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ON NEAR-OPTIMAL TIME SAMPLING FOR INITIAL DATA
BEST APPROXIMATION

ROZA ACESKA - ALESSANDRO ARSIE - RAMESH KARKI

Leveraging on the work of DeVore and Zuazua (see [7]), we further
explore their methodology and deal with two open questions presented in
their paper. We show that for a class of linear evolutionary PDEs of order
2N the admissible choice of the parameter ρ which is used to construct
the near-optimal sampling sequence is not influenced by the spectrum
of the operator controlling the spatial part of the PDE, but only by its
order. Furthermore, we show that it is possible to extend their algorithm
to a simple version of a non-autonomous heat equation in which the heat
diffusivity coefficient depends explicitly on time.

1. Introduction

The determination or the best possible approximation of the initial state of a
dynamical system through observation of its states at subsequent times is a gen-
eral and very important problem for a variety of applications. In [7], the authors
proposed an ingenious procedure to approximate in a near-optimal way and via
finitely many time samplings at a fixed location the initial state of a particularly
simple infinite dimensional dynamical system, described by the heat equation
on a compact interval with Dirichlet boundary conditions.
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We study an initial value problem for two generalized classes of PDEs, in-
volving fairly unknown initial conditions; each of these classes contain the heat
equation as an example. It is known that under appropriate assumptions ([7]),
one can compensate for the lack of knowledge of the initial condition by adding
scarce measurements made at later time instances. This problem of compensa-
tion via a time-space trade-off between the initial measurements and the later
time measurements has been recently observed in applications of sampling the-
ory, and referred to as the dynamical sampling problem (see for instance [1],
[3], [2]).

We generalize the method developed in [7] and deal with an inverse problem
(initial data best reconstruction) via later time measurements. The contributions
of our work are significant in applications, where full knowledge of the initial
conditions is unrealistic to expect. We study the correlation between the number
of measurements that are needed to recover the initial profile to a prescribed ac-
curacy, give precise estimates for the time instances when these measurements
need to occur, and provide an optimal reconstruction algorithm under the as-
sumption that the initial profile is in a Sobolev class. Let us underline that the
inverse problem for the PDEs we are dealing with is in general ill-posed (see
for instance [4], [5]), however, our goal here is simply to find a best approxima-
tion of the initial data in L2([0,π]) using finitely many time samplings at a fixed
location.

In [7], the authors pointed out some open questions, some of which are dealt
with in this paper.

The first question concerns the relationship between the spectrum of a cer-
tain operator and the choice of the parameter ρ that determines the geometric
sequence of near-optimal sampling times. In particular, the authors of [7] in-
quired about the dependence of ρ on the spectrum of a certain operator. In
Section 2, we study a generalization of the heat equation, essentially a constant
coefficients evolutionary PDE of spatial order 2N with Dirichlet boundary con-
ditions. In order to make our results more easily comparable with [7], we will
make the strong assumption that the initial datum f lives in a suitable subspace
S of the Sobolev space Hr

0([0,π]) for r > 0. For our model, we will see that any
ρ > 2N ln(2) (2N is the spatial order of the PDE) will generate a near-optimal
geometric sampling times sequence. In particular, this does not depend on the
cofficients of the equation (as long as they satisfy a suitable sign requirement
for well-posedness). So in this sense the dependence of ρ on the spectrum is
very weak. (In our case, the relevant spectrum is given by {λ (k)}k∈N, where
λ (k) = ∑

N
l=1(−1)lα2lk2l , where α2l are the constants appearing in the spatial

part of the PDE.) Let us remark that in this Section the extension of the results
of [7], although elementary, is not completely straightforward. In [7], it was



ON NEAR-OPTIMAL TIME SAMPLING FOR INITIAL DATA BEST APPROXIMATION175

also mentioned that the method developed there does not extend immediately
to non-autonomous evolutionary PDEs. Here in subsection 2.3 we deal with
a non-autonomous extension of the heat equation on a compact interval with
Dirichlet boundary conditions. Essentially we consider a heat equation with
a continuously time varying heat diffusivity coefficient (always assumed to be
positive for physical reason). This model is more physically relevant than the
one studied in Section 2, and for this we show that the algorithm devised in [7]
carries over with minimal modifications. In the final Section 3, we discuss some
further directions that we think would be very worthwhile to explore.

2. The case of a linear evolutionary PDE of order 2N

In this Section, we extend the main results of [7] to the case of a linear constant
coefficient PDE of order 2N, where in [7] the authors restricted their analysis
to the heat equation on a compact interval with Dirichlet boundary conditions.
Among the open questions posed in [7], it was mentioned the fact that the op-
timal selection of the sampling times is extremely sensitive to the distribution
of the eigenvalues of the operator that essentially controls the spatial part of
the PDE. In this Section we show that the optimal selection of sampling times
is essentially controlled only by order of the highest spatial derivative, at least
for the class of PDEs we consider (see Theorem 2.5). So in this sense, the
dependence on the spectrum is very weak in this case. To make the results
directly comparable with what was obtained in [7], we make the strong assump-
tion that the initial datum f lives in the subspace S ⊂ Hr

0([0,π]) ⊂ L2([0,π]),
r > 0 consisting of functions that admit a Fourier series representation of the
form f (x) = ∑

∞
k=1 f̂k sin(kx), where ∑

∞
k=1 k2r f̂ 2

k <+∞. Later on, we will further
assume that f ∈ Fr, the unit ball in S, defined by

Fr := { f ∈ S :
∞

∑
k=1

k2r f̂ 2
k ≤ 1}.

We deal with the initial value/boundary value problem

ut =
N

∑
l=1

α2lu(2l), 0 < x < π, t > 0, u(0, t) = u(π, t) = 0, u(x,0) = f (x),

(2.1)
where f ∈ S and α2l, l = 1,2, . . . ,N are constants. Call λ : N→ R, the function
defined via

λ (k) :=
N

∑
l=1

(−1)l
α2lk2l. (2.2)
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Observe that {λ (k)}k∈N is just the spectrum of the ordinary differential operator

(with respect to the x-variable) L = ∑
N
l=1 α2l

(
∂

∂x

)2l
defined on S.

For the problem (2.1) to be well-posed it is sufficient that for each k ∈ N,
λ (k)≤ 0. This is because the solution to the problem (2.1) is given in this case
by

u(x, t) =
∞

∑
k=1

f̂keλ (k)t sin(kx), (2.3)

where f̂k are Fourier sine coefficients of f (x). However, in order to extend the
main results of [7], we will assume the following:

λ (1)< 0, λ (k+1)< λ (k) ∀k ∈ N, and lim
k→+∞

λ (k) =−∞ (2.4)

In order for (2.4) to hold, we further assume that

α2l > 0 if l is odd, and α2l < 0 if l is even. (2.5)

We can immediately see how (2.5) implies (2.4).

Proposition 2.1. A sufficient condition for (2.4) to be fulfilled is that the coef-
ficients α2l satisfy the constraints in (2.5).

Proof. If the conditions in (2.5) are met, then λ (k) is a polynomial in k with
negative coefficients, so λ (k) < 0 for each k ∈ N and limk→+∞ λ (k) = −∞.
Furthermore, for each l ∈ {1, . . . ,N} we have α2l(−1)l(k+1)2l < α2l(−1)lk2l .
Summing over l, one gets λ (k+1)< λ (k).

2.1. Consistency of approximation and lower bounds on optimal
performance

As in [7], we sample at a point x0 which is an algebraic number of second order,
in particular we require

|sin(kx0)| ≥ d0k−1, (2.6)

for some d0 > 0 and for all positive integers k.
Our first result is the following:

Theorem 2.2. Sampling u(x, t) at the fixed point x0 satisfying (2.6) and at an
increasing sequence of times 0 < t1 < t2 < · · · < tn < .. . allows one to recon-
struct uniquely the Fourier sine coefficients f̂k, and consequently f (x) (in L2)
and u(x, t).
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Proof. Introduce the following function of complex variable

F0(z) :=
∞

∑
k=1

ckz−λ (k),

where ck := f̂k sin(kx0). It follows immediately that the sequence {ck}k∈N is
in l2. Furthermore, by the current assumptions on λ , F0(z) is holomorphic in
D := {z ∈ C||z|< 1}, but in general it is multi-valued there due to the fact that
λ (k) is not always an integer. We represent z−λ (k) as exp(−λ (k) log(z)), choose
as branch cut (−∞,0] and choose as determination of the complex logarithm
log(z) the one that agrees with the real logarithm for z ∈ R+. In this way F0(z)
becomes a single valued holomorphic function in the simply connected domain
U := D \ (−1,0]. Finally observe that for each t > 0, we have that F0(e−t) =
u(x0, t). Therefore, the sampling u(x0, t j) =: u j means receiving F0(z j), where
z j = e−t j . The sequence {z j} j∈N has a limit z∗. If z∗ is in U (which means
that t j → t∗ < ∞), then we can invoke the identity principle: a holomorphic
function is uniquely determined by a sequence having an accumulation point
in its domain of holomorphy, therefore from F(z j) we can uniquely reconstruct
ck, and hence f̂k =

ck
sin(kx0)

as sin(kx0) 6= 0 for all k. So the sequence {u j} j∈N

uniquely determines f ∈ L2 and consequently the solution u(x, t). If on the other
hand z∗ = 0 (which corresponds to the case t j → +∞), we can not invoke the
identity principle directly because the limit point is not in the interior of U .
However we can proceed as follows. Consider the a sequence of real z j ∈ U
converging to 0 ∈ ∂U . Suppose F0(z j) = 0 and clearly F0(0) = 0, since c0 = 0.
Then we want to show that F0 is identically zero, namely ck = 0 for all k. This
would imply the necessary identity principle in our case. Write F0(z) as

F0(z) = z−λ (1)
∞

∑
k=1

ckz−λ (k)+λ (1),

and call g1(z) := ∑
∞
k=1 ckz−λ (k)+λ (1). Since F0(z j) = 0 for all z j, then we have

g1(z j) = 0 for all z j. Since g1 is continuous from the right of 0 on the real
axis, then g1(0) = lim j→+∞ g1(z j) = 0. But this means c1 = 0. Therefore
F0(z) = ∑

∞
k=2 ckz−λ (k). Rewrite F0(z) = z−λ (2)

∑
∞
k=2 ckz−λ (k) and call g2(z) :=

∑
∞
k=2 ckz−λ (k). By the same reasoning used above one gets g2(0) = 0 and hence

c2 = 0. Proceeding in this way, we see that ck = 0 for all k, that is F0(z) = 0.
This says that the identity principle can be applied also to this case, even though
0 is not in U . Therefore, if we sample infinitely many times, the initial datum
can be reconstructed uniquely in L2. Once the initial datum is reconstructed,
then u(x, t) is determined via (2.3).

At this point, our goal is to determine a near-optimal approximation for the
initial data f using only finitely many but sufficiently large number of time sam-
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plings. First we extend Theorem 3.1 from [7] to determine optimality bounds.
To describe bounds on optimal performance we recall few notions from the the-
ory of manifold widths (see [6]). Let Fr be a fixed closed ball contained in
S⊂ Hr

0([0,π])⊂ L2([0,π]). This ball is defined by the condition

Fr := { f ∈ S :
∞

∑
k=1

k2r| f̂k|2 ≤ 1}. (2.7)

Given f ∈ Fr, we consider the problem of recovering f in the L2 norm and
show how to modify the algorithm of [7] to obtain a reconstruction of f which is
optimal in terms of rate distortion (error vs. number of measurements). We will
need continuous mappings, an encoder a :Fr→Rn and a decoder M : Rn→ L2,
to approximate a given f ∈Fr as M(a( f )). An encoder a coupled with a decoder
M is called a measurement algorithm. The performance of this measurement
algorithm on Fr, denoted by δ̂n(Fr,L2), is defined as

δ̂n(Fr,L2) = sup
f∈Fr

‖ f −M(a( f ))‖L2 .

Since the set of all M(y), y ∈ Rn is an n-dimensional manifold, the mani-
fold width δn is then defined as the best performance one can obtain with this
scheme:

δn(Fr,L2) = inf
a,M

sup
f∈Fr

‖ f −M(a( f ))‖L2 ,

where the infimum is taken over all continuous mappings a and M of the above
form for a fixed n. For Fr it is known that (see [6])

δn(Fr,L2)≥ crn−r. (2.8)

We have the following extension of Theorem 3.1 of [7]:

Theorem 2.3. For any measurement algorithm (fixed or adaptive) with a con-
tinuous decoder M we have

δ̂n(Fr,L2)≥ δn(Fr,L2)≥ crn−r.

Proof. In order to show that this bound applies also to this problem, first of all
we observe that any measuring algorithm can be described by such mappings
a and M. For a we take a( f ) = (x0; t1, . . . , tn;u1 . . . ,un), where u j is the jth

sample u(x0, t j), so a maps Fr to R2n+1 (and this covers both fixed times and
adaptive times as long as the adaptive choice of times is continuous with respect
to the choice of f ). The first inequality in the statement of the Theorem is then
obvious, while the second inequality is in [6], for Fr as above, provided that the
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relevant map a is continuous. So the only thing to be checked is the fact that
the encoding map a : Fr ⊂ L2→R2n+1, sending f to (x0; t1, . . . , tn;u1, . . . ,un) is
continuous. Since x0, t1, . . . , tn do not depend on the choice of f ∈ Fr, the only
claim that needs to be proved is that each u j depends continuously on f . Let f
and g be two functions in Fr and let f̂k and ĝk be their respective Fourier sine
coefficients. Then

‖g− f‖2
L2 =

π

2

∞

∑
k=1
|ĝk− f̂k|2. (2.9)

Call ug and u f the corresponding solutions to (2.1) having initial data as g and
f respectively. Then

|ug
j −u f

j |=

∣∣∣∣∣ ∞

∑
k=1

(ĝk− f̂k)sin(kx0)eλ (k)t j

∣∣∣∣∣≤ ∞

∑
k=1
|ĝk− f̂k|eλ (k)t j ≤

≤
∞

∑
k=1
|ĝk− f̂k|eλ (k)t1 ≤

√
2
π
‖g− f‖L2‖{eλ (k)t1}k∈N‖l2 ,

where we have used the Cauchy-Schwarz inequality, (2.9) and the properties of
λ (k). Therefore we get |ug

j −u f
j | ≤C1‖g− f‖L2 for a constant C1 that depends

only on the first time measurement t1 which is always arbitrary (but greater than
zero).

Remark 2.4. Although the authors of [7] seem to indicate otherwise, some
aspects of their method does apply also to non-autonomous linear PDEs. For
instance, consider the problem:

ut = a(t)uxx, t > 0, 0 < x < π, u(t,0) = u(t,π) = 0, u(t0,x) = f (x).

If a(t) and the initial time t0 are known and if
∫ t

t0 a(s) ds is monotonic strictly
increasing in t (which is reasonable since if one is dealing with heat propagation
then a(t)≥m> 0 for some m> 0), then an adaptation of the methods developed
in [7] applies. This is because for t > t0 one has:

u(t,x) =
∞

∑
k=1

f̂ke−k2 ∫ t
t0

a(s) ds sin(kx).

We will say more about this in Section 2.3, where we adapt the case we analyzed
in this section to this non-autonomous case.
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2.2. Time selection for near-optimal recovery

Here we determine a sequence of times 0 < t1 < t2 < · · ·< t j < .. . such that for
sufficiently large n, choosing the first n terms of this sequence, we can recover
f at the optimal rate n−r.

The basic idea is to use time samples u j = u(x0, t j), j = 1,2, . . . ,n to create
an approximation ˆ̄fk to the Fourier coefficients f̂k for k = 1, . . . ,n and then to
construct the function f̄ := ∑

n
k=1

ˆ̄fk sin(kx). The L2-error of approximation to
the true initial datum f is given by

2
π
‖ f − f̄‖2

L2 ≤
n

∑
k=1
| f̂k− ˆ̄fk|2 +n−2r

∑
k≥n+1

k2r| f̂k|2 ≤
n

∑
k=1
| f̂k− ˆ̄fk|2 +n−2r (2.10)

as f ∈ Fr. We need to find a sequence of times in order to approximate f̂k
sufficiently well so that the expression on the right side of (2.10) is bounded by
Cn−2r. In order to do this, let us introduce the function

F(t) =
∞

∑
k=1

ckeλ (k)t , t > 0

where ck := f̂k sin(kx0). Notice that F(t j) = u(x0, t j), j = 1,2, . . . . First we
analyze how to approximate the coefficients ck of F(t) from the values F(t j),
j = 1, . . . ,n.

Let 0 < t1 < t2 < · · ·< tn < .. . be an increasing sequence of times. Starting
from F(t j), we want to derive sufficient conditions on this time sequence so that
we can recover the coefficients ck, k = 1, . . . ,n with high accuracy.

Following [7], we use the sample u(x0, tn) to compute an approximation c̄1
of c1 and then use the sample u(x0, tn−k+1) to compute an approximation c̄k of
ck. For each k, we obtain ck by multiplying F(tn−k+1) by exp(−λ (k)tn−k+1) and
subtracting the remaining terms, that is,

ck = e−λ (k)tn−k+1F(tn−k+1)−
k−1

∑
j=1

c je(λ ( j)−λ (k))tn−k+1− ∑
j≥k+1

c je−(λ (k)−λ ( j))tn−k+1 .

(2.11)
Now we define c̄1 := etnF(tn) and then recursively define

c̄k := e−λ (k)tn−k+1F(tn−k+1)−
k−1

∑
j=1

c̄ je(λ ( j)−λ (k))tn−k+1 , k = 2, . . . ,n. (2.12)

Then, for each k = 1,2, . . . ,n, ck− c̄k is given by

ck− c̄k =
k−1

∑
j=1

(c̄ j− c j)e(λ ( j)−λ (k))tn−k+1− ∑
j≥k+1

c je−(λ (k)−λ ( j))tn−k+1 . (2.13)
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We denote with E j := |c j− c̄ j|, the error with which we recover c j for j≤ n. We
will first concentrate on deriving a suitable bound for E j in several subsequent
lemmas, which we will use to prove the main result of this paper.

Since f ∈ Fr, j2r|c j|2 ≤ j2r| f̂ j|2 ≤ ∑
∞
k=1 k2r| f̂k|2 ≤ 1 so that |c j|2 ≤ j−2r.

Thus we have from (2.13) that

E1≤∑
j≥2

j−re−(λ (1)−λ ( j))tn ≤ 2−re−δ1tn ∑
j≥2

e−(λ (2)−λ ( j))t1 ≤A0(t1)e−δ1tn , (2.14)

where δ1 := λ (1)−λ (2)> 0 and A0(t1) is a constant that depends on the initial
sampling time t1 and on the spectrum of the differential operator. Again we use
the formula (2.13) and obtain for k ≥ 2 that

Ek ≤
k−1

∑
j=1

E je(λ ( j)−λ (k))tn−k+1 + ∑
j≥k+1

j−re−(λ (k)−λ ( j))tn−k+1 =: Σ1(k)+Σ2(k)

(2.15)
We first bound Σ2(k). We have

Σ2(k)≤ (k+1)−re−δktn−k+1 ∑
j≥k+1

e−(λ (k+1)−λ ( j))t1 , (2.16)

where δk := λ (k)−λ (k+1). Moreover, we have the following

Lemma 2.1. With the standing assumptions on the coefficients of the PDE we
have

∑
j≥k+1

e−(λ (k+1)−λ ( j))t1 ≤ ∑
j≥2

e−(λ (2)−λ ( j))t1 =: A0(t1), k = 2,3, . . . .

Proof. The claim follows if we can show that

∞

∑
j=0

e−(λ (k+1)−λ ( j+k+1)t1 ≤
∞

∑
j=0

e−(λ (2)−λ ( j+2))t1 , k = 2,3, . . . ,

which holds provided

λ (k+1)−λ ( j+ k+1)≥ λ (2)−λ ( j+2), j = 0,1, . . . , k = 2,3, . . . ,

or equivalently we have for j = 0,1, . . . , k = 2,3, . . .

N

∑
l=1

(−1)l
α2l((k+1)2l− ( j+ k+1)2l)≥

N

∑
l=1

(−1)l
α2l(22l− ( j+2)2l).

Since (−1)lα2l =: βl < 0 for all l = 1, . . . ,N, the last inequality holds provided

βl((k+1)2l− ( j+ k+1)2l)≥ βl(22l− ( j+2)2l), l = 1, . . . ,N, k = 2,3, . . . ,
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j = 0,1, . . . , which is true if we have

(k+1)2l−( j+k+1)2l ≤ 22l−( j+2)2l, l = 1, . . . ,N, k = 2,3, . . . , j = 1,2, . . .
(2.17)

But then (2.17) follows from the fact that the functions fk,l(x) := (k + 1)2l −
(x+ k + 1)2l − 22l +(x+ 2)2l, l = 1,2, . . . ,N, k = 2,3, . . . satisfy fk,l(0) = 0,
and f ′k,l(x) = 2l

(
(x+2)2l−1− (x+ k+1)2l−1

)
< 0 for all x≥ 0.

Using Lemma 2.1, we have

Σ2(k)≤ (k+1)−re−δktn−k+1A0(t1). (2.18)

Lemma 2.2. Let a,b such that 1≤ a< b. Then bl−al > b j−a j for all l > j≥ 1.

Proof. Clearly 1−
(a

b

)l
> 1−

(a
b

) j and a fortiori

1−
(a

b

)l
>

1
bl− j

[
1−
(a

b

) j
]
,

and multiplying both sides by bl , we obtain the claim.

Lemma 2.3. Let l,m be positive integers with l ≥m+1 > m≥ 1 and let k, j be
positive integers with k−1≥ j ≥ 1. Then the following inequality holds:

(k+1)l− jl

( j+1)l− jl ≥
(k+1)m− jm

( j+1)m− jm > 0. (2.19)

Proof. The both ratios in (2.19) are positive as they are the ratios of positive real
numbers. Therefore, to prove (2.19) under the constraints given in the statement
of the lemma, it suffices to prove that

(k+1)l− jl

(k+1)m− jm ≥
( j+1)l− jl

( j+1)m− jm .

To prove this inequality, it suffices to show that the function gl,m(x) := xl− jl

xm− jm

for x ≥ j+ 1 and l ≥ m+ 1 > m ≥ 1 is increasing. Notice that the sign of the
derivative of gl,m is the same as the sign of the expression

xm+l−1(l−m)+ xm−1m jl− xl−1l jm

which is positive if the following expression obtained from it by dividing by
xl−1

xm(l−m)+ xm

[
m
(

j
x

)l

− l
(

j
x

)m
]
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is positive. This is true provided l−m> l
(

j
x

)m
−m

(
j
x

)l
. To this aim, introduce

the function
pl,m(y) := l−m+myl− lym, 0 < y < 1.

Now pl,m(0) = l−m > 0 and pl,m(1) = 0. Also, p′l,m( j/x) = ml(( j/x)l−1−
( j/x)m−1) < 0 since l ≥ m+ 1 > m ≥ 1 and x > j. Therefore, the function

pl,m(y) is positive in (0,1) and thus l −m > l
(

j
x

)m
−m

(
j
x

)l
for x ≥ j + 1.

Consequently the sign of the derivative of gl,m is positive for x ≥ j+ 1 and we
are done.

Lemma 2.4. The function

g(x,y) :=
1

x− y
ln
(
(x+1)2N− y2N

(y+1)2N− y2N

)
,

where N is a positive integer, is positive and bounded by 2N ln(2) in the domain
D := {(x,y) ∈ R2 : 2≤ x, 1≤ y≤ x−1}.

Proof. Observe that g is positive in the domain D. Before proving that g is
bounded by 2N ln(2) in D, we claim that for each fixed y ≥ 1, g(x,y) is a
bounded function of x and for x ≥ y + 1, it attains its maximum h(y) in D
at x = y+ 1. To prove this claim, fix y ≥ 1 and write g(x,y) as py(x)

qy(x)
, where

qy(x) = x−y and py(x) = ln
(
(x+1)2N−y2N

(y+1)2N−y2N

)
. Then g(x,y) is strictly decreasing in

x for x≥ y+1 and for each y fixed provided q′y py > p′yqy, that is,

ln
(
(x+1)2N− y2N

(y+1)2N− y2N

)
>

2N(x− y)(x+1)2N−1

(x+1)2N− y2N . (2.20)

To prove this inequality, call λ1(x) the left hand side of (2.20) and λ2(x) the
right hand side of (2.20). Observe that for x = y ≥ 1 we have λ1(y) = λ2(y).
Therefore to prove (2.20) it is sufficient to prove that for x ≥ y ≥ 1 one has
λ ′1(x) > λ ′2(x). Multiply both sides of λ ′1(x) > λ ′2(x) by ((x+1)2N − y2N)2/2N
to obtain

(x+1)2N−1((x+1)2N− y2N)>
[
(x+1)2N−1 +(2N−1)(x− y)(x+1)2N−2]

((x+1)2N− y2N)−2N(x− y)(x+1)4N−2.

Adding 2N(x− y)(x+1)4N−2− (x+1)2N−1((x+1)2N− y2N) on the both sides,
the last inequality is equivalent to

2N(x− y)(x+1)4N−2 > (2N−1)(x− y)(x+1)2N−2((x+1)2N− y2N).
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Dividing the both sides by (x− y)(x+ 1)2N−2 and then adding (2N − 1)(x+
1)2N− y2N on the both sides, the last inequality is equivalent to

(x+1)2N +(2N−1)y2N > 0,

which is obviously true for x≥ y≥ 1. This shows that (2.20) holds for x≥ y≥ 1,
from which it follows that for each fixed y≥ 1, g(x,y) is strictly decreasing in x
for x≥ y+1 and thus has its maximum value

h(y) = ln
(
(y+2)2N− y2N

(y+1)2N− y2N

)
.

Next we claim that h is a bounded function of y for y ≥ 1. As we notice
that h(y) is positive for y ≥ 1, in order to prove this claim it is enough to show
that the argument of the logarithmic function is bounded. Since 2k ≤ 22N for all
k = 1,2, . . . ,2N, for each y≥ 1 we have

(y+2)2N− y2N

(y+1)2N− y2N =
∑

2N
k=1
(2N

k

)
y2N−k2k

∑
2N
k=1
(2N

k

)
y2N−k

≤
22N

∑
2N
k=1
(2N

k

)
y2N−k

∑
2N
k=1
(2N

k

)
y2N−k

= 22N ,

and therefore h(y)≤ ln(22N) = 2N ln(2).
Finally we have g(x,y) ≤ h(y) ≤ 2N ln(2) for all pairs of x and y with x ≥

y+ 1 ≥ 2. This shows that g is bounded in D, thereby completing the proof of
the lemma.

Now we give a choice of t j so that we can derive a bound for Σ1(k) compa-
rable to the right hand side of (2.16). In this way, when we combine Σ1(k) and
Σ2(k) we are able to obtain the right bound for Ek.

Lemma 2.5. Given any fixed choice of t1 > 0, there exists ρ > 0 such that for
the choice of sequence of times tk := ρk−1t1, k = 1,2, . . . , we have

Ek ≤ A0(t1)2ke−δktn−k+1 , k = 1,2, . . . (2.21)

Proof. We prove (2.21) by the complete induction. We see, by (2.14), that (2.21)
is true for k = 1. By inductive hypothesis we have E j ≤ A0(t1)2 je−δ jtn− j+1 for all
j < k. Furthermore we know from (2.18) that Σ2(k)≤ (k+1)−rA0(t1)e−δktn−k+1 ,
thus we just need to estimate Σ1(k) for this choice of sampling times. We thus
have

Σ1(k)≤
k−1

∑
j=1

A0(t1)2 je−δ jtn− j+1e(λ ( j)−λ (k))tn−k+1

=A0(t1)
k−1

∑
j=1

2 je(λ ( j)−λ (k)−δ jρ
k− j)tn−k+1 ,
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where we have used tn− j+1
tn−k+1

= ρk− j (See (2.15) for Σ1(k)). Use these estimates of
Σ1(k) and Σ2(k) in (2.15) to obtain

Ek ≤ A0e−δktn−k+1

[
(k+1)−r +

k−1

∑
j=1

2 je(λ ( j)−λ (k)−δ jρ
k− j+δk)tn−k+1

]
.

We want to show that there exists ρ > 0 such that λ ( j)−λ (k)−δ jρ
k− j+δk ≤ 0

for 1 ≤ j ≤ k− 1 and k = 2,3, . . . . But for each such j and k this is equivalent
to asking λ ( j)−λ (k+ 1) ≤ (λ ( j)−λ ( j+ 1))ρk− j when we use δ j = λ ( j)−
λ ( j+1), and using the expression for λ (.) from (2.2) this is the same as proving

N

∑
l=1

(−1)l
α2l( j2l− (k+1)2l)≤

(
N

∑
l=1

(−1)l
α2l( j2l− ( j+1)2l)

)
ρ

k− j.

Since (−1)lα2l < 0 for all l = 1, . . . ,N, a sufficient condition for the last inequal-
ity to hold is that j2l− (k+1)2l ≥

(
j2l− ( j+1)2l

)
ρk− j, which is equivalent to

ρ
k− j ≥ (k+1)2l− j2l

( j+1)2l− j2l .

For all l = 1,2, . . . ,N and for our choices of j and k, due to Lemma 2.3 as we
have

(k+1)2N− j2N

( j+1)2N− j2N ≥
(k+1)2l− j2l

( j+1)2l− j2l ,

it is enough to find ρ such that

ρ
k− j ≥ (k+1)2N− j2N

( j+1)2N− j2N ,

and taking logarithm on both sides and simplifying, this inequality is equivalent
to

ρ ≥ 1
k− j

ln
(
(k+1)2N− j2N

( j+1)2N− j2N

)
but the existence of such a ρ is guaranteed by Lemma 2.4 with ρ ≥ 2N ln(2).
With such a ρ we have

Ek ≤ A0e−δktn−k+1

[
(k+1)−r +

k−1

∑
j=1

2 j

]
≤ A02ke−δktn−k+1 ,

proving the claim.

Now we can prove the following Theorem, extending the main result of [7]:
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Theorem 2.5. Consider the solution u(x, t) of the problem (2.1) with the initial
datum f ∈ F , r > 0. Fix x0 fulfilling the condition (2.6), an arbitrary initial
sampling time t1 > 0, and ρ satisfying ρ > 2N ln(2), where 2N is the order of
the PDE in (2.1). Consider a time sequence {t j} j≥1 such that t j := ρ j−1t1, j =
1,2, . . . . Then there exists a positive integer n such that we can use the first n
sampled values u(x0, t j), j = 1,2, . . . ,n to construct an approximation fn to f
that satisfies

‖ f − fn‖L2[0,π] ≤C(r, t1,ρ,∆)n−r, n≥ 1, (2.22)

where the constant C can be chosen to depend only on r, the initial sampling
time t1 and the constant ∆ := mink=1,...d n

2 e{δ (k)}

Proof. From the sampled values, we can compute the approximations c̄k to
ck := f̂k sin(kx0) using (2.12). Moreover, from Lemma (2.5) we have |ck− c̄k| ≤
A0(t1)2ke−δ (k)tn−k+1 , 1 ≤ k ≤ n. Define an approximation f̄k := c̄k

sin(kx0)
to each

f̂k, k = 1,2, . . . ,n. Then using condition (2.6), we have

| f̂k− f̄k| ≤
A0(t1)2ke−δ (k)tn−k+1

|sin(kx0)|
≤C(t1)k2ke−δ (k)tn−k+1 , (2.23)

where C(t1) := A(t1)/d0. Now we define the approximation fn to f as fn :=
∑

m
k=1 f̄k sin(kx), where m := dn

2e. Then from (2.10), with a constant C0 depend-
ing only on t1 and r, and defining ∆ := mink=1,...m{δ (k)}, we get

2
π
‖ f − fn‖2

L2[0,π] ≤C0

m

∑
k=1

k222ke−2δ (k)tn−k+1 +m−2r

≤C0e−2∆t1ρ
n
2−1 m

∑
k=1

e2ln(k)+2k ln2 +m−2r

≤C0e−2∆t1ρ
n
2−1 n

∑
k=1

e(2+2ln2)k +m−2r

≤C0e−2∆t1ρ
n
2−1

ne(2+2ln2)n +m−2r,

while obtaining this inequality we have used the facts that ln(k) ≤ k for k ≥ 1,
m≤ n, and m≤ n

2 +1 so that

min
k=1,...,m

{δ (k)tn−k+1}= min
k=1,...,m

{δ (k)ρn−kt1} ≥ min
k=1,...,m

{δ (k)} min
k=1,...,m

{ρn−kt1}

=∆t1ρ
n
2−1.

But for a sufficiently large n we have n2r+1e(2+2ln2)ne−2∆t1ρ
n
2−1

< 1, that is,
ne(2+2ln2)ne−2∆t1ρ

n
2−1

< n−2r and, therefore

‖ f − fn‖L2[0,π] ≤Cn−2r,
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where C is a constant depending on t1,r and ∆.

Remark 2.6. Here we remark that in general it is possible to approximate a
number of Fourier coefficients greater than the number of samples. In particular,
we show that with one sample we can approximate two Fourier coefficients.
Consider the initial value/boundary value problem

ut = uxx, u(0, t) = u(π, t) = 0, u(x,0) = f (x),

with solution u(x, t) = ∑k≥1 f̂ke−k2t sin(kx). Suppose we have only one sample
u(x0, t1).

Let F(t) = ∑k≥1 cke−k2t , where ck = f̂k sin(kx0), and sin(kx0) 6= 0 for all
k ≥ 1. By the procedure in [7], we can recover c̄1 = et1F(t1), with error

E1 = |c1− c̄1| ≤
1

2re3t1(1− e−t1)
.

Notice that
c2 = e22t1F(t1)− c1e(2

2−12)t1−∑
j≥3

c je−( j2−22)t1 ,

and let ¯̄c2 = e22t1F(t1)− c̄1e(2
2−12)t1 . We use two bars instead of one to indicate

that this is a different approximation compared to that found in [7].
Let’s estimate E2 = |c2− ¯̄c2|:

E2 ≤|c1− c̄1|e3t1 + ∑
j≥3
|c j|e−( j2−22)t1

≤E1e3t1 + ∑
j≥3

j−re−( j2−22)t1

≤E1e3t1 +3−re−5t1(1+ e−7t1 + e−16t1 + . . .)

≤E1e3t1 +3−re−5t1(1+ e−t1 + e−2t1 + . . .)

=E1e3t1 +3−re−5t1 1
1− e−t1

≤ 1
2r(1− e−t1)

+3−re−5t1 1
1− e−t1

≤ 1
2r(1− e−t1)

(
1+ e−5t1

)
.

The error E2 in [7] for n samples is at most 1
2r(1−e−t1 )

22e−5tn−1 , so these are
comparable for tn small. Notice however that in the case of the bound in [7], the
time tn−1 is a geometric multiple of t1 which is possibly much bigger than t1, so
E2 is small if n is big, while here E2 does not go to zero even if t1 becomes very
large.
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2.3. The non-autonomous case

We address the same issues in the case of a heat equation with a time depen-
dent diffusivity coefficient. The more general case of a linear evolutionary PDE
with time dependent coefficients is definitely much more complicated and is
completely open.

Let α(t) be a function in C0([0,+∞),R), not identically zero. For physical
reasons, we assume α(t) > 0 for all t > 0 and bounded away from zero. We
study the initial/boundary value problem with an unknown u(x, t) given by

ut =α(t)uxx, t > 0, 0< x< π, u(0, t)= u(π, t)= 0, u(x,0)= f (x), (2.24)

where f ∈ Fr ⊂ Hr
0([0,π])⊂ L2[0,π].

We set µ(k, t) := −α(t)k2 and λ (k, t) = −b(t)k2 with b(t) :=
∫ t

0 α(s)ds.
Since α(t) is continuous, positive and bounded away from zero, b(t) is continu-
ous, positive and strictly increasing on [0,∞). Then the solution to the problem
(2.24) is given by

u(x, t) =
∞

∑
k=1

f̂keλ (k,t) sin(kx) =
∞

∑
k=1

f̂ke−b(t)k2
sin(kx). (2.25)

By the very assumptions on α(t), the problem (2.24) is well-posed. This as-
sumptions imply λ (k, t) < 0 for all k ∈ N and for all t > 0. Moreover, again
from the assumptions on α(t) we have that the following hold:

λ (1, t)< 0 ∀ t > 0, λ (k+1, t)< λ (k, t) ∀ k ∈ N, ∀ t > 0, (2.26)

lim
k→+∞

λ (k, t) =−∞ for each fixed t > 0, (2.27)

lim
t→+∞

λ (k, t) =−∞ for each fixed k > 0. (2.28)

With the choice of a new variable T := b(t) =
∫ t

0 α(s)ds, the problem (2.24)
can be restated as

uT = uxx, T > 0, 0 < x < π, u(0,T ) = u(π,T ) = 0, u(x,0) = f (x). (2.29)

By Lemma 2.5 and Theorem 2.5 (with N = 1), the problem of recovering f with
the desired accuracy studied in Section 2.2 can thus be solved for the problem
(2.29) with a choice of ρ > 2ln(2) and for any fixed choice of T1 > 0, as long
as there exists an increasing sequence of new times Tk, k = 1,2, . . . such that
Tk ≥ ρk−1T1. In other words, by setting Tk := b(tk) we need a choice of the
initial time t1 > 0 and an increasing sequence of times tk, k = 1,2, . . . such that
b(tk)≥ ρk−1b(t1).
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Corollary 2.7. Consider the solution u(x,T ) to the problem (2.29) with the ini-
tial datum f ∈ Fr, r > 0. Fix x0 such that (2.6) holds true, the initial sampling
time t1 > 0, and ρ satisfying ρ > 2ln(2). Consider an increasing sequence
{t j} j≥1 such that Tj ≥ ρ j−1T1. Then the coefficients ck = f̂k sin(kx0) and their
respective approximations c̄k (obtained from (2.12) by replacing tk with Tk) sat-
isfy

|ck− c̄k| ≤ A02ke−(2k+1)Tn−k+1 , k = 1,2, . . . ,n, (2.30)

and hence the constructed approximation fn(x) :=
dn/2e

∑
k=1

f̄k sin(kx), where f̄k =

c̄k

sin(kx0)
, satisfies

‖ f − fn‖L2[0,π] ≤C(r, t1,ρ)n−r, (2.31)

where C is a constant that depends on r, ρ and t1.

3. Conclusions

We conclude mentioning some open questions that we think are definitely worth-
while exploring. The first one is to adapt the algorithm developed in [7] to the
case of non-autonomous linear evolutionary PDEs of types more general com-
pared to the case we dealt with in Section 2.3. For instance, a case like the one
explored in Section 2, but in which all the coefficients depend explicitly on time.
In this set-up, even proving the unique reconstruction of the initial data with in-
finitely many samplings is not straightforward and it seems to require some new
ideas.

It is clear that the algorithm developed in [7] and further investigated here
is based on the fact that the PDE dynamic is equivalent (via Fourier series) to
an infinite dimensional systems of ODEs that are easily integrable (in the cases
analyzed here and in [7] they are uncoupled first order linear ODEs). It would
be definitely interesting to see how these ideas can be extended to nonlinear
integrable PDEs, where, using a nonlinear analogue of the Fourier transform,
like the Inverse Scattering Method, one can convert the PDE dynamic into the
dynamic of an infinite dimensional integrable system of ODEs. One of the major
problems, however, is that this integrable system of ODEs is made of ODEs that
are non-trivially coupled and whose integration is not immediate, but it is based
on the construction of action-angle variables.
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