it is
clear that ap C m, and that @ = dy = agR. Let f € a be a non-zero element,
and let (g;);en, be a Cauchy sequence in ap converging to f. Let ord be the
order function in R. We write f = ijm f; where f; is homogeneous of

degree j for j € Ny, j > m, and f,, # 0. We choose i € N such that
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ord(f — g;) > m + 1. Writing g as a sum of homogeneous terms g; = Zj 8ij
where g;; is homogeneous of degree j, we have ord(g;) = m and therefore
8im = fm. This implies that all terms of f;, lie in a. Replacing f by f — fu
and repeating this argument, we get the assertion.

(2) We can write m = fimy, + - - - + f,m; with power series fi,..., fi.
We write each f; as a sum of homogeneous terms f; = fio + fi1 + - - - where
fij 1s homogeneous of degree j. Set d; := deg(m;) for i € {I,...,h} and
d := deg(m). Then we find that m = m fi 4—q, + --- + mp fr.qa—q, (With
fia—a, = 01if d < d;), hence the assertion.

(3) Since a contains a power of m, and such a power is generated by
monomials, gy contains a power of m. Since ay C m, we see that ay is m-
primary. The conclusion follows from (2.2).

Proposition 2.4. Let a be an m-primary monomial ideal of R.

Then GR is the integral closure of aR, and we have GRNR = 4. In particular, a
minimal system of monomial generators of aR is a minimal system of monomial
generators of a.

Proof. Since a is generated by monomials, we have @ C m; since a contains a
power of m, we see that a is an m-primary ideal, also. Then aR isan integrally
closed ideal of R by (2.2), hence it is the integral closure of aR, and it is
generated by monomials. From this and (2.3) (2) we get the last assertions
of the proposition.

The following result in the case of a polynomial ring over a field is well
known (cf., e.g., [10], section 3.6, Prop. 15).

Lemma 2.5. Let A be a regular local ring with maximal ideal m and residue
field k = A/m. Let d := dim(A), and let {x1, ..., x4} be a regular system
of parameters of A. Let a be an ideal which is generated by monomials in
X1, ..., X4, and which contains a power of m. Then £(A/a) is equal to the
number of monomials in x1, . .., x; which do not belong to a.
Proof. 1In the sequel, a monomial is always a monomial in xy, ..., x;. We use
repeatedly the following fact: If my, ..., m; are pairwise distinct monomials
of order h, and if a;,...,q are in A, then Zj.:l ajm; € m"*! implies that
aig,...,qem.

(1) Let a € a be a non-zero element of order 4. Then we can write
a = Zj.:l ajm; with ay,...,a; € A and monomials my, ..., m; € a which
satisfy ord4(m;) > h for j € {1, ...,1}.

This is clear if 4 = 0 or 7 = 1. Assume that 2 > 2. Clearly we can write

Pi

i>1 j=1
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with a;; € A, m;; € a pairwise distinct monomials of order i. We have

Pi Di
OI‘dA(Zaljmlj) = OrdA<a — ZZ“Z’]’”I’J) > 2,

=1 i>2 j=I
hence the elements ayy, ..., a;p, lie in m, and therefore we can write
p;
a= E E a;m;;, a;; €A, m;; €amonomials of order i .

i>2 j=I

It is clear that, continuing in this way, we get a representation of a as stated.

(2) Let M(a) be the set of monomials which are not contained in a. This
set is finite, since a contains a power of m.

Let m € M(a) be a monomial of largest degree, and define b := a + Am.
We have mb C a (since mm C a by the choice of m ), and therefore b/a is
a k-vector space generated by the image of m in b/a, hence b/a is a simple
A-module. We show that m’ ¢ b for every m’ € M(a), m’ # m.

In fact, assume that m’ € b; let h be the order of m’. Then we have
m' = a + bm with a € a and b € A, and we have ord,(m’ — bm) > h by
the choice of m. By (1) we have

i

/ — . .

m —bm = E ajm;,
j=1

with a; € A, m; € a pairwise distinct monomials of order > 4. We may assume
that my, ..., my have order h, and that the other monomials have larger order.
This implies that
l/
m — bm — Zajmj emt!,
j=1

whence 1 € m, a contradiction.

(3) We prove the lemma by induction on #(M(a)). The assertion clearly
holds if M(a) = @, since in this case a = A. Let n € N, and assume
that the assertion holds for all ideals b in A generated by monomials which
contain a power of m, and which satisfy #(M (b)) < n. Let a be an m-primary
ideal in A which is generated by monomials and with #(M(a)) = n, and let
m € M(a) be a monomial of largest degree; we define b := a + Am. On
the one hand, we have m ¢ M(b) and M(b) U {m} = M(a) by (2), hence
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#(M()) + 1 = #(M(a)). On the other hand, b/a is a simple A-module
by (2); this implies that £4(A/b) + 1 = £4(A/a). By induction, we have
LA(A/b) = #(M (b)), hence we have £4(A/a) = #(M(a)).

3. A particular class of simple complete ideals with only one characteristic
pair.

In this section we describe the simple complete ideals we want to deal with,
and we will show how to construct minimal set of generators for them.

3.1. A particular class of ideals. Let m, n be coprime natural integers with
m > n.
(1) Let ng :=m, n; := n, and let

ng = sty + Ny, Ny = SNy + N3, ..., N = SKNg

with ny > ny > --- > np = 1 be the Euclidean algorithm for the integers m, n
(note that kK > 1 and that ny_; = s ).

(2) Let a be a point, and let {x, y} be a regular system of parameters for «.
We define

Zi—1 .
0=y, 21 =X, Ziy] = ZT forie{l,...,k—1}.

Furthermore, let xo := x, yp := y and put sp := 0. We have s; > 1. We define
forie{l,....k—1},je{l,...,s;}andi =k, j ={1,..., s — 1}

Xsiteodsici+j = Zis Vsieotsiog+j =

Lett :=s; + - - -+ s;. Now, we consider the sequence of quadratic transforms
o Cop C - Coy, Tty Covr CUgypyy Covr C s

it is easy to check that, fori e {1,...,k — 1}, je{l,...,s;}, and for i = k,
je{l, ..., s — 1}, {x;, y;} is a regular system of parameters in ;.

2)Leta := (x",y"). Fori e{l,...,k—1}let je{l,...,s;}, and for
i=kletje{l,..., sy —1}, and define / := sy +---+5;_1 + j. The transform
of a in ¢; is the ideal generated by x;" /""" and y,""'. Now leti € {1, ..., k}
and j €{0,...,s; — 1}, and set/ := sy + --- 4+ s;_1 + j. Then we have
ord,, (a*) = n;;+;. Moreover, we have c¢(a®) = (y,;) in the associated graded
ring of ;.
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Remark 3.2. In [14] it is shown that the integral closure @ of a is a monomial
ideal. Our main concern in the sequel of this section is to construct explicitly a
set of monomial generators of a (cf. prop. (3.6)). We begin with a result which
allows us to apply (2.5).

Proposition 3.3. With notation as in (3.1), we have

k
_ ni(n; +1) mn—+m+n—1
() Ly(a/a) = E Si 5 = 7 ,

i=1

and for every l € {1, ..., t — 1} the inverse transform of the integral closure of
a“ is the integral closure of a“-'. In particular, a is a simple complete m,-
primary ideal and its transform in o, is the maximal ideal of o;_.

Proof. (by inductionon k): For k = 1 we have n = 1, m = sn, and therefore
(cf. (1.2), (1) and (3)) £,(/a) = s1. On the other hand, we have a = (x™, y),
and therefore we have £,(x/a) = s;. Therefore we have a = @, hence a is
simple (since ord,(a) = 1) and complete.

Now we consider the case k > 2. It is clear that «g, ..., a;_; are the
only points 8 with a# # B, and since a®i++1 is simple and complete [ by
the case k = 1 ], we get by recursion, and by (1.2) and (3.1), that for every
[ e{l,...,t — 1} the inverse transform of the integral closure of a* is the
integral closure of a®-'. In particular, we get that a is simple, and that the
transform of @ in «;_; is the maximal ideal of «;_;. The formula in (x) now
follows immediately from the last results in (3.1) and from (1.2) (1).

In the following, we keep the notation introduced in (3.1), and we construct
a minimal system of generators of @. We begin our construction for a set of
minimal generators of @ by considering the easy cases k = 1 and k = 2.

3.4. The case k = 1. In this case we already know that a is simple and
complete (cf. the first part of the proof of (3.3)); clearly {x™, y} is a minimal
system of generators of a.

3.5. The case k = 2. We have no = s;n; + 1, n; = sn, and s = n; and
n, = 1. We show:

(%) {x™, y", xS =D for jefl, ..., n — 1)}

is a minimal system of generators of a.
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Proof. Let je{l,...,n; — 1};since (x5 =DHlyiyn — xixEm+Dm=pymj
the element x*' " =/)*1yJ is integral over a. Let a; be the ideal generated by the
elements in (x). Then we have a; C d@. None of the monomials x¢y“ where c,
de{0,...,ny—1}and c+d < n;—1, lies in a;. We count the other monomials
x%y? which do not lie in a;. It is easy to check that for d € {0, ..., s; — 1} there
are exactly n monomials of degree n; + d which do not lie in a;, while for
ce{l,...,n;—1}and d €{0, ..., s; — 2} there are exactly n; — ¢ monomials
of degree n; + ¢s; — (c — 1) + d which do not lie in ay, and all monomials of
degree larger than ny — 1 lie in a;. Therefore we have

n—1

ni(ny+1)

Lalor/ar) = ———— + s+ (s1 = 1) Y _(n1 = j)
j=1

ni(ng+1

This means (cf. (1.2) and (3.3)) that a; = @, and that the set of n + 1 elements
in (%) is a set of generators of a which is minimal by (1.2) (1) .
This system of generators can also be written as

(x"=om Dyl | jedo, ..., n}}

where o, 1 {0, ..., n} — {0, ..., m} is the strictly increasing function
. _ ) s1j forevery je{0,...,n— 1},
O’m,n(]) - {m forj =n:

in particular, we have
Gm,n(o) = 07 O-m,n(l) = 51, Um,n(n - 1) =m — (1 + sl)v Gm,n(n) = m.

Now we give our first main result.

Proposition 3.6. We assume that k > 2. There exists a strictly increasing
function
Omn {0,...,n} —> {0, ..., m}

withm — oy, ,(j) > n — j for j€{0,...,n} and
Om,n(o) = 07 O-m,n(l) = 51, O-m,n(n - 1) =m — (1 + sl)v o'm,n(n) =m
such that the integral closure of a = (x™, y") has the set

(*) {xm=omalDyI | j e, ..., n}}
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consisting of n + 1 monomials as a minimal system of generators. Moreover, we
have

n—1 k
Um,n(n)n - Zam,n(j) = Zslw'

, 2

j=1 I=1
For k > 3 we have the following recursion formula: For every j € {0, ..., n; —
1} there exists a uniquely determined A(j) € {1,...,ny} such that n; —

Onymy (N2 — A(j) + 1) < j < nyp — oy, n,(n2 — A(j)) — 1, and we have

sij+A() =1 ifje{n —op =20+ 1),...,
Um,n(j): nj _Unl,nz(nZ_)"(j))_ l}v
siny +ny ifj =n.

Proof. (1) Let m > n be positive integers, let o : {0,...,n} — {0,...,m}
be a strictly increasing function with 0(0) = 0 and o(n) = m, and with
m—o(j) > n— jfor je{0,...,n}, and let a; be the ideal generated by
the set {x"—°WyJ | j €{0,...,n}}; this set is a minimal system of generators
of a;. We have ord,(a;) = nsincem —o(j)+ j > nfor j€{0,...,n}. We
determine £,(ct/a;) by counting the monomials x¢y? which do not lie in a;.
Let a, b be nonnegative integers with @ + b > m. If b > n, then x¢y” lies in
a;, and if b < n, then we have a > m — b > m — o(b), and again x?y” lies in
a;. The monomials

(x'y/ | jef0,....n—1},i€{0,....,m —o(j)—1}}

are all the monomials which do not lie in a;, and therefore we get (cf. (2.5))

n—1 n—1 n—1
tola/ar) =Y (m—o()=mn—> o(j)=cmn—>Y o).

j=0 j=1 j=1

(2) Now we prove the proposition by induction on £ and s;. If k = 2, then the
result follows from (3.5) and the fact that m — s;j = s;(n — j) > n — j for
j €10, ..., n}. We assume that k > 3, and that the statements of the proposition
hold for k — 1. Let B := a1, ¥ i= &, b := a?, ¢ := a”. Letu := x,
v := y/x%~!; then {u, v} is a regular system of parameters of 8, and {u, v/u}
is a regular system of parameters of . We have

b=@m*", v, ¢ =", (w/u").
Let o := oy, ,,. By induction, the integral closure ¢ of ¢ has

{(w/uy" Dyl | ief0,..., n}}
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as a minimal system of generators, and ¢ is simple; the inverse transform of ¢ is
the ideal u™ ¢ N B = b. We consider the elements

/u)y" Oyt iefl,...,n},jel0,...,00) —o@—1)—1}.
They lie in ¢, and therefore the elements
(%) witoO=Jym=oO+i el ... n},jel0,...,06G) —o@i—1)—1},
lie in b. For every j €{0, ..., n; — 1} there exists aunique i € {1, ..., n,} such

that je{ni—o(m, —i+1),...,n; —o(ny, —i)— 1}. We include the element
v™ in the set (x), and write the elements of this set as

() un Tyl for j €40, ..., ny)

where we have defined

jHi—1 ifief{l,...,n},je{ni—omy—i+1),...,
71(j) == ny—o(ny —i)—1},
ny+np if j =ny.

Itis easy to check that 7y : {0, ..., n1} = {0, ..., n;+n,} is strictly increasing,
that ny + ny, — 71(j) > ny — j for j €{0, ..., ny}, and that

1100 =0, () =1, ri(n; = 1) =ny +ny — 2.
Let b; be the ideal generated by the elements in (x:x); it is clear that (xx) is a

minimal set of generators of by, and that b; C b.
We calculate £4(8/b;) by using (1): We have

n]—l
Lo(B/b1) = D (n1 + 1y — 11(j)).
j=0
We get
np—1 ny, np—o(mp—i)—1
Youiy=), >, G—j+D
j=0 i=1 j=n—o(np—i+l)

= Z(i — Doy —i+1)—o(ny—1i))
i=1
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1
+ 5(”1 —o(ny —i)(ny —omy —i)—1)

— %(nl —omy—i+ 1)y —om—i+1)—1)

n2—1

. 1
= Y o)+ gmn =D,
j=1
Therefore we have

_ 1 nz—]
(8760 = min+np) — =D Y o))
=0

nz—l

+o(ny — Y o(j).

j=1

_om(m+1)
B 2

Since, by induction and (1),

Vlz—l

k
1
o(na)ny — Z o(j) = ZSlMa

, 2
j=1 =2

we see that
mon +1) o+ 1)

2 T
=2

L(B/b1) =

From (3.3) we obtain £4(8/b;) = E,g(,B/E), and therefore we have b; = b. Note
that we have also shown (using (1)) that

n—1

1 k
I P
j=l 1=2

Thus, we have proved the proposition for £ and s; = 1 (cf. (1)).
For every integer s > 1 let 7, : {0,...,n} — {0,...,sn + ny} be the
function defined by

() =)+ -1 forjel{0,...,n};

note that t, is strictly increasing, that sn +n, —t,(j) > n—j for j € {0, ..., n},
and that

0 =0, z(I)=s, tyn — 1) =sn+n, — (1 +5), 75(n) = sn+ ny.
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Lets > 1 be an integer, set m = sn + n,, and assume that the integral closure
of the ideal (x™, y") is generated by the set {x" =Wy/ | je{0,...,n}}. We
consider the ideal o' := ()L’”', y") where m’ := m +n = (s + 1)n + n, and
its quadratic transform (x™, y"). Since we know by induction a system of
generators of the integral closure of (x™, y"), we see that the integral closure

of a’ contains the elements x” ~%+()yJ for j € {0, ..., n}; let a; be the ideal
generated by these elements. By (1) we have

n—1

bol/ar) = T (mn — Y T41())

j=1

nn+1)

n—1
=s——— +n@n - X;rl(j>
=

k
of. nn+1 nn+1 n(n; +1
e nnt D n( )+Zsll(l )

2 2 2

1=2
k
s+ 1)n(n +D e n(n; + 1),
2 2
1=2

hence we have (cf. (3.3)) £y (a/a;) = £o(ar/a’), and therefore we obtain a; = o
Thus, we have shown that the integral closure of a’ = (x™, y") is generated by
the set of monomials {x” =+ Wy/ | j {0, ..., n}}.

Now we define o, , as in the proposition; o;, , : {0, ..., n} = {0, ..., m}
is a function satisfying the assertions of the proposition.

This ends the proof of the proposition.

Remark 3.7. It is useful to define a o -function also in the following case. Let
no := sin; with sy > 2 and n; := 1. We define oy, ,,, : {0, n;} — {0, ng} by

0 ifj=0,
no 1f]=n1

Ony,m (.]) = {

Then the complete ideal p, _; is generated by the two elements

xno_a."(]"’l(o)yu.”(]'”l (O) — xn(] , xn(]_gno,n] (n])ygno,n] (n]) e y.

Starting with this particular o -function, we can use the recursive construction
given in (3.6) to get all o-functions.
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Example 3.8. For k = 3 we have

0 for j =0,

Um,rz(j):{[j/s2-|+slj_l forjefl,...,n—1},

m for j = n,

and for k = 4 we have

s+ (pljlss+qljh)—1 forje{o,...,
() = m for j=n
where for j € {0, ..., n — 1} we have defined
. J J
pljl:= L oo
and o .
) 1 if j = (1+s253)plJ],
qljl:= P_(1+s233>p[j]‘| otherwise.
852

Remark 3.9. Let « be a field, and let a be the ideal in the polynomial
ring k[ x, y] generated by x™ and y". Then the integral closure of a has
{xm=omalD) "y | j €{0,...,n}} as a minimal set of monomial generators.
Moreover, A(a) consists of all points (m — o, ,(j) + 1, j + s) where j €
{0, ...,n}and r, s € Ny. This follows immediately from (2.4).

Now we want to study in some more detail the function o. This will
provide a better understanding of this function and will be a useful tool for

the following section.

3.10. Further results on the function o. Let k € N, and let s, .
natural integers with sz > 2. We define
ni = Qp1-i(S1, ..., 5,1) forie{0,....k+ 1}, o0x :=0py .-
The Euclidean algorithm for ng, n; gives
ni_y =sin; +n;yy foriefl,... k}, ng = sppinpe withng = 1.

(1) Assume that s, > 2. We define

n; = Q_i(Sit1,...,8) forief0,....k}, o :=o0

— 1,

e o s Sk Sk+1 be
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The Euclidean algorithm for n, n} gives

’ Y ’ . . 1 _ ’ . r_
ni_y=sin;+n; . forie{l,....k—1},n_; = siny withnj = 1.

Note that ny > ng, ny > n}. We show: For k odd we have

or(j) = o(j) for j€f0,....n}},

) n,—o/(n, —j) forjel0,...,n,—1},
nO_Uk(nl_J):{ 0 T T / 1

ny+1 for j = nj,
and for k even we have

N K {6)) for je{0,...,n} — 1},
G"(J)_{n(’)—l for j =n,

ng —ox(ny — j)=ny —oy(ny — j) for jef0,...,n}}

Proof. The case k = 1 is trivial (cf. (3.6)). Let k > 2 and assume that the
result holds for the integers 1, 2, ..., k — 1. We define

Oy i=On,nys 0L
First, let k be even. Let j € {0, ..., n| — 1}; we choose i € {1, ..., n,} with

ny—oyny—i+1)<j<ni—o,ns—i)—1.

By induction, since £ — 1 is odd, we have

ny—oyny—0=ny—o,(ny—10) forlel0,...,ny— 1},

ny — ox(ny —ny) =n| + 1.

Therefore we get
n—ony—i+1)<j<n —oun,—i)—1 ifief{l,...,ny—1},

and if i = n), then we have for all j with n} —o,(1) < j < n| —1 the estimate

ny —ou(ny —ny+1) < j <ny —ou(ny —nh) — 2,

hence, by the recursion formula of (3.6),

o(j)=s1j+i—1=0.(j) forjef0,...,n] —1}.
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For j = n/ we obtain, since n| = n; — o.(ny —n)) — 1,

or(n)) =sin)+n,—1=n,— 1.

Now we calculate oy(n; — j) and o/(n} — j) for j € {0, ..., n}}. First, let
jell,...,n}};thenwe have 0 < n| — j < n| —1. Wechoose i’ € {1, ..., n}}
with

ny—oyny—i'"+1)<n)—j<n|—o,n,—i)—1,

then we have o/(n, — i) + 1 < j < o/(n), — i + 1). Now we choose
iel{l,..., ny} with

ng—oxmy—i+1)<n —j<n —on—i)—1;
then we have o,(n, — i) + 1 < j < o.(ny — i + 1). Since o, is strictly
increasing and coincides with o, in the range {0, ..., n}} by induction, we
obtain n, —i = n), —i’. Now we get
ng—ox(ny —j)=sini+ny—(s1(ny— j)+i—1) = (n2—i)+s1j+ 1
=m,—i)+s1j+1 = sin|+ny—(s1(n) — j)+i" = 1)
= ny —op(nj — ).

Since 0 = ng — ox(n;) = ny — o,(n)), we have settled the case of even k.
Now we consider the case that k is odd. Just as above we get by induction

or(j)=0[(j) forje{0,....n|—1};
for j = n)| we have n| = n| — o,(n, —n}), hence
or(n}) = sin} + n) = ny,.
Furthermore, again by induction, we find as above
no —ox(ny — j) =ny —oi(n) — j) for je{0,...,n} —1},
and we have o,(n}) = n| — 1, hence n| — n| = n; — 0,(n) — 1, and therefore
or(ny —ny) = s1(ny —ny) +ny—ny— 1,
hence

ng —ox(ny —n}) =siny +ny — (si(ny —n)) +ny—ny)— 1) =ny + 1.
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(2) Assume that k > 2 and s, = 1, and define
Yl; = Qr-i—1Six1s .- Sk—1+ 1) forie{0,...,k—1}, O’]: = 0w ) -

Just as in (1) we can show that we have the same relations between oy and o},
asin (1).
(3) Assume that s, = 2, and define

ng: Ok—i(Six1,...,5x+ 1) forief0,...,k}, O’]:/ = 0wl

Using similar arguments as above we can show: For k odd we have

ol forjef0,...,nf -1},
(/)= {n(’)’—l for j =nf,
/

ng —ox(ny — j)=ng — o, (n] —j) forjef0,...,nl},

and for k even we have

ow(j) =0, (j) forjef0,...,n}},

- o | no—alm—j) forjefo,....nl —1},
no Uk(nl J)_ {ng_i_l fOI‘j:n/{.

(4) Assume that s, > 3, and define
I’l;/ = Qpy1-i(Sit1, oo, Skp1 — 1) forief0,...,k+ 1}, O']é/ = 0wl

1

Then we can show that we have the same relations between oy and o]’ as in (3).

3.11. Subadditivity. Let k € N, &k > 2, and let sy, ..., s; be natural integers
with s, > 2; let

ni = Q—i(Six1,...,5) forief0,....k}, o :=0un-
Then we have

o)+ o) <0G+ forj,1€f0,....m}withj+1<n;.
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Proof. Let p be the integral closure of the ideal in o generated by x™, y™.
The properties of the function o are independent of the ring @ we are working
with; therefore we may assume that « = «[[x, y]], a ring of formal power
series over a field k. The convex hull in R? of the set {(ng, 0), (0, n,)} is the
line through these points; therefore A(p) is the set of all points (s, 1) € Ng with
nys + not — non; > 0 (cf. (2.3) (2)). Let j, 1 €{0,...,ny} with j +1 < ny.
We have ngj > nioyx(j), nol > nijox(l), hence no(j + 1) > ni(ox(j) + ox(D),
which implies that x"0~(()+ox)yj+! ¢y and therefore we have o(j + 1) >
0r(j) + ox(l) (cf. (3.6)).

In the following proposition we characterize when p is the integral closure
of (x™, y").

Proposition 3.12. Let p be a simple complete m,-primary ideal in o which is
residually rational. We assume that the semigroup Iy, of p is generated by two
coprime natural integers m, n with m > n. Let v := v, be the valuation of
K defined by p. Then we have v(p) = mn + p with p € Ny. There exists a
regular system of parameters in a such that v(x) = n, v(y) = m and that p is
the integral closure of the ideal (x™, y") iff p = 0.

Proof. 1In the sequel, we are using the Hamburger-Noether algorithm, cf. [11],
sections 7.5 and 7.6 for details. Let « =: a9 C --- C oy, be the quadratic
sequence defined by p. We choose a regular system of parameters {x, y} of
a with v(y) > v(x). Let p; := v(y), ¢1 := v(x); with 9 := y =: yo,
N i=x =: xg let

v(ni—1) = siv(m;) +v(miy1)  forie{l,... k}

be the Euclidean algorithm for p; and c¢;. Let m; := sy + --- + s¢. Then

Xmi=1 = Mks Ym—1 ‘= nk_l/nff_l is a regular system of parameters in
Qm,—1. If m;y — 1 = h—equivalently, if v(x,,_;) = 1 and the image of

Ym,—1/Xm,—1 1n the residue field «, of v is transcendental over x, —then we
have v(x;,,—1) = v(Ym,—1) = 1 and p; = m, ¢; = n by [11], Th. (9.18), since
the semigroup I'y, is generated by m and n, hence v(p) = mn (cf. [11], Cor.
(7.12)). In the other case there exists a uniquely determined unit a € «,,,—; such
that setting

, Mk —ang
Xmy = N> Ymy = — 5 >
Mk
{Xm,, Ym,} 1s aregular system of parameters in «,,,, and we have p; := v(yy,) >
I, ¢ := v(x,,,) = 1 since I'y is generated by m and n. We have [ = 2 in

the Hamburger-Noether tableau (cf. [11], section 7, for notation), and by the
corollary cited above we get v(p) = pic1 + prco = mn + ps.
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We consider the case v(p) = mn, i.e., the case ,,,—; = B,. For every
j€l{0,...,n} wehave im — o, ,(j))n 4+ jm —mn = jm — oy ,(j)n > 0 (ct.
the proof of (3.11)); since p is a v-ideal, this implies that the integral closure p’
of the ideal (x™, y") lies in p. It is easy to check that also the transform of p’
in B, is equal to the maximal ideal of B;,. Therefore the simple complete m,-
primary ideals p" and p have the same transform in 8, hence we have p’ = p.

Conversely, if {x, y} is a regular system of parameters in « with v(x) = n,
v(y) = m, and p is the integral closure of the ideal (x™, y"), then clearly p®»i-!
is the maximal ideal of «,,,_;, hence m; — 1 = h and v(p) = mn.

Remark 3.13. Using the notation introduced in the proof of (3.12), let p be a
positive integer. If p = 1, then we define a quadratic transform «,,, of a,,,_;

by Xpm, = Xm,—15 Ym; = m,—1 — Xm,—1)/%m,—1, and if p > 1, then we
define a sequence a,,, C --- C 0y, 4p—1 of quadratic transforms recursively
by Xpm,+i = Xms Ym+i = Ym+i—1/Xm, for i € {1,..., p — 1}; note that
{Xm,+p=1> Ym+p—1} 18 a regular system of parameters in «,,,4,—1. Let v be

the valuation of K defined by the order function of «,,, ,—1. Then we have
V(X +p—1) = 1, V(Ym,+p—1) = p, and for the simple complete m-primary ideal
p in o corresponding to the maximal ideal of @, 4 ,—1 we have I'y = mNy+nNy
and v(p) = mn + p. In particular, there are simple complete ideals p with
I’y = mNy + nNy which are not of the form p = a with a = (x™, y").

4. The polar ideal.

In this section we want to give explicit generators for the polar ideal of a.
We begin by stating two facts which we get when applying the results of our
paper [11].

4.1. Some further results. Let p be the integral closure of the ideal (x™, y"),
and let v := vy For the following results cf. [11], Nr. (7.5). In the sequence of
quadratic transforms

o) Cap C-+- Cay, Cogq) CooC gy, Cror C g
the only non-trivial proximity relations are

Qg —1 < O 45y Ogy45,—1 < O so4s539 « o o0 Ogdsytsp_r—1 < O 45p4- 4851

and

aS] +824-FSk—1 -1 < aS1+S2+---+Sk—1 .
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In particular, if £ = 1, there are no non-trivial proximity relations. Note that v
is the extension of the order function ord,, , to K. Let

My =PoDP1 D DP—1 =P

be the sequence of simple complete ideals of o determined by p; these ideals
are the only simple v-ideals in o, and every v-ideal in « is a product of these
ideals. Leti €{l,...,k} and j € {0, ..., s;_1}; then by [11], (7.5) (6) (b),
Ps,+-+s.,+; 1s the integral closure in & of the ideal generated by x Qi(S1Si-1.J+1)
yQi-16205i-1./+ D 1 particular, every my-primary v-ideal in o is a monomial
ideal with respect to {x, y}.

4.2. Generating sequence. Let p be as in (4.1). Fori € {1, ..., ¢} let {x;, y;}
be the regular system of parameters for «; defined in [11], (7.5), starting with
X0 = x, yo := y. Cf. By [11], Lemma (9.6), p is an s-ideal. The points
in ©(a, By) (cf. [11], (3.3) (4) for the definition of this set) are the two points
v, v' where y has {x,, y,/x,} as a regular system of parameters and satisfies
o;—s, < y and where y’ has {y;, x,/y;} as a regular system of parameters
and satisfies o;_» < y’. Define f := x™ — y"; it is easy to check that
(fa)* = (x; — y,)a,; therefore f is a general element of p (cf. [11], definition
(3.11)). The ideal py, is generated by x*'*! and y; since O(a, ey, ) consists only
of the point a4, we see that y is a general element of py, .

Leto; :=o;/(fa)* fori €{0, ..., t}. The ring @, is a discrete valuation
ring; let v be the valuation of the quotient field of &, defined by &,. Define
X :=x mod(f),y := y mod(f). Since

Oi—1(s2, ..., Sk—1, 8k — 1) + Qr_a(s2, ..., Sk—1) = n,
Or(s1, ooy Sk—1, Sk — 1)+ Qr—1(s1, ..., Sx—2) = m,
we get (cf. [11], (7.5)(5)(a)) X =X}, y =X}, and therefore
V(po) = v(x) =v(X) =n, v(py)=v(Q)=v(Q)=m.

This implies: The sequence (x, y) is a generating sequence for v (cf. [11], Th.

9.9)).

4.3. The polar ideal of p. Let ‘P be the polar ideal of p (the polar ideal
Qg of a simple complete m,-primary ideal q is defined in [16], section 5: it
is the smallest among those m,-primary vg-ideals 9 satisfying ord,(Q) =
ord,(q) — 1)). Thus, we have ord,(*3) = ord,(p) — 1, and ‘P is a v-ideal.
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Therefore, by the remark at the end of (4.1), P8 is a monomial ideal with
respect to {x, y}. In the following, we construct a minimal system of monomial
generators of 53 (cf. (4.4) below).

We define

by :=ord,, (P*) forle{0,...,t—1}.

Forie{l,...,k—1}and j€{0,...,s; —1}andfori =k, j€{0,..., s, —2}
we have (cf. (3.1) and [16], Th. (5.2))

n; —1 fori odd,

b s, j = i
So+s1+tsi1 +j n; for i even,

and
by 4ty—1 =10

[note that n; = 1]. Let
-1
B=]]sr
1=0
be the factorization of the v-ideal 3. Then we have (cf. [16], Remark (A))

¢ =b — ZbA forlef{0,...,t—1}.

o) >
This means, as one easily checks, that

Csi4ts—1 = Siy1  forie{l,...,k—1}andi even,
Csitots—2 = 1 if k is even,
=0 for all other/ € {0, ..., —1}.

In particular, we have
o ifk =1,
;B B { pS1+S2—2 ifk = 2’

and if k > 3, we have

53 Sk . .
P = { Pds—1  Potots, -1 if k is odd,
- 83 Sk—1 . .
psl +s—1" "7 ps1+---+sk,2—1ps1+---+sk—2 if k is even.



26 SILVIO GRECO - KARLHEINZ KIYEK

Proposition 4.4. Assume that k := k(m,n) > 2, let p be the integral closure
of the ideal generated by x™, y", and let 53 be the polar ideal of p. Then ‘B is
minimally generated by

{x"momaUDyI | i e0, ..., n—1}}.

In particular, x5 is the lowest power of x in B, and y"~! is the lowest power
of y is .
Proof. We prove the proposition by induction on k.

(1) The case k = 2 is already settled; we consider the case k = 3. In this
case we have 3 := pﬁ +s,—1- The ideal py, 1,1 has order s, and is the integral
closure of the ideal generated by x**>*!  y% hence is generated by the s, + 1
elements

xSty for je{0, ..., 50 — 1}, Y.
The ideal pﬁ I has order s,s3, and is generated by the monomials
(*) (xS]SQ+1)i0 (xS]SQ+1—S] y)i] . (xS]Sz+1—S](Sz—1)yS2—1)l'_;z,] ysy's2
where (ig, . .., i) € N and i+ - - +i;, = s3. Let j € {1, ..., 5053 — 1} and
2 0 2
(ios - -, iy,) € N2T! with
€23) io+---+i, =83, 1-i1+2- i +---+52-05, = J.
The monomial corresponding to this choice of (ip, ..., is,) is

x G182+ Ds3—is, —Sljy/

since
S2—l
D s1s2+ 1= Is)ip = (5152 4 Ds3 — i, — 51/
=0
Claim: For every j € {1,...,sps3 — 1} there exists (ip,..., i) € fo“

satisfying (sx).
Proof. We write

j=gso+r withre{0,...,s;—1}.
Then we have 0 < g < s3. In case r = 0 we choose

iO = S3 - qv il == iSz—l = 07 iSz = Q7
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and in case r # 0 we choose

io:=s3—(+gq)ii1=---=i,1:=0,

i, = 1,05, =---=li5,_1:=0,i, :=q.
For every (s2 4 1)-tuple (ip, ..., i5,) € fo“ satisfying (+x) we have i, < j/s».
This implies the following: Given j € {1, ..., sps3—1}, the smallest nonnegative

. a ] . . 53 .
integer a such that x“y/ liesin p, | is

a:=(s15, + 1)s3 — LLJ —51j-
52
This shows that

{x(5152+1)53_Lj/SZJ_Sljyj | je {0, ..., sp83 — 1}, yszss}

is a minimal system of generators of ‘B3. To finish this case, it is enough to show
that

m—o—m,,,(j+1):(s1s2+1)s3—LLJ—slj for je{0,....n—1)
2

[note that m = (5152 + 1)s3 + 51, B = s251 + 1], equivalently, that

. 1
LLJ:P—F —|—1 for j €{0, ..., s253);
2 52

clearly this equation holds.

Let k > 3, and assume that the proposition holds for all coprime natural
integers m, n with m > n and k(m, n) < k. Let m, n be coprime integers with
m > n, and let

no =S8N +ny, np =802 +n3, ..., 0 = Sk+1Mk+1
be the Euclidean algorithm for ny := m, n; := n. We have
nip = Qrr1-i(Siy1, ..., 8kp1)  forief0,...,k+ 1},
and we define o} := 0, ,. Let p be the integral closure of the ideal (x™, y™),

and let °B := ‘P, be the polar ideal of p. We determine a minimal system of
generators of 3.
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(2) We consider the case that k is odd. We have

1253 Sk
P = Potso—1 " Pogpigogs —1Psi+ s —2-

(a) Assume that s; > 2, and define n; for i € {0, ..., k} and o} as in (3.10) (1).
Let p’ be the integral closure of the ideal (xo, y"); the polar ideal 3’ of p’ is

—_—_ e Sk
P = ps1+ss—1 pS]+"'+Sk—]_1 )

By induction, it is generated by the set {x"0~%U+Dy/ | j {0, ..., ny —1}}.
(al) Assume that s, = 2. Then we define n for i € {0, ..., k}, 0/ asin
(3.10) (3). We have

@) ni=n:+n! forief0,..., k}.
The ideal py, 4.4, ,—2 is the integral closure of the ideal generated by X0, Y,
hence py, 4.4y, —2 is generated by the set (cf. (3.6)) {x"g_”k//(j)y/ | j €
{0,...,n7}}. Since P = PPy 4.t —2, the ideal P is generated by
{xmt—tOyl | [ e qo,..., n, + n| — 1}} where we have defined for [ €
{0, ..., ny — 1} the integer 7(/) by

t() :==max {o;(' + D+ o/ | I'+1" =1,

I'e{0,....ny —1}, I"€{0, ..., n}}.

We have to prove that
M o1+ 1D =1t(l) forlel0,...,n —1}.
For [ = 0 we have 034,(0) = s, 7(0) = 0/(1) = s51. For [ = n; — 1 we have

0r+1(n1) = ng. The only integers /', [” in the range above with ' +1” =n; — 1
are ' =n} —1,1" = n}, and we get
o (n)) + o' (n}) = ny + ng = no.

Therefore we have to prove (i1) only for/ € {1, ..., n; — 2}.
We show that

or(ny + j)=ny +or(j) forjefo,..., nl}.
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In the following, we use the notation introduced in (3.10). The claim certainly
is true for j = nf. Let j €{0, ..., n] — 1}, and choose i € {1, ..., ny} with

n—oxny—i+1)<ni+j<n —o.ny—i)—1.

Since n| — o,(ny —n})) = n +1 (cf. (3.10) (2) and note that & is odd), we have
i > n + 1, and from (3.10) (3) and () above we get

i —al(ny — (i —np)+ 1)< j <nj =0/t — (G —ny)— 1.
Therefore we have
o) =o/()=s1j+i—n—1,

ng+ o (j) =si1(ny + j)+i—1=or(n] + j).

Similarly, one can show that
ng +ox(j) = ox(n| + j) forjel{0,...,n}.

For /1 €{0,...,n} — 1} we choose I’ :== [, " := 0. Then we have o,(I' + 1) =
ox(l + 1) (cf. 3.10) (2)). Forl e {n| —1,...,n; — 2} we choose I’ :=n}| — 1,
" :=1—(n} —1). Then we have

ol + 1) = ox(n) +1") = oy(n) + o' (1").
Likewise, if I” :=nJ,le{n),...,n; — 2} and I' :== [ — [", we obtain
ol + 1) = o/ + 1)+ o/ (n)).

From (3.10), (1) and (3), we get the result.
(a2) Assume that s;; > 3. Then we define n; fori € {0, ..., k}, 0/ asin
(3.10) (4). We have

ni=n;+n; forief0,...,k}.
The ideal py, 4.4, ,—2 is the integral closure of the ideal generated by x"0, y™,
hence P 4...45,,—2 is generated by the set (cf. (3.6)) (x"0=%Dyl | e
{0,...,n{}}. We have B = P'py, 4...45.,,~2. Just as in (al), using (3.10), (1)
and (4), we can prove the assertion.
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(b) Now we assume that s, = 1. We define n; fori € {0, ...,k —1} and o}
as in (3.10) (2). Let p’ be the integral closure of the ideal generated by (x"0, y"'l ).
Then

B = Pt B P
is the polar ideal of p’, and

m = qyps]+---+sk+1—2
is the polar ideal of p. We distinguish the two cases s311 = 2 and 541 > 3, and
with the help of (3.10) (2) and (3.10) (3) resp. (3.10) (4) we can argue as above
in the case (a).
(3) We consider the case that k is even. We have

93 Sk—1 Sk+1
P = p51+82—1 o 'p31+---+s1¢72—1p81+~<+Sk—1'

(a) The case s; > 2: We define n; for i € {0, ..., k} and o} as in (3.10) (1); let
p’ = Py +.+5—-1, the integral closure of the ideal generated by (x™, y™). The
polar ideal B’ of p’ is

! __ 4453 Sk—1
(B - ps]+32_1 T 'ps]+...+sk72_1ps1+w+sk—2
and we have
P = Ppet!
- Sptee s =10
We handle this case by induction on s;, 1, using similar methods as above.
(b) The case s; = 1: Here again, we use similar methods as above.

4.5. The polar curve. Let « be an algebraically closed field of characteristic
zero, and let « = «[[ x, y]] be the ring of formal power series over x in two
indeterminates x, y. Furthermore, we assume that £ > 2.

For every u = (ug, ..., u,) € k"*! we define

fu = Z ijm_gm,n(j)yj;
j=0
by [11], (3.27), there exists a non-empty Zariski-open subset U C «"! such
that fy is a general element of p for every u € U. It is easy to check that
u = (ug, ..., u,) €U implies that uy # 0 and u,, # 0.
For every v = (vg, ..., v,—1) we define
n—1
gv = Z p; XM omaH Dy
j=0
there exists a non-empty Zariski-open subset V' C «" such that gy is a general

element of the polar ideal ‘P of p for every v € V. Therefore, we have the
following:
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Corollary 4.6. Let m, n be coprime positive integers with m > n, and let p be
the integral closure of the ideal generated by x™, y" in k[[ x, y1]. There exists
a non-empty open subset U of k"*! such that fu is a general element of p and
dfu /0y is a general element of the polar ideal *3 of p.

This result can also be rephrased in the following way: “A polar of a
general element of p is a general element of the polar ideal P of p” (cf. [6],
section 6.6).

Remark 4.7. We keep the hypotheses of (4.5). Since o, , is integer-valued and
strictly increasing, we have

Omn(J+ 1) >0p,(j)+1 forjef0,...,n—1},

and therefore we obtain for b, ¢ € k not both zero and u = (u, ..., u,) € "/
with ug £ 0, u, #0
8heu ‘= b% —i—c%
ox ay
n—1
— Z ((b(m _ O‘m’n(j))ijffm,n(j+1)—0m,n(j)—1
j=0

+ cujpi(j + 1))xm_“m'”(j+l)yj>.

Clearly gp. . u is an element of 3, and defines also a polar curve of fy (note
that m — 0y, ,(j) # 0 for j € {0, ..., n — 1}). Therefore we have the following
result: A general polar of a general element fy of p is an element of the polar
ideal of p.

The authors thank the Politecnico di Torino and the Department of Math-
ematics of the University of Paderborn for kind hospitality. The second author
extends this thank also to the Department of Mathematics of McGill University,
Montreal.

Added in Proof: Let o € Q have infinite residue field, let a be a complete
m,-primary ideal, and let b be a minimal reduction of a. Then a is the integral
closure of b, and b is generated by a regular sequence (f, g),i.e.,b = fa+ga.
By the main theorem of [14], a is generated by monomials in f and g. Can one
construct explicitly a system of monomial generators of a?
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