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SOME RESULTS ON SIMPLE COMPLETE IDEALS

HAVING ONE CHARACTERISTIC PAIR

SILVIO GRECO - KARLHEINZ KIYEK

Let α be a regular local two-dimensional ring, and let m = (x, y) be
its maximal ideal. Let m > n > 1 be coprime integers, and let p be
the integral closure of the ideal (xm , yn). Then p is a simple complete m-
primary ideal, and its value semigroup is generated by m , n. We construct
a minimal system of generators {z0, . . . , zn } of p, and from this we get a
minimal system of generators of P, the polar ideal of p, consisting of n = θ

elements. In particular, we show that p and P are monomial ideals. When
α = κ[ [ x, y ] ], a ring of formal power series over an algebraically closed
�eld κ of characteristic zero, this implies the following. There exists a non-
empty Zariski-open subset U of κn+1 such that for every u = (u0, . . . , un)∈
U the linear combination fu :=

�n
i=0 ui zi is a general element of p and

∂ fu/∂y is a general element of the polar ideal P.
Keywords: simple complete ideals � polar ideal � value semigroup � two-
dimensional regular local rings � valuation associated to a simple ideal �
minimal system of generators � monomial ideals

Introduction.

Let C be a curve in af�ne (x , y)-plane with equation F(x , y) = 0. One of
the classical methods to study C and its singularities consists in considering the
polar curves of C , namely the curves whose equations are linear combinations
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of the partial derivatives of F (see e.g. [7]). This point of view has had modern
important developments, see e.g. [2], [3], [4], [5], and also [6].

The notion of polarity extends in a natural way to linear systems, and
provides a useful tool for the local study of a linear system at a base point. The
natural setting for this study is the theory of complete (i.e. integrally closed)
ideals in two-dimensional regular local rings (cf. Zariski [20], appendix 5 and
the papers [15], [17] of Lipman) and the notion of polar ideal of a complete
ideal introduced by Lipman [16] (see section 4 for the de�nition).

The aim of this paper is to make some steps toward a concrete understand-
ing of complete ideals and of their polar ideals, addressing a very natural ques-
tion: how does one construct explicit generators of a simple complete ideal p

contained in the two-dimensional regular local ring α, and of its polar ideal P.

We solve the problem for the ideals which arise as the integral closure of
(xm, yn), where {x , y} is a regular system of parameters of α and m > n > 1
are coprime integers. These ideals are among the simple complete ideals having
just one characteristic pair (see section 1), which are the easiest ones. Also with
this restriction things are fairly complicated, as we shall see.

The paper is organized as follows. The �rst two sections are preliminary.
In section 1 we collect some basic de�nitions and results on complete ideals,
while in section 2 we give some general facts on monomial ideals.

The �rst main result is proved in section 3 (see prop. (3.6)]. Here we
construct a numerical function σm,n , explicitly computable in terms of m and
n, which allows to determine a minimal system of monomial generators of p

consisting of monomials in x and y . The fact that p is a monomial ideal with
respect to x and y is a particular case of [14], so our main point is the explicit
algorithm.

In section 4 we show �rst two general results about our ideal p, which
imply, in particular, that P is a monomial ideal. Our second main result (cf.
(4.4)) gives an explicit construction of a minimal set of monomial generators
of P, obtained by a �ner study of the function σm,n . As consequences we get
some expected facts in the classical case (namely α = κ[[x , y]], where κ is
an algebraically closed �eld): for example a �general element� of P can be
obtained as a polar of a general element of p.

We want to remark explicitly that our results do not apply to arbitrary
simple complete ideals with one characteristic pair. Indeed such an ideal is
not, in general, the integral closure of an ideal of the form (xm, yn) as above.
This follows by the characterization given in remark (3.13).
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1. Preliminary results.

1.1. The setting. We use the notation introduced by Lipman (cf. [15], [16],
[17]); cf. also [11]). Let K be a �eld, and denote by � := �(K ) the set of
all two-dimensional regular local subrings of K having K as �eld of quotients.
The elements of � will be called points, and denoted by lower case greek letters
α, β, . . .. For α ∈ � we denote by mα the maximal ideal of α, by ordα the order
function of α, and by κα the residue �eld α/mα of α.

(1) Let α be a point, and consider the canonical homomorphism of graded
rings

ϕ : R(mα, α) → grmα
(α) = κα [ x, y]

from the Rees ring R(mα, α) of α with respect to mα to the associated graded
ring grmα

(α); note that grmα
(α) is a polynomial ring κα[ x, y] in two indetermi-

nates x , y over the �eld κα [ here {x , y} is a system of generators of mα , and we
have put x := x mod m2

a , y := y mod m2
α ]. The set Pα of homogeneous prime

ideals of height one of grmα
(α) corresponds uniquely to the set of closed point

of Proj(R(mα, α)); the local ring of such a point is called a quadratic transform
of α. Let p ∈ Pα , and let βp be the quadratic transform of α corresponding to
p. Then βp ∈ � and it dominates α, and [βp : α] := [κβp : κα] is �nite.

Let α ⊂ β be distinct points in �. Then there exists a uniquely determined
sequence

α =: α0 � α1 � · · · � αn := β

where, for i ∈ {1, . . . , n}, αi is a quadratic transform of αi−1 . In particular, β

dominates α, and [β : α] := [κβ : κα] is �nite.
(2) Let α ∈ �. The set of non-zero complete [ = integrally closed ] ideals of

α is a semigroup under multiplication, and every complete ideal is, in a unique
way, a product of simple complete ideals (an ideal is called simple if it is not the
product of two proper ideals) (cf. [20], p. 386, Th. 3). We denote the monoid
of complete mα -primary ideals of α by MC(α), and its subset of simple ideals
by MCS(α).

(3) To each non-zero ideal a of α ∈ �, it is associated its characteristic
ideal c(a): if ordα(a) =: s , then c(a) is generated by the greatest common
divisor of all the elements f modms+1

α ∈ (grmα
(α))s where f runs through the

set of elements of a of order s ; it is a homogeneous principal ideal in grmα
(α).

An mα -primary complete ideal different from the maximal ideal is simple only
if c(a) is a positive power of a prime ideal p ∈ Pα ( cf. [20], p. 386). Let
p ∈ Pα ; the monoid of complete mα -primary ideals whose characteristic ideal
is a positive power of p will be denoted by MC(α, p), and its subset of simple
ideals by MCS(α, p).



6 SILVIO GRECO - KARLHEINZ KIYEK

(4) Let p be a simple complete mα -primary ideal. Then p determines a
quadratic sequence

α =: α0 � α1 � · · · � αn =: βp;

the extension of the order function of βp to a valuation ν := νp of K is called
the valuation de�ned by p, and

�p := {ν(z) | z ∈ α \ {0}}

is called the semigroup of p. We call p residually rational if [βp : α ] = 1;
in this case �p ⊂ N0 is a subsemigroup of N0 which can be considered as
the value semigroup of a plane irreducible algebroid curve ( cf. [11], (8.18)
and (8.19) ). We say�in accordance with the terminology used in the case of
plane irreducible algebroid curves�that p has g characteristic pairs if �p has
a minimal system of generators consisting of g + 1 elements.

(5) Let α ⊂ β be points in �. To an ideal a in α, it is associated its
transform aβ ⊂ β ( cf. [16], p. 206�207 for the de�nition of ideal transform
and its properties ).

Remark 1.2. In the sequel, we use the following results.
(1) Let α be a point, and let a be a complete mα -primary ideal. Then we

have (by the length formula of Hoskin and Deligne, cf. [15], Th. (3.1), and by a
result of Huneke and Sally, cf. [13], Th. 2.1, or [15], Cor. (3.2) )

�α(α/a) =
�

β⊃α

1

2
[β : α]ordβ (a

β)(ordβ(a
β )+ 1),

µ(a) := dimκα
(a/mαa) = ordα(a) + 1.

(2) Let α be a point, let p ∈ Pα , and let β := βp . The map

a �→ aβ : MC(α, p) −→ MC(β)

is an isomorphism of monoids, and the inverse map is given by the inverse
transform. The restriction induces a bijective map MCS(α, p) −→ MCS(β)
(cf. [20], p. 388, (A) ).

(3) Let α be a point, and let a be a non-zero ideal of α. Then a and its
integral closure a in α have the same order, and a is simple iff a is simple (the
�rst part is easy, and for the second part cf. [20], p. 368, Lemma 6, and p. 388,
(A) ). (For any ideal c of a ring S , we denote by c its integral closure in S .)

(4) Let α be a point, and let β be a point with β ⊃ α. Then we have (as is
easy to check)

aβ = aβ.
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1.3. Euler polynomials. We de�ne

Q−1 := 0, Q0 := 1,

and for i ≥ 1 let the Euler polynomials Qi ∈ Z[ T1, . . . , Ti ] be de�ned by

Qi(T1, . . . , Ti) = T1Qi−1(T2, . . . , Ti)+ Qi−2(T3, . . . , Ti).

It is well known that for every i ∈ N we have

Qi(T1, . . . , Ti)Qi−2(T2, . . . , Ti−1) −

− Qi−1(T1, . . . , Ti−1)Qi−1(T2, . . . , Ti) = (−1)i ,
Qi (T1, . . . , Ti) = Qi (Ti, . . . , T1),

Qi(T1, . . . , Ti) = TiQi−1(T1, . . . , Ti−1) + Qi−2(T1, . . . , Ti−2),
Qi (T1, . . . , Ti−1, 1) = Qi−1(T1, . . . , Ti−2, Ti−1 + 1).

These results will be used tacitly.

1.4. Euler polynomials and continued fractions. Let n0, n1 be natural inte-
gers, and let

n0 = s1n1 + n2, n1 = s2n2 + n3, . . . , nk−1 = sknk

with integers n1 > n2 > · · · > nk ≥ 1 and non-negative integers s1, . . . , sk
with sk ≥ 2 be the Euclidean algorithm for n0, n1; in particular, we have
nk = gcd(n0, n1). The integer k will be denoted also by k(m, n). Then we
have the continued fraction expansion

n0

n1
= [s1, . . . , sk]

= s1 +
1

s2 + 1

s3+
1

. . . +
1

sk

=
Qk(s1, . . . , sk)

Qk−1(s2, . . . , sk)
.

The integers Qk(s1, . . . , sk), Qk−1(s2, . . . , sk) are coprime, and for n�
0 :=

n0/nk , n
�
1 := n1/nk we have

n�
0 = Qk(s1, . . . , sk), n

�
1 = Qk−1(s2, . . . , sk).
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2. Ideals generated by monomials.

2.1 Monomial ideals. Let R := κ[ x1, . . . , xn ] be the polynomial ring over
the �eld κ in n indeterminates x1, . . . , xn , and let m be the ideal of R generated
by x1, . . . , xn . The ring of formal power series �R = κ[[x1, . . . , xn]] is the
completion of R in the m-adic topology; let �m = m�R. For every δ =

(l1, . . . , ln)∈ Nn
0 let x

δ = xl11 · · · xlnn .
Let a = (x δ1, . . . , x δh ) with δ1, . . . , δh ∈ Nn

0 be a monomial ideal in R.
We say that δ ∈ Nn

0 is an exponent of a if x δ ∈ a. An element f ∈ R lies in a

iff every term of f lies in a, and a admits a unique minimal set of monomial
generators (cf. [1], Ex. 1.4.11 and 1.4.13 ).

Let � = �(a) be the set of exponents of a; then a is the linear span
of the monomials x δ with δ ∈ �. For any subset A ⊂ Rn we denote by
conv(A) ⊂ Rn the convex hull of A. De�ning � := conv(�) ∩ Nn

0, we
have the following: The integral closure a of a is a monomial ideal which
has {δ | δ ∈ �} as set of exponents (cf. [8], Ex. 4.23 ). In particular,
since conv(�) = conv({δ1, . . . , δh}) + Rn

+ (cf. [19], Lemma 4.3), we have

� = (conv({δ1, . . . , δh})+ Rn
+) ∩ Nn

0 .

The following result should be well-known. Its easy proof is left to the
reader.

Lemma 2.2. An m-primary ideal b in R is integrally closed in R iff �b = b�R
is integrally closed in �R. Moreover, if a is any m-primary ideal in R, then we

have a�R =�a.

Proposition 2.3. Let a be an �m-primary ideal in �R which is generated by
monomials.

(1) A power series f lies in a iff every term of f lies in a.
(2) Let m1, . . . ,mh be a system of monomials in R which generates a.

Then a monomial m lies in a iff m = mim
� for some i ∈ {1, . . . , h} and a

monomial m� .
(3) The integral closure a of a is generated by monomials. We have

�(a) = conv(�(a)) ∩ Nn
0 .

Proof. (1) Let a0 be the ideal in R generated by the monomials in a; it is
clear that a0 ⊂ m, and that a = �a0 = a0�R. Let f ∈ a be a non-zero element,
and let (gi )i∈N0

be a Cauchy sequence in a0 converging to f . Let ord be the
order function in �R. We write f =

�
j≥m fj where fj is homogeneous of

degree j for j ∈ N0, j ≥ m, and fm �= 0. We choose i ∈ N such that
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ord( f − gi ) ≥ m + 1. Writing g as a sum of homogeneous terms gi =
�

j gi j
where gi j is homogeneous of degree j , we have ord(gi ) = m and therefore
gim = fm . This implies that all terms of fm lie in a. Replacing f by f − fm
and repeating this argument, we get the assertion.

(2) We can write m = f1m1 + · · · + fhmh with power series f1, . . . , fh .
We write each fi as a sum of homogeneous terms fi = fi0 + fi1 + · · · where
fi j is homogeneous of degree j . Set di := deg(mi ) for i ∈ {1, . . . , h} and
d := deg(m). Then we �nd that m = m1 f1,d−d1 + · · · + mh fh,d−dh (with
fi,d−di = 0 if d < di ), hence the assertion.

(3) Since a contains a power of �m, and such a power is generated by
monomials, a0 contains a power of m. Since a0 ⊂ m, we see that a0 is m-
primary. The conclusion follows from (2.2).

Proposition 2.4. Let a be an m-primary monomial ideal of R.
Then a R̂ is the integral closure of a R̂, and we have a R̂∩ R = a. In particular, a
minimal system of monomial generators of a R̂ is a minimal system of monomial
generators of a.

Proof. Since a is generated by monomials, we have a ⊂ m; since a contains a
power of m, we see that a is an m-primary ideal, also. Then aR̂ is an integrally
closed ideal of R̂ by (2.2), hence it is the integral closure of a R̂, and it is
generated by monomials. From this and (2.3) (2) we get the last assertions
of the proposition.

The following result in the case of a polynomial ring over a �eld is well
known (cf., e.g., [10], section 3.6, Prop. 15 ).

Lemma 2.5. Let A be a regular local ring with maximal ideal m and residue
�eld k = A/m. Let d := dim(A), and let {x1, . . . , xd} be a regular system
of parameters of A. Let a be an ideal which is generated by monomials in
x1, . . . , xd , and which contains a power of m. Then �A(A/a) is equal to the
number of monomials in x1, . . . , xd which do not belong to a.

Proof. In the sequel, a monomial is always a monomial in x1, . . . , xd . We use
repeatedly the following fact: If m1, . . . ,ml are pairwise distinct monomials
of order h, and if a1, . . . , al are in A, then

�l
j=1 ajmj ∈ mh+1 implies that

a1, . . . , al ∈ m.
(1) Let a ∈ a be a non-zero element of order h. Then we can write

a =
�l

j=1 ajmj with a1, . . . , al ∈ A and monomials m1, . . . ,ml ∈ a which
satisfy ordA(mj ) ≥ h for j ∈ {1, . . . , l}.

This is clear if h = 0 or h = 1. Assume that h ≥ 2. Clearly we can write

a =
�

i≥1

pi�

j=1

ai jmi j ,
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with ai j ∈ A, mij ∈ a pairwise distinct monomials of order i . We have

ordA

� p1�

j=1

a1 jm1 j

�

= ordA

�

a −
�

i≥2

pi�

j=1

ai jmi, j

�

≥ 2,

hence the elements a11, . . . , a1p1 lie in m, and therefore we can write

a =
�

i≥2

p�
i�

j=1

a�
i jm

�
i j , a�

i j ∈ A, m�
i j ∈ a monomials of order i .

It is clear that, continuing in this way, we get a representation of a as stated.
(2) Let M(a) be the set of monomials which are not contained in a. This

set is �nite, since a contains a power of m.
Let m ∈ M(a) be a monomial of largest degree, and de�ne b := a + Am.

We have mb ⊂ a (since mm ⊂ a by the choice of m ), and therefore b/a is
a k-vector space generated by the image of m in b/a, hence b/a is a simple
A-module. We show that m� /∈ b for every m� ∈ M(a), m� �= m.

In fact, assume that m� ∈ b; let h be the order of m�. Then we have
m� = a + bm with a ∈ a and b ∈ A, and we have ordA(m

� − bm) ≥ h by
the choice of m. By (1) we have

m� − bm =

l�

j=1

ajmj ,

with aj ∈ A, mj ∈ a pairwise distinct monomials of order ≥ h. We may assume
that m1, . . . ,ml � have order h, and that the other monomials have larger order.
This implies that

m� − bm −

l ��

j=1

ajmj ∈ mh+1,

whence 1∈ m, a contradiction.
(3) We prove the lemma by induction on #(M(a)). The assertion clearly

holds if M(a) = ∅, since in this case a = A. Let n ∈ N, and assume
that the assertion holds for all ideals b in A generated by monomials which
contain a power of m, and which satisfy #(M(b)) < n. Let a be an m-primary
ideal in A which is generated by monomials and with #(M(a)) = n, and let
m ∈ M(a) be a monomial of largest degree; we de�ne b := a + Am. On
the one hand, we have m /∈ M(b) and M(b) ∪ {m} = M(a) by (2), hence
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#(M(b)) + 1 = #(M(a)). On the other hand, b/a is a simple A-module
by (2); this implies that �A(A/b) + 1 = �A(A/a). By induction, we have
�A(A/b) = #(M(b)), hence we have �A(A/a) = #(M(a)).

3. A particular class of simple complete ideals with only one characteristic
pair.

In this section we describe the simple complete ideals we want to deal with,
and we will show how to construct minimal set of generators for them.

3.1. A particular class of ideals. Let m, n be coprime natural integers with
m > n.

(1) Let n0 := m, n1 := n, and let

n0 = s1n1 + n2, n1 = s2n2 + n3, . . . , nk−1 = sknk

with n1 > n2 > · · · > nk = 1 be the Euclidean algorithm for the integers m, n
(note that k ≥ 1 and that nk−1 = sk ).

(2) Let α be a point, and let {x , y} be a regular system of parameters for α.
We de�ne

z0 := y, z1 := x , zi+1 :=
zi−1

zsii
for i ∈ {1, . . . , k − 1}.

Furthermore, let x0 := x , y0 := y and put s0 := 0. We have s1 ≥ 1. We de�ne
for i ∈ {1, . . . , k − 1}, j ∈ {1, . . . , si} and i = k, j = {1, . . . , sk − 1}

xs1+···+si−1+ j := zi , ys1+···+si−1+ j :=
zi−1

z
j
i

.

Let t := s1 + · · · + sk . Now, we consider the sequence of quadratic transforms

α0 ⊂ α1 ⊂ · · · ⊂ αs1 ⊂ αs1+1 ⊂ · · · ⊂ αs1+s2 ⊂ · · · ⊂ αt−1;

it is easy to check that, for i ∈ {1, . . . , k − 1}, j ∈ {1, . . . , si}, and for i = k,
j ∈ {1, . . . , sk − 1}, {xi, yi } is a regular system of parameters in αi .

(2) Let a := (xm, yn). For i ∈ {1, . . . , k − 1} let j ∈ {1, . . . , si}, and for
i = k let j ∈ {1, . . . , sk −1}, and de�ne l := s1 +· · ·+ si−1 + j . The transform
of a in αl is the ideal generated by x

ni− jni+1
l and y

ni+1
l . Now let i ∈ {1, . . . , k}

and j ∈ {0, . . . , si − 1}, and set l := s1 + · · · + si−1 + j . Then we have
ordαl (a

αl ) = ni+1 . Moreover, we have c(aαl ) = (yl ) in the associated graded
ring of αl .
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Remark 3.2. In [14] it is shown that the integral closure a of a is a monomial
ideal. Our main concern in the sequel of this section is to construct explicitly a
set of monomial generators of a (cf. prop. (3.6)). We begin with a result which
allows us to apply (2.5).

Proposition 3.3. With notation as in (3.1), we have

(∗) �α(α/a) =

k�

i=1

si
ni (ni + 1)

2
=
mn + m + n − 1

2
,

and for every l ∈ {1, . . . , t − 1} the inverse transform of the integral closure of
aαl is the integral closure of aαl−1 . In particular, a is a simple complete mα -
primary ideal and its transform in αt−1 is the maximal ideal of αt−1.

Proof. (by induction on k): For k = 1 we have n = 1, m = s1n, and therefore
(cf. (1.2), (1) and (3)) �α(α/a) = s1. On the other hand, we have a = (xm, y),
and therefore we have �α(α/a) = s1. Therefore we have a = a, hence a is
simple (since ordα(a) = 1) and complete.

Now we consider the case k ≥ 2. It is clear that α0, . . . , αt−1 are the
only points β with aβ �= β , and since aαs1+···+sk−1 is simple and complete [ by
the case k = 1 ], we get by recursion, and by (1.2) and (3.1), that for every
l ∈ {1, . . . , t − 1} the inverse transform of the integral closure of aαl is the
integral closure of aαl−1 . In particular, we get that a is simple, and that the
transform of a in αt−1 is the maximal ideal of αt−1. The formula in (∗) now
follows immediately from the last results in (3.1) and from (1.2) (1).

In the following, we keep the notation introduced in (3.1), and we construct
a minimal system of generators of a. We begin our construction for a set of
minimal generators of a by considering the easy cases k = 1 and k = 2.

3.4. The case k = 1. In this case we already know that a is simple and
complete (cf. the �rst part of the proof of (3.3)); clearly {xm, y} is a minimal
system of generators of a.

3.5. The case k = 2. We have n0 = s1n1 + 1, n1 = s2n2 and s2 = n1 and
n2 = 1. We show:

(∗) {xm, yn, xs1(n1− j )+1y j for j ∈ {1, . . . , n1 − 1}}

is a minimal system of generators of a.
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Proof. Let j ∈ {1, . . . , n1 − 1}; since (xs1(n1− j )+1y j )n1 = x j x (s1n1+1)(n1− j )yn1 j ,
the element xs1(n1− j )+1y j is integral over a. Let a1 be the ideal generated by the
elements in (∗). Then we have a1 ⊂ a. None of the monomials xcyd where c,
d ∈ {0, . . . , n1−1} and c+d ≤ n1−1, lies in a1. We count the other monomials
xa yb which do not lie in a1. It is easy to check that for d ∈ {0, . . . , s1 − 1} there
are exactly n monomials of degree n1 + d which do not lie in a1, while for
c ∈ {1, . . . , n1 − 1} and d ∈ {0, . . . , s1 − 2} there are exactly n1 − c monomials
of degree n1 + cs1 − (c − 1) + d which do not lie in a1, and all monomials of
degree larger than n0 − 1 lie in a1. Therefore we have

�α(α/a1) =
n1(n1 + 1)

2
+ s1n1 + (s1 − 1)

n1−1�

j=1

(n1 − j )

= s1
n1(n1 + 1)

2
+ s2.

This means (cf. (1.2) and (3.3)) that a1 = a, and that the set of n + 1 elements
in (∗) is a set of generators of a which is minimal by (1.2) (1) .

This system of generators can also be written as

{xm−σm,n( j )y j | j ∈ {0, . . . , n}}

where σmn, : {0, . . . , n} → {0, . . . ,m} is the strictly increasing function

σm,n( j ) =

�
s1 j for every j ∈ {0, . . . , n − 1},
m for j = n;

in particular, we have

σm,n(0) = 0, σm,n(1) = s1, σm,n(n − 1) = m − (1+ s1), σm,n(n) = m.

Now we give our �rst main result.

Proposition 3.6. We assume that k ≥ 2. There exists a strictly increasing
function

σm,n : {0, . . . , n} → {0, . . . ,m}

with m − σm,n( j ) ≥ n − j for j ∈ {0, . . . , n} and

σm,n(0) = 0, σm,n(1) = s1, σm,n(n − 1) = m − (1+ s1), σm,n(n) = m

such that the integral closure of a = (xm, yn) has the set

(∗) {xm−σm,n( j )y j | j ∈ {0, . . . , n}}
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consisting of n+1 monomials as a minimal system of generators. Moreover, we
have

σm,n(n)n −

n−1�

j=1

σm,n( j ) =

k�

l=1

sl
nl (nl + 1)

2
.

For k ≥ 3 we have the following recursion formula: For every j ∈ {0, . . . , n1 −

1} there exists a uniquely determined λ( j ) ∈ {1, . . . , n2} such that n1 −

σn1 ,n2 (n2 − λ( j )+ 1) ≤ j ≤ n1 − σn1 ,n2 (n2 − λ( j ))− 1, and we have

σm,n( j ) =

� s1 j + λ( j )− 1 if j ∈ {n1 − σn1 ,n2 (n2 − λ( j )+ 1), . . . ,

n1 − σn1 ,n2 (n2 − λ( j ))− 1},
s1n1 + n2 if j = n1.

Proof. (1) Let m > n be positive integers, let σ : {0, . . . , n} → {0, . . . ,m}

be a strictly increasing function with σ (0) = 0 and σ (n) = m, and with
m − σ ( j ) ≥ n − j for j ∈ {0, . . . , n}, and let a1 be the ideal generated by
the set {xm−σ ( j )y j | j ∈ {0, . . . , n}}; this set is a minimal system of generators
of a1. We have ordα(a1) = n since m − σ ( j ) + j ≥ n for j ∈ {0, . . . , n}. We
determine �α(α/a1) by counting the monomials x

a yb which do not lie in a1.
Let a, b be nonnegative integers with a + b ≥ m. If b ≥ n, then xa yb lies in
a1, and if b < n, then we have a ≥ m − b > m − σ (b), and again xa yb lies in
a1. The monomials

{x i y j | j ∈ {0, . . . , n − 1}, i ∈ {0, . . . ,m − σ ( j )− 1}}

are all the monomials which do not lie in a1, and therefore we get (cf. (2.5))

�α(α/a1) =

n−1�

j=0

(m − σ ( j )) = mn −

n−1�

j=1

σ ( j ) = σ (n)n −

n−1�

j=1

σ ( j ).

(2) Now we prove the proposition by induction on k and s1. If k = 2, then the
result follows from (3.5) and the fact that m − s1 j = s1(n − j ) ≥ n − j for
j ∈ {0, . . . , n}. We assume that k ≥ 3, and that the statements of the proposition
hold for k − 1. Let β := αs1−1, γ := αs1 , b := aβ , c := aγ . Let u := x ,
v := y/xs1−1; then {u, v} is a regular system of parameters of β , and {u, v/u}
is a regular system of parameters of γ . We have

b = (un1+n2 , vn1 ), c = (un2 , (v/u)n1 ).

Let σ := σn1 ,n2 . By induction, the integral closure c of c has

{(v/u)n1−σ (i)ui | i ∈ {0, . . . , n2}}
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as a minimal system of generators, and c is simple; the inverse transform of c is
the ideal un1 c ∩ β = b. We consider the elements

(v/u)n1−σ (i)+ j ui , i ∈ {1, . . . , n2}, j ∈ {0, . . . , σ (i) − σ (i − 1)− 1}.

They lie in c, and therefore the elements

(∗) ui+σ (i)− jvn1−σ (i)+ j , i ∈ {1, . . . , n2}, j ∈ {0, . . . , σ (i) − σ (i − 1)− 1},

lie in b. For every j ∈ {0, . . . , n1 − 1} there exists a unique i ∈ {1, . . . , n2} such
that j ∈ {n1 − σ (n2 − i + 1), . . . , n1 − σ (n2 − i)− 1}. We include the element
vn1 in the set (∗), and write the elements of this set as

(∗∗) un1+n2−τ1( j )v j for j ∈ {0, . . . , n1}

where we have de�ned

τ1( j ) :=

� j + i − 1 if i ∈ {1, . . . , n2}, j ∈ {n1 − σ (n2 − i + 1), . . . ,

n1 − σ (n2 − i) − 1},
n1 + n2 if j = n1.

It is easy to check that τ1 : {0, . . . , n1} → {0, . . . , n1+n2} is strictly increasing,
that n1 + n2 − τ1( j ) ≥ n1 − j for j ∈ {0, . . . , n1}, and that

τ1(0) = 0, τ1(1) = 1, τ1(n1 − 1) = n1 + n2 − 2.

Let b1 be the ideal generated by the elements in (∗∗); it is clear that (∗∗) is a
minimal set of generators of b1, and that b1 ⊂ b.

We calculate �β (β/b1) by using (1): We have

�β(β/b1) =

n1−1�

j=0

(n1 + n2 − τ1( j )).

We get
n1−1�

j=0

τ1( j ) =

n2�

i=1

n1−σ (n2−i)−1�

j=n1−σ (n2−i+1)

(i − j + 1)

=

n2�

i=1

(i − 1)(σ (n2 − i + 1)− σ (n2 − i))
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+
1

2
(n1 − σ (n2 − i))(n1 − σ (n2 − i) − 1)

−
1

2
(n1 − σ (n2 − i + 1))(n1 − σ (n2 − i + 1)− 1)

=

n2−1�

j=1

σ ( j )+
1

2
n1(n1 − 1).

Therefore we have

�β (β/b1) = n1(n1 + n2) −
n1(n1 − 1)

2
−

n2−1�

j=0

σ ( j )

=
n1(n1 + 1)

2
+ σ (n2)n2 −

n2−1�

j=1

σ ( j ).

Since, by induction and (1),

σ (n2)n2 −

n2−1�

j=1

σ ( j ) =

k�

l=2

sl
nl(nl + 1)

2
,

we see that

�β(β/b1) =
n1(n1 + 1)

2
+

k�

l=2

sl
nl(nl + 1)

2
.

From (3.3) we obtain �β (β/b1) = �β(β/b), and therefore we have b1 = b. Note
that we have also shown (using (1)) that

(∗) τ1(n)n −

n−1�

j=1

τ1( j ) =
n1(n1 + 1)

2
+

k�

l=2

sl
nl (nl + 1)

2
.

Thus, we have proved the proposition for k and s1 = 1 (cf. (1)).
For every integer s ≥ 1 let τs : {0, . . . , n} → {0, . . . , sn + n2} be the

function de�ned by

τs( j ) := τ1( j )+ (s − 1) j for j ∈ {0, . . . , n};

note that τs is strictly increasing, that sn+n2−τs ( j ) ≥ n− j for j ∈ {0, . . . , n},
and that

τs(0) = 0, τs(1) = s, τs(n − 1) = sn + n2 − (1+ s), τs(n) = sn + n2.
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Let s ≥ 1 be an integer, set �m = sn + n2, and assume that the integral closure

of the ideal (x�m, yn) is generated by the set {x�m−τs( j )y j | j ∈ {0, . . . , n}}. We

consider the ideal a� := (x�m
�

, yn) where �m� := �m + n = (s + 1)n + n2 and

its quadratic transform (x�m, yn). Since we know by induction a system of

generators of the integral closure of (x�m, yn), we see that the integral closure

of a� contains the elements x�m
�−τs+1( j )y j for j ∈ {0, . . . , n}; let a1 be the ideal

generated by these elements. By (1) we have

�α(α/a1) = τs+1(n)n −

n−1�

j=1

τs+1( j )

= s
n(n + 1)

2
+ τ1(n)n −

n−1�

j=1

τ1( j )

cf. (∗)
= s

n(n + 1)

2
+
n(n + 1)

2
+

k�

l=2

sl
nl (nl + 1)

2

= (s + 1)
n(n + 1)

2
+

k�

l=2

sl
nl (nl + 1)

2
,

hence we have (cf. (3.3)) �α(α/a1) = �α(α/a�), and therefore we obtain a1 = a�.

Thus, we have shown that the integral closure of a� = (x�m
�

, yn) is generated by

the set of monomials {x�m
�−τs+1( j )y j | j ∈ {0, . . . , n}}.

Now we de�ne σm,n as in the proposition; σm,n : {0, . . . , n} → {0, . . . ,m}

is a function satisfying the assertions of the proposition.
This ends the proof of the proposition.

Remark 3.7. It is useful to de�ne a σ -function also in the following case. Let
n0 := s1n1 with s1 ≥ 2 and n1 := 1. We de�ne σn0 ,n1 : {0, n1} → {0, n0} by

σn0 ,n1 ( j ) :=

�
0 if j = 0,
n0 if j = n1.

Then the complete ideal ps1−1 is generated by the two elements

xn0−σn0 ,n1
(0)yσn0 ,n1

(0) = xn0 , xn0−σn0 ,n1
(n1)yσn0 ,n1

(n1) = y.

Starting with this particular σ -function, we can use the recursive construction
given in (3.6) to get all σ -functions.
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Example 3.8. For k = 3 we have

σm,n( j ) =

� 0 for j = 0,�
j/s2

�
+ s1 j − 1 for j ∈ {1, . . . , n − 1},

m for j = n,

and for k = 4 we have

σm,n( j ) =

�
s1 j + (p[ j ]s3 + q[ j ])− 1 for j ∈ {0, . . . , n − 1},
m for j = n

where for j ∈ {0, . . . , n − 1} we have de�ned

p[ j ] :=
� j

1+ s2s3

�

and

q[ j ] :=

�
1 if j = (1+ s2s3)p[ j ],�
j−(1+s2s3)p[ j ]

s2

�
otherwise.

Remark 3.9. Let κ be a �eld, and let a be the ideal in the polynomial
ring κ[ x , y ] generated by xm and yn . Then the integral closure of a has
{xm−σm,n( j ), y j | j ∈ {0, . . . , n}} as a minimal set of monomial generators.
Moreover, �(a) consists of all points (m − σm,n( j ) + r, j + s) where j ∈

{0, . . . , n} and r , s ∈ N0. This follows immediately from (2.4).

Now we want to study in some more detail the function σ . This will
provide a better understanding of this function and will be a useful tool for
the following section.

3.10. Further results on the function σ . Let k ∈ N, and let s1, . . . , sk, sk+1 be
natural integers with sk+1 ≥ 2. We de�ne

ni := Qk+1−i (s1, . . . , sk+1) for i ∈ {0, . . . , k + 1}, σk := σn0 ,n1 .

The Euclidean algorithm for n0, n1 gives

ni−1 = sini + ni+1 for i ∈ {1, . . . , k}, nk = sk+1nk+1 with nk+1 = 1.

(1) Assume that sk ≥ 2. We de�ne

n�
i := Qk−i (si+1, . . . , sk) for i ∈ {0, . . . , k}, σ �

k := σn�
0
,n�
1
.
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The Euclidean algorithm for n�
0, n

�
1 gives

n�
i−1 = sin

�
i + n�

i+1 for i ∈ {1, . . . , k − 1}, n�
k−1 = skn

�
k with n

�
k = 1.

Note that n0 > n�
0, n1 > n�

1. We show: For k odd we have

σk ( j ) = σ �
k ( j ) for j ∈ {0, . . . , n�

1},

n0 − σk(n1 − j ) =

�
n�
0 − σ �

k(n
�
1 − j ) for j ∈ {0, . . . , n�

1 − 1},
n�
0 + 1 for j = n�

1,

and for k even we have

σk ( j ) =

�
σ �
k( j ) for j ∈ {0, . . . , n�

1 − 1},
n�
0 − 1 for j = n�

1,

n0 − σk(n1 − j ) = n�
0 − σ �

k (n
�
1 − j ) for j ∈ {0, . . . , n�

1}.

Proof. The case k = 1 is trivial (cf. (3.6)). Let k ≥ 2 and assume that the
result holds for the integers 1, 2, . . . , k − 1. We de�ne

σ∗ := σn1 ,n2 , σ �
∗ := σn�

1
,n�
2
.

First, let k be even. Let j ∈ {0, . . . , n�
1 − 1}; we choose i ∈ {1, . . . , n�

2} with

n�
1 − σ �

∗(n
�
2 − i + 1) ≤ j ≤ n�

1 − σ �
∗(n

�
2 − i) − 1.

By induction, since k − 1 is odd, we have

n1 − σ∗(n2 − l) = n�
1 − σ �

∗(n
�
2 − l) for l ∈ {0, . . . , n�

2 − 1},

n1 − σ∗(n2 − n�
2) = n�

1 + 1.

Therefore we get

n1 − σ∗(n2 − i + 1) ≤ j ≤ n1 − σ∗(n2 − i) − 1 if i ∈ {1, . . . , n�
2 − 1},

and if i = n�
2, then we have for all j with n

�
1 − σ �

∗(1) ≤ j ≤ n�
1 − 1 the estimate

n1 − σ∗(n2 − n�
2 + 1) ≤ j ≤ n1 − σ∗(n2 − n�

2)− 2,

hence, by the recursion formula of (3.6),

σ∗( j ) = s1 j + i − 1 = σ �
∗( j ) for j ∈ {0, . . . , n�

1 − 1}.
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For j = n�
1 we obtain, since n

�
1 = n1 − σ∗(n2 − n�

2)− 1,

σk (n
�
1) = s1n

�
1 + n�

2 − 1 = n�
0 − 1.

Now we calculate σk(n1 − j ) and σ �
k (n

�
1 − j ) for j ∈ {0, . . . , n�

1}. First, let
j ∈ {1, . . . , n�

1}; then we have 0 ≤ n�
1 − j ≤ n�

1 − 1. We choose i � ∈ {1, . . . , n�
2}

with
n�
1 − σ �

∗(n
�
2 − i � + 1) ≤ n�

1 − j ≤ n�
1 − σ �

∗(n
�
2 − i �)− 1;

then we have σ �
∗(n

�
2 − i �) + 1 ≤ j ≤ σ �

∗(n
�
2 − i � + 1). Now we choose

i ∈ {1, . . . , n2} with

n1 − σ∗(n2 − i + 1) ≤ n1 − j ≤ n1 − σ∗(n2 − i) − 1;

then we have σ∗(n2 − i) + 1 ≤ j ≤ σ∗(n2 − i + 1). Since σ∗ is strictly
increasing and coincides with σ �

∗ in the range {0, . . . , n�
2} by induction, we

obtain n2 − i = n�
2 − i � . Now we get

n0 − σk (n1 − j ) = s1n1 + n2 − (s1(n1 − j )+ i − 1) = (n2 − i) + s1 j + 1
= (n�

2 − i �)+ s1 j + 1 = s1n
�
1 + n�

2 − (s1(n
�
1 − j )+ i � − 1)

= n�
0 − σ �

k(n
�
1 − j ).

Since 0 = n0 − σk(n1) = n�
0 − σ �

∗(n
�
1), we have settled the case of even k.

Now we consider the case that k is odd. Just as above we get by induction

σk ( j ) = σ �
k ( j ) for j ∈ {0, . . . , n�

1 − 1};

for j = n�
1 we have n

�
1 = n1 − σ∗(n2 − n�

2), hence

σk (n
�
1) = s1n

�
1 + n�

2 = n�
0.

Furthermore, again by induction, we �nd as above

n0 − σk (n1 − j ) = n�
0 − σ �

k(n
�
1 − j ) for j ∈ {0, . . . , n�

1 − 1},

and we have σ∗(n
�
2) = n�

1 − 1, hence n1 − n�
1 = n1 − σ∗(n

�
2)− 1, and therefore

σk(n1 − n�
1) = s1(n1 − n�

1) + n2 − n�
2 − 1,

hence

n0 − σk(n1 − n�
1) = s1n1 + n2 − (s1(n1 − n�

1)+ n2 − n�
2 − 1) = n�

0 + 1.
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(2) Assume that k ≥ 2 and sk = 1, and de�ne

n�
i = Qk−i−1(si+1, . . . , sk−1 + 1) for i ∈ {0, . . . , k − 1}, σ �

k := σn�
0
,n�
1
.

Just as in (1) we can show that we have the same relations between σk and σ �
k

as in (1).
(3) Assume that sk+1 = 2, and de�ne

n��
i = Qk−i (si+1, . . . , sk + 1) for i ∈ {0, . . . , k}, σ ��

k := σn��
0
,n��
1
.

Using similar arguments as above we can show: For k odd we have

σk ( j ) =

�
σ ��
k ( j ) for j ∈ {0, . . . , n��

1 − 1},
n��
0 − 1 for j = n��

1,

n0 − σk (n1 − j ) = n��
0 − σ ��

k (n
��
1 − j ) for j ∈ {0, . . . , n��

1},

and for k even we have

σk( j ) = σ ��
k ( j ) for j ∈ {0, . . . , n��

1},

n0 − σk (n1 − j ) =

�
n��
0 − σ ��

k (n
��
1 − j ) for j ∈ {0, . . . , n��

1 − 1},
n��
0 + 1 for j = n��

1.

(4) Assume that sk+1 ≥ 3, and de�ne

n��
i := Qk+1−i (si+1, . . . , sk+1 − 1) for i ∈ {0, . . . , k + 1}, σ ��

k := σn��
0
,n��
1
.

Then we can show that we have the same relations between σk and σ ��
k as in (3).

3.11. Subadditivity. Let k ∈ N, k ≥ 2, and let s1, . . . , sk be natural integers
with sk ≥ 2; let

ni := Qk−i (si+1, . . . , sk) for i ∈ {0, . . . , k}, σk := σn0 ,n1 .

Then we have

σk( j )+ σk(l) ≤ σk( j + l) for j, l ∈ {0, . . . , n1} with j + l ≤ n1.
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Proof. Let p be the integral closure of the ideal in α generated by xn0 , yn1 .
The properties of the function σk are independent of the ring α we are working
with; therefore we may assume that α = κ[[x , y ]], a ring of formal power
series over a �eld κ . The convex hull in R2 of the set {(n0, 0), (0, n1)} is the
line through these points; therefore �(p) is the set of all points (s, t)∈ N2

0 with
n1s + n0t − n0n1 ≥ 0 (cf. (2.3) (2)). Let j , l ∈ {0, . . . , n1} with j + l ≤ n1.
We have n0 j ≥ n1σk ( j ), n0l ≥ n1σk (l), hence n0( j + l) ≥ n1(σk ( j ) + σk (l),
which implies that xn0−(σk( j )+σk(l))y j+l ∈ p, and therefore we have σk ( j + l) ≥

σk ( j )+ σk (l) (cf. (3.6)).

In the following proposition we characterize when p is the integral closure
of (xm, yn).

Proposition 3.12. Let p be a simple complete mα -primary ideal in α which is
residually rational. We assume that the semigroup �p of p is generated by two
coprime natural integers m, n with m > n. Let ν := νp be the valuation of
K de�ned by p. Then we have ν(p) = mn + p with p ∈ N0. There exists a
regular system of parameters in α such that ν(x ) = n, ν(y) = m and that p is
the integral closure of the ideal (xm, yn) iff p = 0.

Proof. In the sequel, we are using the Hamburger-Noether algorithm, cf. [11],
sections 7.5 and 7.6 for details. Let α =: α0 ⊂ · · · ⊂ αh be the quadratic
sequence de�ned by p. We choose a regular system of parameters {x , y} of
α with ν(y) > ν(x ). Let p1 := ν(y), c1 := ν(x ); with η0 := y =: y0,
η1 := x =: x0 let

ν(ηi−1) = siν(ηi )+ ν(ηi+1) for i ∈ {1, . . . , k}

be the Euclidean algorithm for p1 and c1. Let m1 := s1 + · · · + sk . Then
xm1−1 := ηk , ym1−1 := ηk−1/η

sk−1
k is a regular system of parameters in

αm1−1 . If m1 − 1 = h�equivalently, if ν(xm1−1) = 1 and the image of
ym1−1/xm1−1 in the residue �eld κν of ν is transcendental over κα�then we
have ν(xm1−1) = ν(ym1−1) = 1 and p1 = m, c1 = n by [11], Th. (9.18), since
the semigroup �p is generated by m and n, hence ν(p) = mn (cf. [11], Cor.
(7.12)). In the other case there exists a uniquely determined unit a ∈ αm1−1 such
that setting

xm1
:= ηk, ym1

:=
ηk−1 − aηskk

η
sk
k

,

{xm1
, ym1

} is a regular system of parameters in αm1
, and we have p2 := ν(ym1

) ≥

1, c2 := ν(xm1
) = 1 since �p is generated by m and n. We have l = 2 in

the Hamburger-Noether tableau (cf. [11], section 7, for notation), and by the
corollary cited above we get ν(p) = p1c1 + p2c2 = mn + p2.
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We consider the case ν(p) = mn, i.e., the case αm1−1 = βp. For every
j ∈ {0, . . . , n} we have (m − σm,n( j ))n + jm − mn = jm − σm,n( j )n ≥ 0 (cf.
the proof of (3.11)); since p is a ν-ideal, this implies that the integral closure p�

of the ideal (xm, yn) lies in p. It is easy to check that also the transform of p�

in βp is equal to the maximal ideal of βp. Therefore the simple complete mα -
primary ideals p� and p have the same transform in βp, hence we have p� = p.

Conversely, if {x , y} is a regular system of parameters in α with ν(x ) = n,
ν(y) = m, and p is the integral closure of the ideal (xm, yn), then clearly pαm1−1

is the maximal ideal of αm1−1, hence m1 − 1 = h and ν(p) = mn.

Remark 3.13. Using the notation introduced in the proof of (3.12), let p be a
positive integer. If p = 1, then we de�ne a quadratic transform αm1

of αm1−1

by xm1
:= xm1−1 , ym1

:= (ym1−1 − xm1−1)/xm1−1 , and if p > 1, then we
de�ne a sequence αm1

⊂ · · · ⊂ αm1+p−1 of quadratic transforms recursively
by xm1+i := xm1

, ym1+i := ym1+i−1/xm1
for i ∈ {1, . . . , p − 1}; note that

{xm1+p−1, ym1+p−1} is a regular system of parameters in αm1+p−1. Let ν be
the valuation of K de�ned by the order function of αm1+p−1. Then we have
ν(xm1+p−1) = 1, ν(ym1+p−1) = p, and for the simple complete m-primary ideal
p in α corresponding to themaximal ideal of αm1+p−1 we have �p = mN0+nN0

and ν(p) = mn + p. In particular, there are simple complete ideals p with
�p = mN0 + nN0 which are not of the form p = a with a = (xm, yn).

4. The polar ideal.

In this section we want to give explicit generators for the polar ideal of ā.
We begin by stating two facts which we get when applying the results of our
paper [11].

4.1. Some further results. Let p be the integral closure of the ideal (xm, yn),
and let ν := νp . For the following results cf. [11], Nr. (7.5). In the sequence of
quadratic transforms

α0 ⊂ α1 ⊂ · · · ⊂ αs1 ⊂ αs1+1 ⊂ · · · ⊂ αs1+s2 ⊂ · · · ⊂ αt−1

the only non-trivial proximity relations are

αs1−1 ≺ αs1+s2 , αs1+s2−1 ≺ αs1+s2+s3 , . . . , αs1+s2···+sk−2−1 ≺ αs1+s2+···+sk−1

and
αs1+s2+···+sk−1−1 ≺ αs1+s2+···+sk−1.
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In particular, if k = 1, there are no non-trivial proximity relations. Note that ν
is the extension of the order function ordαt−1 to K . Let

mα =: p0 ⊃ p1 ⊃ · · · ⊃ pt−1 := p

be the sequence of simple complete ideals of α determined by p; these ideals
are the only simple ν-ideals in α, and every ν-ideal in α is a product of these
ideals. Let i ∈ {1, . . . , k} and j ∈ {0, . . . , si−1}; then by [11], (7.5) (6) (b),
ps1+···+si−1+ j is the integral closure in α of the ideal generated by x Qi (s1,...,si−1 , j+1)

yQi−1(s2,...,si−1, j+1). In particular, every mα -primary ν-ideal in α is a monomial
ideal with respect to {x , y}.

4.2. Generating sequence. Let p be as in (4.1). For i ∈ {1, . . . , t} let {xi , yi}
be the regular system of parameters for αi de�ned in [11], (7.5), starting with
x0 := x , y0 := y . Cf. By [11], Lemma (9.6), p is an s-ideal. The points
in �(α, βp) (cf. [11], (3.3) (4) for the de�nition of this set) are the two points
γ , γ � where γ has {xy, yt/xt } as a regular system of parameters and satis�es
αt−sk ≺ γ and where γ � has {yt , xy/yt } as a regular system of parameters
and satis�es αt−2 ≺ γ � . De�ne f := xm − yn ; it is easy to check that
( f α)αt = (xt − yt)αt ; therefore f is a general element of p (cf. [11], de�nition
(3.11)). The ideal ps1 is generated by x

s1+1 and y ; since �(α, αs1 ) consists only
of the point αs1+1 , we see that y is a general element of ps1 .

Let αi := αi/( f α)
αi for i ∈ {0, . . . , t}. The ring αt is a discrete valuation

ring; let ν be the valuation of the quotient �eld of αt de�ned by αt . De�ne
x := x mod( f ), y := y mod( f ). Since

Qk−1(s2, . . . , sk−1, sk − 1)+ Qk−2(s2, . . . , sk−1) = n,

Qk(s1, . . . , sk−1, sk − 1)+ Qk−1(s1, . . . , sk−2) = m,

we get (cf. [11], (7.5)(5)(a)) x = xnt , y = xmt , and therefore

ν(p0) = ν(x ) = ν(x) = n, ν(ps1 ) = ν(y) = ν(y) = m.

This implies: The sequence (x , y) is a generating sequence for ν (cf. [11], Th.
(9.9)) .

4.3. The polar ideal of p. Let P be the polar ideal of p (the polar ideal
Qq of a simple complete mα-primary ideal q is de�ned in [16], section 5: it
is the smallest among those mα -primary νq-ideals Q satisfying ordα(Q) =

ordα(q) − 1)). Thus, we have ordα(P) = ordα(p) − 1, and P is a ν-ideal.
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Therefore, by the remark at the end of (4.1), P is a monomial ideal with
respect to {x , y}. In the following, we construct a minimal system of monomial
generators of P (cf. (4.4) below).

We de�ne

bl := ordαl (P
αl ) for l ∈ {0, . . . , t − 1}.

For i ∈ {1, . . . , k− 1} and j ∈ {0, . . . , si − 1} and for i = k, j ∈ {0, . . . , sk − 2}
we have (cf. (3.1) and [16], Th. (5.2))

bs0+s1+···+si−1+ j =

�
ni − 1 for i odd,
ni for i even,

and
bs1+···+sk−1 = 0

[note that nk = 1]. Let

P =

t−1�

l=0

p
cl
l

be the factorization of the ν-ideal P. Then we have (cf. [16], Remark (A))

cl = bl −
�

αλ�αl

bλ for l ∈ {0, . . . , t − 1}.

This means, as one easily checks, that

cs1+···+si−1 = si+1 for i ∈ {1, . . . , k − 1} and i even,
cs1+···+sk−2 = 1 if k is even,

cl = 0 for all other l ∈ {0, . . . , t − 1}.

In particular, we have

P =

�
α if k = 1,
ps1+s2−2 if k = 2,

and if k ≥ 3, we have

P =

�
p
s3
s1+s2−1

· · ·p
sk
s1+···+sk−1−1

if k is odd,

p
s3
s1+s2−1

· · ·p
sk−1
s1+···+sk−2−1

ps1+···+sk−2 if k is even.
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Proposition 4.4. Assume that k := k(m, n) ≥ 2, let p be the integral closure
of the ideal generated by xm , yn, and let P be the polar ideal of p. Then P is
minimally generated by

{xm−σm,n( j+1)y j | j ∈ {0, . . . , n − 1}}.

In particular, xm−s1 is the lowest power of x in P, and yn−1 is the lowest power
of y is P.

Proof. We prove the proposition by induction on k.
(1) The case k = 2 is already settled; we consider the case k = 3. In this

case we have P := p
s3
s1+s2−1

. The ideal ps1+s2−1 has order s2 and is the integral

closure of the ideal generated by xs1s2+1, ys2 , hence is generated by the s2 + 1
elements

xs1s2+1−s1 j y j for j ∈ {0, . . . , s2 − 1}, ys2 .

The ideal ps3s1+s2−1 has order s2s3, and is generated by the monomials

(∗) (xs1s2+1)i0 (xs1s2+1−s1 y)i1 · · · (xs1s2+1−s1(s2−1)ys2−1)is2−1 ys2is2

where (i0, . . . , is2 )∈ Ns2+1
0 and i0 +· · ·+ is2 = s3. Let j ∈ {1, . . . , s2s3 −1} and

(i0, . . . , is2 )∈ Ns2+1
0 with

(∗∗) i0 + · · · + is2 = s3, 1 · i1 + 2 · i2 + · · · + s2 · is2 = j.

The monomial corresponding to this choice of (i0, . . . , is2 ) is

x (s1s2+1)s3−is2−s1 j y j

since
s2−1�

l=0

(s1s2 + 1− ls1)il = (s1s2 + 1)s3 − is2 − s1 j.

Claim: For every j ∈ {1, . . . , s2s3 − 1} there exists (i0, . . . , is2 ) ∈ Ns2+1
0

satisfying (∗∗).
Proof. We write

j = qs2 + r with r ∈ {0, . . . , s2 − 1}.

Then we have 0 ≤ q < s3. In case r = 0 we choose

i0 := s3 − q, i1 = · · · = is2−1 := 0, is2 := q,
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and in case r �= 0 we choose

i0 := s3 − (1+ q), i1 = · · · = isr −1 := 0,
isr := 1, isr+1 = · · · = is2−1 := 0, is2 := q.

For every (s2 +1)-tuple (i0, . . . , is2 )∈ Ns2+1
0 satisfying (∗∗) we have is2 ≤ j/s2.

This implies the following: Given j ∈ {1, . . . , s2s3−1}, the smallest nonnegative
integer a such that xa y j lies in p

s3
s1+s2−1

is

a := (s1s2 + 1)s3 −
� j

s2

�
− s1 j.

This shows that

�
x (s1s2+1)s3−� j/s2�−s1 j y j | j ∈ {0, . . . , s2s3 − 1}, ys2s3

�

is a minimal system of generators of P. To �nish this case, it is enough to show
that

m − σm,n( j + 1) = (s1s2 + 1)s3 −
� j

s2

�
− s1 j for j ∈ {0, . . . , n − 1}

[note that m = (s1s2 + 1)s3 + s1, n = s2s1 + 1], equivalently, that

� j

s2

�
=

� j + 1

s2

�
− 1 for j ∈ {0, . . . , s2s3};

clearly this equation holds.
Let k ≥ 3, and assume that the proposition holds for all coprime natural

integers m, n with m > n and k(m, n) < k. Let m, n be coprime integers with
m > n, and let

n0 = s1n1 + n2, n2 = s2n2 + n3, . . . , nk = sk+1nk+1

be the Euclidean algorithm for n0 := m, n1 := n. We have

ni = Qk+1−i (si+1, . . . , sk+1) for i ∈ {0, . . . , k + 1},

and we de�ne σk := σm,n . Let p be the integral closure of the ideal (xn0 , yn1 ),
and let P := Pp be the polar ideal of p. We determine a minimal system of
generators of P.
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(2) We consider the case that k is odd. We have

P = p
s3
s1+s2−1

· · ·p
sk
s+1+···+sk−1−1

ps1+···+sk+1−2.

(a) Assume that sk ≥ 2, and de�ne n�
i for i ∈ {0, . . . , k} and σ �

k as in (3.10) (1).

Let p� be the integral closure of the ideal (xn
�
0 , yn

�
1 ); the polar ideal P� of p� is

P� = p
s3
s1+ss−1

· · ·p
sk
s1+···+sk−1−1

.

By induction, it is generated by the set {xn
�
0
−σ �

k
( j+1)y j | j ∈ {0, . . . , n�

1 − 1}}.
(a1) Assume that sk+1 = 2. Then we de�ne n��

i for i ∈ {0, . . . , k}, σ ��
k as in

(3.10) (3). We have

(†) ni = n�
i + n��

i for i ∈ {0, . . . , k}.

The ideal ps1+···+sk+1−2 is the integral closure of the ideal generated by x
n��
0 , yn

��
1 ,

hence ps1+···+sk+1−2 is generated by the set (cf. (3.6)) {xn
��
0
−σ ��

k
( j )y j | j ∈

{0, . . . , n��
1}}. Since P = P�ps1+···+sk+1−2 , the ideal P is generated by

{xn
�
0
+n��

0
−τ (l)yl | l ∈ {0, . . . , n�

1 + n��
1 − 1}} where we have de�ned for l ∈

{0, . . . , n1 − 1} the integer τ (l) by

τ (l) := max
�
σ �
k (l

� + 1)+ σ ��
k (l

��) | l� + l�� = l ,

l� ∈ {0, . . . , n�
1 − 1}, l�� ∈ {0, . . . , n��

1}
�
.

We have to prove that

(††) σk+1(l + 1) = τ (l) for l ∈ {0, . . . , n1 − 1}.

For l = 0 we have σk+1(0) = s1, τ (0) = σ �
k(1) = s1. For l = n1 − 1 we have

σk+1(n1) = n0. The only integers l
� , l�� in the range above with l� + l�� = n1 − 1

are l� = n�
1 − 1, l�� = n��

1, and we get

σ �
k(n

�
1) + σ ��

k (n
��
1) = n�

0 + n��
0 = n0.

Therefore we have to prove (††) only for l ∈ {1, . . . , n1 − 2}.
We show that

σk(n
�
1 + j ) = n�

0 + σk ( j ) for j ∈ {0, . . . , n��
1}.
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In the following, we use the notation introduced in (3.10). The claim certainly
is true for j = n��

1. Let j ∈ {0, . . . , n��
1 − 1}, and choose i ∈ {1, . . . , n2} with

n1 − σ∗(n2 − i + 1) ≤ n�
1 + j ≤ n1 − σ∗(n2 − i) − 1.

Since n1 − σ∗(n2 − n�
2) = n�

1 + 1 (cf. (3.10) (2) and note that k is odd), we have
i ≥ n�

2 + 1, and from (3.10) (3) and (†) above we get

n��
1 − σ ��

∗ (n
��
2 − (i − n�

2)+ 1) ≤ j ≤ n��
1 − σ ��

∗ (n
��
2 − (i − n�

2))− 1.

Therefore we have

σk ( j ) = σ ��
k ( j ) = s1 j + i − n2 − 1,

n�
0 + σk ( j ) = s1(n1 + j )+ i − 1 = σk (n

�
1 + j ).

Similarly, one can show that

n��
0 + σk ( j ) = σk (n

��
1 + j ) for j ∈ {0, . . . , n�

1}.

For l ∈ {0, . . . , n�
1 − 1} we choose l� := l , l�� := 0. Then we have σ �

k (l
� + 1) =

σk (l + 1) (cf. (3.10) (2)). For l ∈ {n�
1 − 1, . . . , n1 − 2} we choose l� := n�

1 − 1,
l�� := l − (n�

1 − 1). Then we have

σk(l + 1) = σk(n
�
1 + l��) = σ �

k (n
�
1)+ σ ��

k (l
��).

Likewise, if l�� := n��
2 , l ∈ {n��

2, . . . , n1 − 2} and l� := l − l��, we obtain

σk (l + 1) = σ �
k (l

� + 1)+ σ ��
k (n

��
1).

From (3.10), (1) and (3), we get the result.
(a2) Assume that sk+1 ≥ 3. Then we de�ne n��

i for i ∈ {0, . . . , k}, σ ��
k as in

(3.10) (4). We have

ni = n�
i + n��

i for i ∈ {0, . . . , k}.

The ideal ps1+···+sk+1−2 is the integral closure of the ideal generated by x
n��
0 , yn

��
1 ,

hence ps1+···+sk+1−2 is generated by the set (cf. (3.6)) {xn
��
0
−σ ��

k
( j )y j | j ∈

{0, . . . , n��
1}}. We have P = P�ps1+···+sk+1−2. Just as in (a1), using (3.10), (1)

and (4), we can prove the assertion.
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(b) Now we assume that sk = 1. We de�ne n�
i for i ∈ {0, . . . , k−1} and σ �

k

as in (3.10) (2). Let p� be the integral closure of the ideal generated by (xn
�
0 , yn

�
1 ).

Then
P� = p

s3
s1+s2−1

· · ·p
sk−2
s1+···+sk−3−1

ps1+···+sk−1−1

is the polar ideal of p�, and

P = P�ps1+···+sk+1−2

is the polar ideal of p. We distinguish the two cases sk+1 = 2 and sk+1 ≥ 3, and
with the help of (3.10) (2) and (3.10) (3) resp. (3.10) (4) we can argue as above
in the case (a).

(3) We consider the case that k is even. We have

P = p
s3
s1+s2−1

· · ·p
sk−1
s1+···+sk−2−1

p
sk+1
s1+···+sk−1

.

(a) The case sk ≥ 2: We de�ne n�
i for i ∈ {0, . . . , k} and σ �

k as in (3.10) (1); let

p� := ps1+···+sk−1 , the integral closure of the ideal generated by (x
n�
0 , yn

�
1 ). The

polar ideal P� of p� is

P� = p
s3
s1+s2−1

· · ·p
sk−1
s1+···+sk−2−1

ps1+···+sk−2

and we have
P = P�p

sk+1
s1+···+sk−1

.

We handle this case by induction on sk+1 , using similar methods as above.
(b) The case sk = 1: Here again, we use similar methods as above.

4.5. The polar curve. Let κ be an algebraically closed �eld of characteristic
zero, and let α = κ[[ x , y ]] be the ring of formal power series over κ in two
indeterminates x , y . Furthermore, we assume that k ≥ 2.

For every u = (u0, . . . , un)∈ κn+1 we de�ne

fu :=

n�

j=0

uj x
m−σm,n( j )y j ;

by [11], (3.27), there exists a non-empty Zariski-open subset U ⊂ κn+1 such
that fu is a general element of p for every u ∈ U . It is easy to check that
u = (u0, . . . , un)∈U implies that u0 �= 0 and un �= 0.

For every v = (v0, . . . , vn−1) we de�ne

gv =

n−1�

j=0

vj x
m−σm,n( j+1)y j ;

there exists a non-empty Zariski-open subset V ⊂ κn such that gv is a general
element of the polar ideal P of p for every v ∈ V . Therefore, we have the
following:
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Corollary 4.6. Let m, n be coprime positive integers with m > n, and let p be
the integral closure of the ideal generated by xm , yn in κ[[ x , y ]]. There exists
a non-empty open subset U of κn+1 such that fu is a general element of p and
∂ fu/∂y is a general element of the polar ideal P of p.

This result can also be rephrased in the following way: �A polar of a
general element of p is a general element of the polar ideal P of p� (cf. [6],
section 6.6).

Remark 4.7. We keep the hypotheses of (4.5). Since σm,n is integer-valued and
strictly increasing, we have

σm,n( j + 1) ≥ σm,n( j )+ 1 for j ∈ {0, . . . , n − 1},

and therefore we obtain for b, c ∈ κ not both zero and u = (u0, . . . , un)∈ κn+1

with u0 �= 0, un �= 0

gb,c,u := b
∂ fu

∂x
+ c

∂ fu

∂y

=

n−1�

j=0

�
�
b(m − σm,n( j ))uj x

σm,n( j+1)−σm,n( j )−1

+ cuj+1( j + 1)
�
xm−σm,n( j+1)y j

�

.

Clearly gb,c,u is an element of P, and de�nes also a polar curve of fu (note
that m − σm,n( j ) �= 0 for j ∈ {0, . . . , n − 1}). Therefore we have the following
result: A general polar of a general element fu of p is an element of the polar
ideal of p.

The authors thank the Politecnico di Torino and the Department of Math-
ematics of the University of Paderborn for kind hospitality. The second author
extends this thank also to the Department of Mathematics of McGill University,
Montreal.

Added in Proof: Let α ∈ � have in�nite residue �eld, let a be a complete
mα -primary ideal, and let b be a minimal reduction of a. Then a is the integral
closure of b, and b is generated by a regular sequence ( f, g), i.e., b = f α+gα.
By the main theorem of [14], a is generated by monomials in f and g. Can one
construct explicitly a system of monomial generators of a?
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