
LE MATEMATICHE
Vol. LVIII (2003) � Fasc. I, pp. 35�49

ON AN APPROACH TO STUDYING THE STABILITY OF

SHOCKWAVES IN A VISCOUS GAS

ALEXANDER BLOKHIN - EUGENIAMISHCHENKO

In the article, a modi�ed initial-boundary value problem on stability of
shock waves in a viscous gas is constructed and studied.

1. Introduction.

As is known, two approaches are used for description of movements
with shock waves in various models of continuum mechanics with dissipation.
Within the widely used structural approach, the shock wave is presented as a
narrow transitional zone with continuously varying parameters. Another, also
widely spread, approach is based on the assumption that shock waves can be pre-
sented as strong discontinuity surfaces. For example, in [8], plane shock waves
have been studied; and in�uence of small viscosity on perturbations propaga-
tion has been estimated under assumption that the width of the transitional zone
is negligibly small. By this assumption, the problem on perturbations propa-
gation has been reduced in [8] to a linear initial-boundary value problem with
linearized boundary conditions on the shock front as well as in the case of the
inviscid gas.

However, it has been shown in [2] by one of the authors, A. M. Blokhin,
that such an approach is not admissible for description of shock waves in models
of continuum mechanics with dissipation. He has studied well-posedness
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of the above mentioned linear initial-boundary value problem obtained by
linearization of the non stationary Navier-Stokes equations and the strong
discontinuity equation with respect to a piecewise constant solution. This
solution describes the following regime of the viscous gas �ow: the supersonic
stationary viscous�ow (x < 0) is separated from the subsonic �ow (x > 0) by a
strong discontinuity surface (a shock wave with the equation x = 0). It has been
stated in [2] that the shock wave is unstable. In order to prove the instability,
exponentially growing in time speci�c solutions to the linear initial-boundary
value problem have been constructed.

We note that, from the mathematical point of view, these solutions are, in
fact, the Hadamard type examples which show the ill-posedness of this problem.
From the physical point of view, existence of such solutions means that the
described above stationary regime of the viscous gas �ow with a shock wave
can not be realized and, consequently, can not be found by the stabilization
method.

In this article, the so-called modi�ed initial-boundary value problem is
discussed, for which the stationary regime of the viscous gas �ow with a
shock wave is asymptotically stable (by Lyapunov) and can be determined
(numerically, for example) with the stabilization method.

2. Preliminaries.

We write down a 1-D mathematical model of the viscous non heat con-
ducting gas. This model is derived from the Navier-Stockes equations of the
compressible liquid:

∂ρ

∂ t
+

∂

∂x
(ρu) = 0,

(2.1)
∂

∂ t
(ρu)+

∂

∂x
(ρu2 + P) = 0,

∂

∂ t
(ρ(e0 +

u2

2
))+

∂

∂x
((ρ(e0 +

u2

2
)+ P)u) = 0.

Here ρ denotes the density; u, the velocity of the gas; P = p−σ , the stress; p,
the pressure; σ = ( 4

3
η + ζ ) ∂u

∂ x
; e0 is the internal energy; V = 1/ρ ; η and ζ are

the �rst and second viscosity coef�cients (usually, they are functions in ρ and
s); s is the mass entropy.

We complete (2.1) with the state equation e0 = e0(ρ, s) and the relations
T = ∂e0

∂s
and p = ρ2 ∂e0

∂ρ
which follow from the �rst thermodynamical law. Now

we can regard (2.1) as a closed system of viscous conservation laws in (p, u, s).
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Reasoning in a standard way (see [4], [7]), we write down jump conditions:

(2.2) [ j ] = 0, [P]+ [u] j = 0,

[e0 +
u2

2
] j + [Pu] = 0.

The surface of strong discontinuity is given by the equation F(t) − x = 0;
[g] = (g − g∞) is the jump of g on the discontinuity surface; the subindex
∞ stands for the values ahead of the discontinuity (as F(t) − x → +0);
j = ρ(u − Ft); Ft is the velocity of the propagating discontinuity.

Let the strong discontinuity be a stationary shock wave with the equation
x = 0; as is easily seen, (2.1) has a piecewise constant solution:

(2.3) u = û∞, ρ = ρ̂∞, s = ŝ∞ for x < 0,

u = û, ρ = ρ̂, s = ŝ for x > 0;

the constants û∞ , ρ̂∞, ŝ∞ , û , ρ̂ , ŝ are connected by the jump relations (2.2). For
the shock wave, [ρ̂] �= 0 and ĵ = ρ̂û �= 0; so, (2.2) can be rewritten similarly
to the Rankine-Hugoniot relations in gas dynamics:

ρ̂û = ρ̂∞û∞,

(2.4) (û − û∞)
2 + ( p̂ − p̂∞)(V̂ − V̂∞) = 0,

(ê0 − ê0∞) +
( p̂ + p̂∞)

2
(V̂ − V̂∞) = 0.

Parameters of the �ows ahead of and behind the shock wave satisfy the follow-
ing inequalities:

(2.5) û∞ > ĉ∞ > 0, ρ̂∞ > 0, ĉ > û > 0, ρ̂ > 0,

the sound speeds ahead of and behind the shock wave are

ĉ∞ =

�
∂

∂ρ
(ρ2

∂e0

∂ρ
)(ρ̂∞, ŝ∞), ĉ =

�
∂

∂ρ
(ρ2

∂e0

∂ρ
)(ρ̂, ŝ),

and p̂∞ = ρ̂2∞
∂e0
∂ρ
(ρ̂∞, ŝ∞), p̂ = ρ̂2 ∂e0

∂ρ
(ρ̂, ŝ), V̂∞ = 1/ρ̂∞ , ê0∞ = e0(ρ̂∞, ŝ∞),

V̂ = 1/ρ̂ , ê0 = e0(ρ̂, ŝ). We assume that the state equation e0 = e0(ρ, s) meet
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the requirements for the so-called normal gas (see [6]). This means (see [4], [6])
that the inequalities (2.5) are ful�lled together with p̂ > p̂∞ , ρ̂ > ρ̂∞ , û∞ > û ,
and ŝ > ŝ∞ .

From the physical point of view, we have the shock wave which separates
the supersonic coming stationary �ow and the subsonic stationary �ow behind
the shock wave in a viscous gas.

Next, we linearize (2.1) and jump conditions (2.2) about the piecewise
solution (2.3) and obtain the linear mixed problem to �nd small perturbations
of the vector (p, u, s) and a small shift of shock wave front (we denote them by
p, u, s , and F again). Without the loss of generality, small perturbations of the
entropy s∞ for x < 0 can be equaled to zero. So, we seek the solution to the
systems for x > 0 and x < 0:

(2.6)






M2Lu + px = 2M2uxx ,
Lp + ux = 0,
Ls = 0;

(2.7)

�
M2

∞L∞u∞ + (p∞)x = 2µM2
∞(u∞)xx ,

L∞ p∞ + (u∞)x = 0;

which satis�es the boundary conditions at x = 0

(2.8)






u + dp − 2d̂ux = v̂{u∞ + d∞ p∞ − 2d̂∞µ(u∞)x},
νp + N̂ s − 2n̂uux = v̂{ν∞ p∞ + 2n̂uµ(u∞)x},
F � = µ̂{u + p − u∞ − p∞ − N̂s}.

Here p,u, s , p∞ , and u∞ are related to the characteristic parameters ρ̂ ĉ2, û, ŝ ,
ρ̂∞ĉ

2
∞ , and û∞ ; the spatial variable x and the time t are related to characteristic

length l̂ and time l̂/û . Formulation of the problem (2.6)-(2.8) does not contain
a characteristic length; no wonder that the �nal result does not depend on the
choice of the value l̂ . Next, L = τ + ξ , L∞ = 1

v̂
τ + ξ , τ = ∂

∂ t
, ξ = ∂

∂ x
are

differential operators; v̂ = û∞

û
> 1; M∞ > 1, M < 1 are the Mach numbers

ahead of and behind the shock wave, d = 1+M 2

2M 2 + β2

2M 2 L̂, β2 = 1−M2, d̂ =
1+L̂
2
, d∞ =

M 2
∞+1

2M 2
∞

+ β∞

2M 2
∞
L̂ ; β2∞ = M2

∞ − 1, d̂∞ = 1−L̂
2
, ν = β2

M 2 L̂ , ν̂ = L̂ ,

ν∞ =
β2∞
M 2

∞
L̂ ; µ̂ = v̂

v̂−1
> 0, L̂ = 1

1−D̂
, D̂ = 2T̂ ŝ

û2(v̂−1)N̂
, N̂ = − ŝ(e0)Vs (ρ̂,ŝ)

V̂ (e0)VV (ρ̂,ŝ)
,

T̂ = (e0)s (ρ̂, ŝ), µ = r∞
r
, r = 4

3R1
+ 1

R2
, r∞ = 4

3R1∞
+ 1

R2∞
, R1,2,1∞,2∞

are the Reinolds numbers: R1 = ρ̂ ûl̂
η̂
, R2 = ρ̂ûl̂

ζ̂
, and so on; η̂ = η(ρ̂, ŝ),

ζ̂ = ζ (ρ̂, ŝ). We note that for the normal gas (e0)V < 0, (e0)s > 0, (e0)VV > 0,
(e0)V V (e0)ss − (e0)

2
Vs > 0.



ON AN APPROACH TO STUDYING THE STABILITY OF. . . 39

Remark 2.1. For the polytropic gas with the adiabatic exponent γ the coef�-
cient L̂ is (see [2]):

(2.9) L̂ = −
γ − 1

γ + 1
(1−

1

M2
∞

), γ > 1,

i.e. −1 < L̂ < 0.

Remark 2.2. If we separate out a sub-problem on the function s

(2.10)

�
Ls = 0 for x > 0,
N̂ s = 2ν̂ux − νp + v̂(ν∞ p∞ + 2ν̂µ(u∞)x ) at x = 0

and the equation on the function F(t)

(2.11) F � = µ̂{u + p − u∞ − p∞ − N̂ s}|x=0,

the problem (2.6)�(2.8) can be slightly simpli�ed.
The ill-posedness of the problem (2.6)�(2.8) has been proven in [2] by

constructing the ill-posedness examples of the Hadamard type. With this
purpose, exponentially growing in time special solutions to (2.6)�(2.8) have
been found. The revealed instability proves that the stationary regime of
the viscous gas �ow described in Introduction can not be calculated with the
stabilization method. It has also been shown in [2] that the ill-posedness of
(2.6)�(2.8) follows from the fact that the number of independent parameters
which determine an arbitrary small perturbation of the discontinuity is greater
than the number of linearized boundary conditions (2.8) on the discontinuity.

Using the a priori information on the stationary regime, we can derive
additional boundary conditions, modify the problem (2.6)�(2.8), and obtain a
mixed problem for which the trivial solution becomes asymptotically stable (by
Lyapunov).

We suggest the following modi�cation of the problem (2.6)-(2.8). We seek
solutions to the systems for x > 0

(2.12)

�
M2Lu + px = 2M2uxx ,
Lp + ux = 0;

and for x < 0

(2.13)

�
M2

∞L∞u∞ + (p∞)x = 2µM2
∞(u∞)xx ,

L∞ p∞ + (u∞)x = 0;
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satisfying the boundary conditions at x = 0:

(2.14)

�
u + dp − 2d̂ux = v̂(u∞ + d∞p∞),
(u∞)x = 0, px = 0.

Here underlined are the additional boundary conditions. It is important to
remind once again that we choose additional conditions which are ful�lled on
the stationary solution (2.3).

Remark 2.3. The problem (2.10) can be rewritten as follows:

(2.10�)

�
Ls = 0 for x > 0,
N̂ s = 2ν̂ux − νp + v̂ν∞ p∞ at x = 0.

Next, without the loss of generality, we can take u∞(t, x ) ≡ 0, p∞(t, x ) ≡ 0
for x < 0, t > 0. Indeed, we rewrite (2.13) in the form:

(2.13�) A∞U∞
t + B∞U∞

x = A∞
1 U

∞
xx ,

where U∞ =

�
u∞

p∞

�

,

A∞ =

� M 2
∞

v̂
0

0 1
v̂

�

, B∞ =

�
M2

∞ 1
1 1

�

, A∞
1 =

�
2µM2

∞ 0
0 0

�

.

Multiplying (2.13�) by 2U∞ , after simple calculations we have

(2.15) (U∞, A∞U∞)t + (U∞, B∞U∞)x − 2(U∞, A∞
1 U

∞
x )x +

+ 2 (U∞
x , A∞

1 U
∞
x ) = 0.

Next, we integrate (2.15) by x (from −∞ to 0), provided that

|U∞|, |U∞
x | → 0 as x → −∞,

account the additional boundary condition (u∞)x = 0 at x = 0, and arrive at

(2.16)
d

dt
I∞ (t)+ (U∞, B∞U∞)|x=0 + 4µM2

∞

�

R1−

(u∞(t, x ))
2
xdx = 0, t > 0.
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Here

I∞(t) =

�

R1−

(U∞, A∞U∞)dx , R1− = {x |x < 0}.

By M∞ > 1, the matrix B∞ is positive de�nite. Therefore, (2.16) implies the
inequality

I∞(t) ≤ I∞(0) for t > 0.

So, if the initial data for u∞(t, x ) and p∞(t, x ) are trivial, then for t > 0:

u∞ ≡ 0, p∞ ≡ 0.

By this, without the loss of generality, we can consider the following problem
instead of (2.12)�(2.14). We seek the solution to the system for x > 0:

(2.12)

�
M2Lu + px = 2M2uxx ,
Lp + ux = 0,

satisfying the boundary conditions at x = 0:

(2.14�)

�
u + dp − 2d̂ux = 0,
px = 0.

The problem (2.10�) transforms into the problem:

(2.10��)

�
Ls = 0 for x > 0,
N̂ s = 2ν̂ux − νp at x = 0,

while (2.11) takes the form:

(2.11�) F � = µ̂{u + p − N̂s}|x=0.

In what follows we use the so-called auxiliary problem. To derive it, we follow
[2] and introduce the potential ϕ = ϕ(t, x ):

u = ϕx, p = 2M2ϕxx − M2Lϕ.

Then the �rst equation in (2.12) is obviously ful�lled and the second one implies
the equation on ϕ for t > 0, x > 0

(2.17) {M2L2ϕ − ϕxx − 2M2Lϕxx } = 0.

The following boundary conditions are valid at x = 0 (see (2.14�)):

(2.18)

�
ϕt = âϕx + b̂ϕxx ,
Lϕx = 2ϕxxx ,

where â = β2(1−L̂)
2dM 2 , b̂ = 1−L̂

d
.
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Remark 2.4. Now we rewrite the second boundary condition in (2.18). We
consider (2.17) on the boundary x = 0 and derive ϕxxx at x = 0. Then we
substitute the obtained expression into the second boundary condition, account
the �rst boundary condition differentiated by t , and �nally obtain

ϕxt = dϕxx + d1ϕxxt at x = 0,

where d1 = 1+ L̂ , i.e. the boundary conditions (2.18) at x = 0 turns into:

(2.17�)

�
ϕt = âϕx + b̂ϕxx ,
ϕxt = dϕxx + d1ϕxxt .

We call (2.16), (2.17�) by the auxiliary problem.

3. Asymptotical stability of the trivial solution to the problem (2.12),
(2.14�).

Is is convenient to rewrite (2.17) �rst in the form

(3.1) {M2 L̃2 − ξ2 − M2ς 2}ϕ = 0

and then, using some special operators L1, L2 (see [1]), as follows:

(3.1�) {M2L21 − L22 −
M2

β2
ς 2}ϕ = 0.

Here ς = ∂ 2

∂ x2
= ξ2 (the operators τ , ξ are given above), L̃ = L1+L2 = T̃ +ξ ,

T̃ = τ − ς , L1 = 1
β2
T̃ , L2 = ξ − M2L1, i.e. ξ = L2 + M2L1, τ = β2L1 + ς .

We also form the vectors

Y =

�
ML1ϕ
L2ϕ
M
β

ςϕ

�

, X =

�
τϕ

ξϕ

ςϕ

�

=

�
�

ςϕ

�

, � =

�
τϕ

ξϕ

�

.

Then

(3.2) Y = N X,

where

N =
M

β2

�
1 0 −1

−M β2

M
M

0 0 β

�

, moreover det N = β �= 0.
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We follow ideas in [1] and replace the equation (2.17) by a system in Y . It
suf�ces to notice that if the potential ϕ = ϕ(t, x ) satis�es (2.17), then the vector
Y satis�es the system

(3.3) ME · L1Y + Q · L2Y +
M

β
R · ςY = 0

or

(3.3�) D1 · τY + Q · ξY = H · ςY.

Here

E =

�
1 −m1 −n1

−m1 1 0
−n1 0 1

�

, Q =

�
m1 −1 0
−1 m1 n1
0 n1 −m1

�

,

R =

�
n1 0 −1
0 −n1 m1

−1 m1 n1

�

, D1 =
M

β2
(E − MQ),

H =
M

β2
(E − MQ − βR),

m1 and n1 are real constants.
As is known (see [1]), the matrices E , Q , R can be presented as follows:

(3.4)






E = T ∗
0 {I2 ⊗ H}T0,

Q = T ∗
0

� �
0 1
1 0

�

⊗ H

�

T0,

R = T ∗
0

� �
1 0
0 −1

�

⊗ H

�

T0,

where

I2 =

�
1 0
0 1

�

, T0 =
1

√
2






1 0 −1
0 −1 0
0 −1 0
1 0 1




 , H =

�
1+ n1 m1

m1 1− n1

�

,

moreover, H > 0 if 1−m2
1 −n21 > 0 (below we restrict ourselves with the case

m1 = n1 = 0, so, this condition is certainly ful�lled);
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I2 ⊗ H is the Kronecker product of the matrices I2 andH and so on (see [5] on
the Kronecker matrix product).

In a view of (3.4), we easily �nd that

(3.5)






D1 = M
β2
T ∗
0

� �
1 −M

−M 1

�

⊗ H

�

T0,

H = M
β2
T ∗
0

� �
1− β −M
−M 1+ β

�

⊗ H

�

T0,

moreover, D1 > 0 and H ≥ 0.
We multiply (3.3�) by the vector 2Y and, after simple calculations, obtain

(3.6) (Y, D1Y )t + (Y, QY )x − 2(Y, HYx )x + 2(Yx , HYx) = 0.

Then we integrate (3.6) by x (from 0 to +∞), provided that

|Y |, |Yx | → 0 as x → +∞,

and have

(3.7)
d

dt
{

�

R1+

(Y, D1Y )dx} + {2(Y, HYx) − (Y, QY )}|x=0 +

+2

�

R1+

(Yx , HYx)dx = 0, R1+ = {x |x > 0}.

Let

J (t) =

�

R1+

(Y, D1Y )dx .

Then, by (3.2),

J (t) =

�

R1+

(X, DX )dx =

�

R1+

(V , D̃V )dx .

Here
D = N

∗D1N ,
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V =

�
U
ux

�

, U =

�
u
p

�

, X = N1V ,

N1 =

�
−1 − 1

M 2 2
1 0 0
0 0 1

�

, moreover, det N1 =
1

M2
�= 0,

D̃ = N
∗
0 D1N0, N0 = NN1 =

M

β2




−1 − 1

M 2 1
1
M

1
M

−M
0 0 β



 .

Obviously, D̃ > 0. Next,

(Yx , HYx) = (ξX, H1ξX ),

where

H1 = N
∗HN =

M3

β4

�
0

h 0
0 0 0

�

,

implies

(3.8) (Yx , HYx ) =
M3

β4
(ξ�, hξ�).

Here

(3.9) h = P
∗
HP,

P =

�
−

�
1−β

2
β

M

�
1+β

2

−
�

1+β

2
− β

M

�
1−β

2

�

, i.e. h > 0.

Now we consider the aggregate {2(Y, HYx ) − (Y, QY )} at x = 0. Accounting
(3.9), we have

(3.10) 2(Y, HYx) − (Y, QY ) = 2
M3

β4
(�, hξ�) + 2ML1ϕL2ϕ =

= 2
M3

β4
{âϕxϕt x + b̂ϕxxϕt x +

β2

M2
ϕxϕxx}+

+2ML1ϕL2ϕ = 2
M3

β4
{âϕxϕxt + b̂d1ϕxxϕxxt
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+b̂dϕ2xx +
β2

M2
ϕxϕxx } + 2ML1ϕL2ϕ.

We rewrite the �rst boundary condition in (2.17�) in terms of the operators L1,
L2:

(3.11) L1ϕ = κL2ϕ + κ0ςϕ,

where

κ =
1− L̂

1+ L̂
, κ0 =

M2κ − 1

β2
.

In a view of (3.11), the expression (3.10) turns into

(3.10�) 2(Y, HYx )− (Y, QY ) = 2
M3

β4
{âϕxϕxt + b̂d1ϕxxϕxxt +

+ (b̂d + β2κ0)(ςϕ)2 +
β2

M2
(M2κ + 1)L2ϕςϕ} +

+ 2Mκ(L2ϕ)
2 + 2Mκ0L2ϕςϕ =

= {2
M3

β4
âϕxϕxt + 2

M3

β4
b̂d1ϕxxϕxxt } +

+ 2
M3

β4
(M2κ − L̂)(ςϕ)2 +

4M3

β2
κL2ϕςϕ + 2Mκ(L2ϕ)

2.

It is easy to check that the quadratic form in the variables ςϕ , L2ϕ in the right-
hand side of (3.10�) is positive-de�nite if L̂ < 0 (see Remark 2.1). At x = 0 by
(3.11) we have

ξϕ = L2ϕ + M2L1ϕ = (M2κ + 1)L2ϕ + M2κ0ςϕ.

In fact, we have already used this relation while deriving (3.10�). So, this
quadratic form can be rewritten in terms of ξϕ and ςϕ ; and (3.10�) turns into

(3.10��) 2(Y, HYx )− (Y, QY ) =
∂

∂ t
{
M3â

β4
ϕ2x +

M3b̂d1

β4
ϕ2xx } +

+ 2Mκ(M2κ + 1)2(ϕx +
2M2

β2
ϕxx )

2 − 2
M3

β4
L̂ϕ2xx .



ON AN APPROACH TO STUDYING THE STABILITY OF. . . 47

Accounting (3.8) and (3.10��), we derive from (3.7)

(3.7�)
d

dt
J̃ (t)+ {

2Mκ

(M2κ + 1)2
(ϕx +

2M2

β2
ϕxx )

2 − 2
M3

β4
L̂ϕ2xx}x=0 +

+ 2
M3

β4

�

R1+

(ξ�, hξ�)dx = 0.

Here J̃ (t) = J (t)+ M 3

β4
(âϕ2x + b̂d1ϕ

2
xx )|x=0 , ξ� =

�
τξϕ

ςϕ

�

=

�
ut
ux

�

.

We differentiate the second equation in (2.12) by x and reduce it to the
form

Lpx +
1

2M2
px +

1

2
Lu = 0.

Hence

(3.12)
d

dt
(

�

R1+

p2xdx )+

�

R1+

(p2x/M
2 + Lu · px )dx = 0.

With (3.7�) and (3.12) in hands, we �nally arrive at the desired relation

(3.13)
dW (t)

dt
+ {

2Mκ

(M2κ + 1)2
(u(t, 0)+

2M2

β2
ux (t, 0))

2 − 2
M3

β4
L̂u2x (t, 0)} +

+

�

R1+

�

2
M3

β4

� �
ut
ux

�

, h

�
ut
ux

��

+ ε
p2x
M2

+ εLu · px

�

dx = 0,

where W (t) = J (t)+ M 3

β4
(âu2(t, 0)+ b̂d1u

2
x (t, 0))+ ε

�

R1+

p2xdx ,

J (t) =

�

R1+

� �
U
ux

�

, D̃

�
U
ux

� �

dx , U =

�
u
p

�

,

and L̂ < 0 ( see Remark 2.1), ε > 0 is a constant such that the quadratic form
under the integral sign in the last summand in (3.13) is positive de�nite.

It follows from (3.13) that

dW (t)

dt
≤ 0,
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i.e.

(3.14) W (t) ≤ W (0) for any t > 0.

The a priori estimation (3.14) implies the Lyapunov stability of the trivial
solution to (2.12), (2.14�). Actually, without the loss of generality, we can
suppose that the function W (t) is strictly decreasing, i.e.

dW (t)

dt
< 0.

Indeed, if there exists a point t = t∗ < ∞ such that W �(t∗) = 0 (we take the
very �rst point), then, by (3.13), we obtain

u(t∗, 0) = ux (t∗, 0) = 0,

ux (t∗, x ) ≡ 0, px (t∗, x ) ≡ 0,

i.e. u(t∗, x ) ≡ 0, p(t∗, x ) ≡ 0.
Next, by (3.14),

u(t, x ) ≡ 0, p(t, x ) ≡ 0 for any t > t∗.

So, generally speaking, the positive function W (t) is monotone decreasing and
has no asymptotes except for W ≡ 0 in the class of considered functions u, p,
i.e. W (t) → +0 as t → +∞. The last statement means that, because of the
structure of W (t)),

||U (t)||W 1
2
(R1+)

→ 0, |u(t, 0)| → 0, |ux (t, 0)| → 0

as t → +∞.

Remark 3.1. We note that (2.14�) implies

|p(t, 0)| → 0 as t → +∞.

By Remark 2.2 and (2.11�), velocity of the moving shock front tends to zero, i.e.

|F �| → 0 as t → +∞.
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4. Concluding remarks.

In the article, simple additional conditionswhich allow to prove the asymp-
totical stability (by Lyapunov) for the stationary regime of the viscous gas �ow
with a shock wave are suggested. Another variant of additional conditions is
discussed in [3].

This work is partly supported by Russian Foundation for Basic Researches
(02-01-00641).
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