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GENERALIZED REGULAR GENUS FOR MANIFOLDS

WITH BOUNDARY

PAOLA CRISTOFORI

We introduce a generalization of the regular genus, a combinatorial
invariant of PL manifolds ([10]), which is proved to be strictly related, in
dimension three, to generalized Heegaard splittings de�ned in [12].

1. Introduction.

Throughout this paper we consider only compact, connected, PL-manifolds
and PL-maps.

The regular genus of a manifold is an invariant de�ned by Gagliardi in [7]
(for closed manifolds) and [10] (for manifolds with boundary), by using 2-cells
embeddings of �edge-coloured� graphs representing the manifold and satisfying
some conditions of regularity.

More precisely, in the general case of non-empty boundary, the graphs are
required to be �regular with respect to one colour�, i.e. they become regular
after deleting the edges of one �xed colour .
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In this paper, by introducing the weaker concept of �regularity with respect
to a cyclic permutation�, we extend the de�nition of the regular genus to a larger
class of coloured graphs.

This generalized regular genus is always bounded by the regular one, but
it turns out to be generally strictly less than it; this happens for example in the
case of Tg × D1, (resp. Ug × D1), for each g ≥ 1. In fact we construct coloured
graphs representing thesemanifolds and regularly embedding into the orientable
(resp. non orientable) surface with two holes and genus g.

Moreover we prove, as in the case of the regular genus, that a punctured 3-
sphere (i.e. a 3-sphere with holes) is characterized by having generalized regular
genus zero.

For the case of 3-manifolds, it is known (see [2] and [3]) that the regular
genus coincides with the classical Heegaard one. This result highly depends on
the fact that a coloured graph, regular with respect to a colour and representing
a 3-manifold M , de�nes a Heegaard splitting of M (see [3] for details).

Montesinos, in [12], de�ned a generalization of the concepts of Heegaard
splittings and Heegaard genus for orientable 3-manifolds; they coincide with the
classical ones in the case of connected boundary. Later the constructions were
extended to the non orientable case in [3].

In section 3 we investigate the relationship between coloured graphs rep-
resenting a 3-manifold and satisfying our �weaker� condition of regularity and
generalized Heegaard splittings of the same manifold; as a consequence we
establish an inequality between the generalized Heegaard genus and the gener-
alized regular genus of a 3-manifold with boundary.

2. Coloured graphs and the regular genus of a manifold.

An (n + 1)-coloured graph (with boundary) is a pair (�, γ ), where � =

(V (�), E(�)) is a multigraph and γ : E(�) → �n = {0, 1, . . . , n} a map,
injective on each pair of adjacent edges of �.

For each B ⊆ �n , we call B− residues the connected components of the
multigraph �B = (V (�), γ −1(B)); we set ι̂ = �n \ {i} for each i ∈ �n .

The vertices of � whose degree is strictly less than n+1 are called bound-
ary vertices; if (�, γ ) has no boundary vertices is called without boundary. We
denote by ∂V (�) the set of boundary vertices of �.

If K is an n-dimensional homogeneous pseudocomplex, and V (K ) its set
of vertices, we call coloured n-complex the pair (K , ξ ) where ξ : V (K ) −→ �n

is a map which is injective on every simplex of K .

If σ h is an h-simplex of K then the disjoint star std(σ h, K ) of σ h in K
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is the pseudocomplex obtained by taking the disjoint union of the simplexes of
K containing σ h and identifying the (n − 1)-simplexes containing σ h together
with all their faces.

The disjoint link lkd(σ h , K ) of σ h in K is the subcomplex of std(σ h, K )
formed by the simplexes which don�t intersect σ h .

From now on we shall restrict our attention to the coloured complexes K ,
such that:

- each (n − 1)-simplex is a face of exactly two n-simplexes of K ;

- for each simplex σ of K , std(σ, K ) is strongly connected.

Coloured graphs are an useful tool for representing manifolds (see [6] for a
survey on this topic), due to the existence of a bijective correspondence between
coloured graphs and coloured complexes which triangulate manifolds.

Given a coloured complex K , a direct way to see this correspondence is to
consider a coloured graph (�, γ ) imbedded in K = K (�) as its dual 1-skeleton,
i.e. the vertices of � are the barycenters of the n-simplexes of K (�) and the
edges of � are the 1-cells dual of the (n − 1)-simplexes of K (�). Of course
the (n − 1)-simplex dual to an edge e with γ (e) = i has its vertices labelled
by ι̂. Furthermore, there is a bijective correspondence between the h-simplexes
(0 ≤ h ≤ dim K (�)) of K (�) and the (n−h)-residues of �, in the sense that, if
σ h is an h-simplex of K (�), whose vertices are labelled by {i0, . . . , ih}, there is
a unique (n − h)-residue � of � whose edges are coloured by �n \ {i0, . . . , ih}
and such that K (�) = lkd(σ h , K ).

See [6] for a more precise description of the constructions involved.

If M is a manifold (with boundary) of dimension n and (�, γ ) a (n + 1)-
coloured graph (with boundary) such that |K (�)| ∼= M , we say that M is
represented by (�, γ ). In this case M is orientable iff (�, γ ) is bipartite.

Let (�, γ ) be a (n + 1)-coloured graph such that the set of its boundary
vertices is ∂V (�) = V (0) ∪ V (1) ∪ . . . ∪ V (n) where, for each i ∈ �n , V

(i) is
formed by the vertices missing the i-coloured edge (of course it can occur that
V (i) = ∅).

We call extended graph associated to (�, γ ) the (n + 1)-coloured graph
(�∗, γ ∗) obtained in the following way:

- for each v ∈ V (i1)∩ . . .∩V (ih ) add to V (�) the vertices vi1 , . . . , vih ; we call
V ∗ the set of these new vertices;

- for each v ∈ V (i1) ∩ . . . ∩ V (ih ) and for each j = 1, . . . , h add to E(�) an
edge eij with endpoints v and vij and the obvious coloration.
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A regular imbedding of (�, γ ) into a surface (with boundary) F , is a
cellular imbedding of (�∗, γ ∗) into F , such that:

(a) the image of a vertex of �∗ lies on ∂F iff the vertex belongs to V ∗;

(b) the boundary of any region of the imbedding is either the image of a cycle
of (�∗, γ ∗) (internal region ) or the union of the image α of a path in
(�∗, γ ∗) and an arc of ∂F , the intersection consisting of the images of two
(possibly coincident) vertices belonging to V ∗ (boundary region );

(c) there exists a cyclic permutation ε = (ε0, . . . , εn) of �n such that for each
internal region (resp. boundary region), the edges of its boundary (resp. of
α) are alternatively coloured εi and εi+1 (i ∈ Zn+1 ).

From now on, to avoid long notations, we write � for a (n + 1)-coloured
graph instead of (�, γ ).

For each i, j ∈ �n , let us denote by ġi j (�) the number of cycles of �i, j , by
p(�) (resp. q(�)) the number of vertices (resp. of edges) of �.

Given a cyclic permutation ε of �n , a (n + 1)-coloured graph � is regular
with respect to ε , if for each i ∈ Zn+1 , v ∈ V (εi ) and w ∈ V (εi+1 ) , v and w don�t
belong to the same connected component of �{εi ,εi+1 ,εi−1} .

In particular, since it can be v = w, each vertex of � can�t miss two colours
which are consecutive in ε .

Remark 1. Note that, if there exists i ∈ �n such that V
( j ) = ∅, for each j �= i

(i.e. � is regular with respect to the colour i in the sense of [10]), then � is
regular with respect to any cyclic permutation of �n .

For each i ∈ �n , let us denote by
∂gεi (�) the number of closed walks in

� de�ned by starting from a vertex belonging to V (εi ) , following �rst the εi+1-
coloured edge and going on by the following rules:

- if we arrive in a vertex w by a εi+1- (resp. εi−1-) coloured edge, then we
follow the εi−1- (resp. εi+1-) or the εi -coloured edge whether w ∈ V (εi ) or
w /∈ V (εi );

- if we arrive in a vertex by a εi -coloured edge e, then we follow the εi+1-
or the εi−1-coloured edge whether the edge we met before e is εi+1- or the
εi−1-coloured.

Proposition 1. Given a (n + 1)-coloured bipartite (resp. non bipartite) graph
�, and a cyclic permutation ε = (ε0, . . . , εn) of �n such that � is regular with
respect to ε , there exists a regular embedding of �∗ into the orientable (resp.
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non orientable) surface with boundary Fε with Euler characteristic:

χ (Fε) =
�

i∈Zn+1

ġεi εi+1 (�) − q(�)+ p(�)

and hole number:
λε(Fε) =

�

i∈Zn+1

∂gεi (�)

Proof. Let us write ει̂1...ι̂h for the cyclic permutation of �n−h obtained from ε

by deleting ει1, . . . , ειh .
We shall prove �rst the orientable case.
We can de�ne a 2-cell embedding of � into a closed surface Sε by means

of a rotation system � (see [14]) on � as follows:
let B, N be the two bipartition classes of �, for each v ∈ V (�) let us set

if v ∈ B �v =

�
ει̂1...ι̂h if v ∈ V (ει1

) ∪ . . . ∪ V (ειh
)

ε otherwise

if v ∈ N �v =

�
ε−1
ι̂1...ι̂h

if v ∈ V (ει1
) ∪ . . . ∪ V (ειh

)

ε−1 otherwise

As a consequence of the condition of regularity on �, the 2-cells of the regular
immersion of �, de�ned by the above rotation system, can only be of two types:
either the cell is bounded by edges coloured alternatively εi and εi+1 (i ∈ Zn+1),
or it is bounded by edges coloured εi−1, εi and εi+1.

In the �rst case the boundary of the cell contains no vertices belonging
to V (εi ) , in the other case it contains vertices belonging to V (εi ) , but, by the
regularity conditions, not to V (εi+1 ) .

Let us call A1εi , . . . , Ariεi the cells whose boundary contains vertices of V
(εi ) .

Obviously ri =∂ gεi (�). For each i ∈ �n and j = 1, . . . , ri , let us consider a

disk D
j
εi in the interior of A

j
εi . We can add to � the vertices v∗ on the boundary

of D
j
εi and the �missing� εi -coloured edges (in a suitable order) in the interior

of A
j
εi , thus obtaining a regular embedding of �∗ into the surface Fε obtained

by deleting from Sε the interiors of the disks D
j
εi .

The formulas for the Euler characteristic and hole number are straightfor-
ward.

If � is not bipartite we use, instead of a rotation system, a generalized
embedding scheme (see [13]) (φ, λ) associated to ε , where φ is the rotation
system de�ned for each v ∈ V (�) as

φv =

�
ει̂1...ι̂h if v ∈ V (ει1

) ∪ . . . ∪ V (ειh
)

ε otherwise
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and λ : E(�) −→ Z2 is de�ned λ(e) = 1 for each e∈ E(�).
The (bipartite) derived (n+1)-coloured graph �λ has vertices V (�)×{0, 1}

and for each v, w ∈ V (�), i, j ∈ Z2, k ∈ �n the vertices (v, i) and (w, j ) are
k-adjacent in �λ iff v and w are k-adjacent in � and i + j = 1.

Note that �λ is regular with respect to ε , since � is.
Moreover φ induces a rotation system φλ on �λ as φλ

(v,0) = φv and

φλ
(v,1) = φ−1

v (see [10]).

Let ιε (resp. ι
λ
ε ) be the regular embedding of � (resp. of �

λ) into the non-
orientable (resp. orientable) closed surface Sε (resp. S

λ
ε ) associated to (φ, λ)

(resp. to φλ ).
An easy calculation shows that the number of 2-cells of ιλε is double of the

number of 2-cells of ιε , therefore χ (Sλ
ε ) = 2χ (Sε) and we can use the same

arguments as in the orientable case to obtain the formulas for the surface with
boundary Fε . �

Let us de�ne χε(�) = χ (Fε), λε(�) = λ(Fε) and

�ε(�) =

�
1− χε(�)+λε (�)

2
if � is bipartite

2− χε(�) − λε(�) if � is not bipartite.

The generalized regular genus �(�) of � is the minimum �ε(�) among all
cyclic permutations ε of �n such that � is regular with respect to ε .

Given a n-manifold M the generalized regular genus of M is the non-
negative integer G(M) de�ned as the minimum �(�) among all (n + 1)-
coloured graphs � representing M and regular with respect to at least one cyclic
permutation ε of �n .

Given a n-manifold M , we denote by G(M) the regular genus of M ([10]).
As a direct consequence of the above de�nition, Remark 1 and the de�ni-

tion of regular genus, we have:

Proposition 2. For each n-manifold M,

G(M) ≤ G(M).

Now we are going to prove that the generalized regular genus is generally
strictly less than the regular one.

In [11] a 4-coloured graph is shownwhich represents T1×D
1 and regularly

embeds into the bordered surface of genus 1, while the regular genus is known
to be 2 (see [10]).

In the following, for each g ≥ 1 (resp. h ≥ 1) we shall construct a bipartite
(resp. non bipartite) 4-coloured graph �g (resp. �h ) representing Tg × D1,
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where Tg is the closed orientable surface of genus g (resp. Uh × D1, where Uh

is the closed non orientable surface of genus h) and regularly embedding into
the orientable (resp. non orientable) surface with two holes and genus g (resp.
h). In both cases the graph is such that ∂V = V (2) ∪ V (3) and V (2) ∩ V (3) = ∅.

The graphs are as follows:

- �g (resp. �h ) has 6(2g + 1) (resp. 6(h + 1)) vertices labeled as
A1, . . . , A2(2g+1), a1, . . . , a2(2g+1),B1, . . . , B2(2g+1) (resp.A1, . . . , A2(h+1),
a1, . . . , a2(h+1), B1, . . . , B2(h+1))

- for each i = 1, . . . , 2(2g+1) (resp. for each i = 1, . . . , 2(h+1)) Ai ∈ V
(2)

and Bi ∈ V
(3)

- the 0- , 1- and 2-adjacency are drawn in Figure 1 for the orientable case;
the non orientable is analogous;

A1 A2

A3

A4

A4g+2

A 4g+1

B4g+1

B4g+2

B1 B2

B3

B4a4g+1

a
4g+2

a1 a2 a 3

a 4

0

1

2

Figure 1.

- the 3-adjacency are:
for each i = 1, . . . , g , A2i with A4g−2i+3 , A2i−1 with A4g−2i+2 and
A2g+1 with A2(2g+1) (resp. for each i = 1, . . . , h , Ai with A2h−i+2 and
Ah+1 with A2(h+1)) The 3-adjacency of the ai �s are analogous.

We claim that �g represents Tg × D1 (resp. �h represents Uh × D1). In
fact the above construction comes from an easy generalization of the one in [8]
for T1 × D1 and U1 × D1, together with a permutation of the colours on one of
the boundary components.

Let ε = (0132), then for each g ≥ 1 (resp. h ≥ 1), �g (resp. �h ) is regular
with respect to ε and it is easy to see that:
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g01 = g02 = g23 = 2g + 1 , g03 = g12 = g13 = 1
(resp. g01 = g02 = g13 = h + 1 , g03 = g12 = g23 = 1).
Since χε(�g) = −2g (resp. χε(�h) = −h) and the number of holes is 2

both in the orientable and the non orientable case, we have �ε(�g) = g (resp.
�ε(�h ) = h).

Therefore G(Tg × D1) ≤ g < G(Tg × D1) = 2g and G(Uh × D1) ≤ h <

G(Uh×D
1) = 2h (see [1]); actually the �rst are equalities, sincewe can establish

the following theorem:

Theorem 3. G(Tg × D
1) = G(Ug × D

1) = g

Before proving the theorem let us �x some notations.
Let ε = (αα�ββ �) be a cyclic permutation of �3 and � a 4-coloured

graph representing a 3-manifold M and regular with respect to ε . We denote
by ∂i K (�) (i = 1, . . . , r) the i-th boundary component of K (�) and by Vi(�)
the subset of ∂V (�) formed by those vertices whose dual 3-simplices have a
face on ∂i K (�).

Note that, since � is regular with respect to ε , then for each i =

1, . . . , r, Vi(�) ⊆ V (α)(�) ∪ V (β)(�) or Vi(�) ⊆ V (α
�)(�) ∪ V (β

�)(�).
The proof of Theorem 3 requires two lemmas.

Lemma 4. Given a 3-manifold with r boundary components M, a cyclic
permutation ε of �3 and a 4-coloured graph � representing M and regular
with respect to ε , then there exists a 4-coloured graph ��, representing M, and
satisfying the following conditions:

(1) �ε(�
�) = �ε(�);

(2) ∀v ∈ V (��), deg v ≥ 3 and ∀ i = 1, . . . , r, Vi(�
�)∩(V (β)(��)∪V (α

�)(��)∪
V (β

�)(��)) = ∅ or Vi(�
�) ∩ (V (α)(��) ∪ V (β)(��) ∪ V (β

�)(��)) = ∅.

Proof. Let i ∈ {1, . . . , r} be such that Vi(�) ∩ V (α)(�) �= ∅ and Vi(�) ∩

V (β)(�) �= ∅, and let w be a α-coloured vertex of ∂i K (�).
Let us consider the 4-coloured graph b� obtained by performing a bisec-

tion of type (α, β) around w (see [9]) i.e. we perform a stellar subdivision
on each edge having as endpoints w and a β -coloured vertex and colour w by
β and the new vertices by α, keeping the colours of K (�) for the remaining
vertices (see [9]).

Note that card (Vi(b�) ∩ V (α)(b�)) = card (Vi(�) ∩ V (α)(�)) − 1.
We claim that �ε(b�) = �ε(�).
In fact, let �w be the �α-residue of � representing the disjoined link of w

in K (�).
We have:
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∀ j �= β , ġα j (b�) = ġα j (�) + ġβ j (�w)

∀ i �= α , ġβi (b�) = ġβi (�) − ġβi (�w)+ q (i)(�w)

where q (i)(�w) is the number of i-coloured edges of �w .

p(b�) = p(�) + p(�w) q(b�) = q(�)+ q (α
�)(�w)+ q (β

�)(�w)+ p(�w)

Therefore:

χε(b�) = ġαα� (b�)+ ġα�β(b�)+ ġββ �(b�)+ ġβ �α(b�)− q(b�)+ p(b�) =

= ġαα� (�)+ ġβα� (�w) + ġα�β(�)− ġα�β (�w)+ q (α
�)(�w)+ ġββ � (�)−

− ġββ � (�w)+ q (β
�)(�w) + ġβ �α(�)+ ġββ �(�w) − q(�)− q (α

�)(�w)−

− q (β
�)(�w)− p(�w)+ p(�) + p(�w ) = χε(�).

Moreover, note that, for each i ∈ �3, if j is the colour non consecutive to i in ε ,
∂gi (�) equals the number of j -coloured vertices in the components of ∂K (�)
missing colour i .

Therefore

∂gα(b�) =
∂ gα(�) + 1

∂gα� (b�) =∂ gα� (�)

∂gβ(b�) =
∂ gβ(�) − 1

∂gβ � (b�) =∂ gβ �(�)

and λε(b�) = λε(�).
Finally we have that �ε(b�) = �ε(�).
By performing a �nite number of bisection of type (α, β) on the compo-

nents of ∂K (�) missing α and β and, similarly a �nite number of bisection
of type (α�, β �) on the components missing α� and β �, we obtain the graph �� .

�

Suppose now that � is a 4-coloured graph satisfying condition (2) of
Lemma 4, with respect to a cyclic permutation ε of�3 and suppose that ∂ |K (�)|
has r connected components. Let us choose one of them, say ∂i K (�). Then
there exists j ∈ �3 such that for each k ∈ �3 − { j }, Vi(�) ∩ V (k)(�) = ∅.

Let us denote by �
( j )
i the 4-coloured graph obtained from � by the

following rule:

- ∀v, w ∈ Vi(�) ∩ V ( j )(�), join the vertices v and w by a j -coloured edge
iff v and w belong to the same { j, j + 1}-residue of �.

It is easy to see that, if � represents a 3-manifold M with r boundary

components, �
( j )
i represents the singular 3-manifold obtained from M by

capping off the i-th boundary component by a cone over it.
Moreover, we have
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Lemma 5. �ε(�
( j )
i ) = �ε(�)

Proof. We have

p(�
( j )
i ) = p(�) q(�

( j )
i ) = q(�)+

p
( j )
i (�)

2

ġkk+1(�
( j )
i ) = ġkk+1(�) ∀k ∈ �3 − { j − 1, j + 1}

ġj j+1(�
( j )
i ) = ġj j+1(�)+

p
( j )
i (�)

2
ġj−1 j (�

( j )
i ) = ġj−1 j (�) +

∂g
( j )
i (�)

where p( j )(�) = card (Vi(�) ∩ V ( j )(�)) and ∂g
( j )
i (�) is the number of closed

walks de�ned as for ∂gi (�), whose boundary vertices belong only to Vi(�).
Then

χε(�
( j )
i ) =

�

k∈Z4

ġkk+1(�
( j )
i ) − q(�

( j )
i )+ p(�

( j )
i )

=
�

k∈Z4

ġkk+1(�)+
p
( j )
i (�)

2
+ ∂g

( j )
i (�) − q(�)−

p
( j )
i (�)

2
+ p(�)

= χε(�)+
∂g
( j )
i (�).

Moreover λε(�
( j )
i ) = λε(�) −

∂g
( j )
i (�). Therefore �ε(�

( j )
i ) = �ε(�). �

Proof. (Theorem 3) Let M = Tg × D
1 or M = Ug × D

1. Suppose G(M) < g.
Let � be a 4-coloured graph representing M such that � is regular with

respect to a cyclic permutation ε of �3 and �ε(�) < g.
By Lemma 4, we can suppose, without loss of generality, that � satisfy

condition (2) of the Lemma. Moreover we can also suppose, up to a change
of colours, that V2(�) ⊆ V (3)(�) (i.e. the vertices corresponding to one of the
boundary components miss colour 3).

If also V1(�) ⊆ V (3)(�), then the graph is regular with respect to the colour
3 and G(M) ≤ �ε(�) < g, which is clearly impossible.

If, on the contrary, V1(�) ⊆ V (2)(�), let us consider the graph �
(2)
1 . Then

�M = |K (�
(2)
1 )| is obtained from M by capping off one boundary component by

a cone, i.e. it is a cone over the surface Tg or Ug .

Since �
(2)
1 is regular with respect to the colour 3, by Lemma 5, we

have G(�M) ≤ �ε(�
(2)
1 ) < g; on the other hand it is well-known ([10]) that

G(�M) ≥ G(∂ �M) = g, since ∂ �M = Tg or ∂ �M = Ug . �

If g = 1 the previous result is a corollary of the following theorem, which
gives a characterization of punctured 3-spheres.
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Theorem 6. Let M be a 3-manifold with boundary and let r be the number of
its boundary components, then

G(M) = 0 ⇐⇒ M is a sphere with r holes (punctured 3-sphere).

Proof. If M is a punctured 3-sphere, its generalized regular genus is clearly
zero since its regular genus is zero (see [4]). Conversely let M be a 3-manifold
such that G(M) = 0, ε a cyclic permutation of �3 and � a 4-coloured graph
representing M such that � is regular with respect to ε and �ε(�) = 0.

Again by Lemma 4, we can suppose, without loss of generality, that
� satisfy condition (2) of the Lemma. Therefore we can consider the 4-
coloured graph (without boundary) �� obtained from � by joining, ∀ j ∈ �3
and ∀v, w ∈ V ( j )(�), the vertices v and w by a j -coloured edge iff v and w

belong to the same { j, j + 1}-residue of �, i.e. �� is obtained by performing r
times the operation involved in Lemma 5.

Therefore �� represents the singular 3-manifold �M obtained from M by
capping each component of ∂M by a cone.

By Lemma 5 we have that �ε(��) = �ε(�) = 0 and by [4] (Corollary 33),
�M ∼= S

n ; therefore for each i = 1, . . . , r , ∂i M is a sphere and M is a punctured
3-sphere. �

Remark 2. The proof of Lemma 4 tells us that, as far as 3-manifolds are
concerned, we can always suppose that the generalized regular genus is obtained
by a 4-coloured graph satisfying condition (2). Let us denote by G4 the class of
such graphs.

For each � ∈ G4 we can de�ne a �boundary graph� ∂� in the following
way:

- V (∂�) = ∂V (�);
- ∀ i = 1, . . . , r , j ∈ �3 and ∀v, w ∈ Vi∩V

( j ) join v and w by a c-coloured
edge (c ∈ �3) iff v and w belong to the same {c, j }-residue of �.

Note that ∂� is not a 3-coloured graph, but has r connected components
∂1�, . . ., ∂r� each of them being a 3-coloured graph with colour set �3 − { j }
for some j ∈ �3. Of course, for each i = 1, . . . , r , ∂i� represents ∂i M .

Remark 3. Note that, as proved by the graphs we constructed in this section
for Tg × D

1 and Uh × D
1, the generalized regular genus, still unlike the regular

one (see [10]), is generally strictly less the sum of the genera of the boundary
components.
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3. Regular embeddings of 4-coloured graphs and generalized Heegaard
splittings.

In this section we shall show that there exists a correspondence between
regular embeddings of 4-coloured graphs in G4, representing a 3-manifold, and
generalized Heegaard splittings of the same manifold. We brie�y recall the basic
concepts about generalized Heegaard splittings.

We shall denote by Sg either the orientable closed surface of genus g or
the closed non orientable surface of genus 2g.

A hollow handlebody of genus g is a 3-manifold with boundary Xg ,
obtained from Sg × [0, 1] by attaching 2- and 3-handles along Sg × {1}. We
call Sg × {0} the free boundary of Xg .

Note that the orientability of Xg depends on that of Sg and conversely.
A generalized Heegaard splitting of genus g of a 3-manifold with

boundary M is a pair (Xg, Yg) of hollow handlebodies of genus g, such that
Xg ∪ Yg = M and Xg ∩ Yg is the free boundary of both Xg and Yg .

The generalized Heegard genus of a 3-manifold M is the non negative
integer

H(M)=min{g| there exists a generalized Heegaard splitting of genus g of M}.

Let � be a 4-coloured graph of G4, regular with respect to a cyclic permutation
ε of �3 and such that the �boundary� colours are consecutive in ε . Then, up to
a change of colours, we can suppose that

(∗) V (ε0) = V (ε1) = ∅

We can state the following

Proposition 7. Let M be a connected 3-manifold, � ∈ G4 a 4-coloured graph
representing M, regular with respect to a cyclic permutation ε of �3 and
satisfying condition (∗), then there exists a generalized Heegaard splitting for
M of genus �ε(�).

Proof. To avoid long notations let us suppose ε = id .
Given the graph �, representing M and regular with respect to ε , we

know, from the proof of Theorem 6, that there exists a 4-coloured graph without
boundary �� such that �ε(��) = �ε(�) and �� represents the singular 3-manifold
�M obtained from M by capping off each boundary component by a cone.

�� is obtained from � by adding a 3-coloured edge (resp. 2-coloured edge)
between two vertices v, w ∈ V (3) (resp. v, w ∈ V (2)) iff v and w belong to the
same connected component of �{0,3} (resp. �{1,2}).

Let K � (resp. K ��) the 1-dimensional subcomplex of K (��) generated by
its 0- and 2-coloured (resp. 1- and 3-coloured) vertices and H the largest
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subcomplex of SdK (��) (where Sd means �rst barycentric subdivision) disjoint
from SdK � ∪ SdK ��; then H splits SdK (��) into two subcomplexes N � and N ��

such that N � ∩N �� = ∂N �∩∂N �� = H . SetA� = |N � | ,A�� = |N ��| and S = |H |.
A

� and A
�� are handlebodies, S is a closed connected surface of genus �ε(��),

where �� regularly embeds.
Let C be a collar of S in A

� ; let C0 , C1 be the surfaces corresponding to
S×{0} and S×{1} respectively. For ech 1-simplex e of K (��) whose endpoints
are 0- and 2-coloured, let H 02e be a regular neighbourhood in A

� of the 2-cell
dual of e (see Figure 2).

S
C

H

0

2

3

1

Figure 2.

Set X = C ∪ (
�

e H
02
e ). X is a hollow handlebody, since the H

02
e �s are

2-handles attached along C1 ∼= S × {1}.
Moreover A� − X is the union of regular neighbourhoods of the 0- and

2-coloured vertices of K (��).
Let �X be the hollow handlebody obtained by adding to X the neighbour-

hoods corresponding to non singular vertices.
Similarly we can de�ne a hollow handlebody �Y by starting from a collar

of S in A
�� and attaching on it:

- the 2-handles H 13e dual to the 1-simplexes of K (��) having endpoints
coloured by 1 and 3;

- the 3-handles corresponding to the neighbourhoods of the non singular 1-
and 3-coloured vertices.

We have that �X ∪ �Y = M and �X ∩ �Y = S.
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Therefore (�X , �Y ) is a generalized Heegaard splitting for M of genus
g(S) = �ε(��) = �ε(�). �

As a consequence of Proposition 7 and Lemma 4, we have the following:

Corollary 8. For each 3-manifold M, H(M) ≤ G(M).

Proof. Let � be a 4-coloured graph representing M and ε a cyclic permutation
of �3 such that � is regular with respect to ε and G(M) = �ε(�).

By Lemma 4 we know that we can always suppose that � misses at most
two colours.

If these colours are non consecutive in ε , then, by means of suitable
bisections, we can obtain a new graph, still representing M , with the same genus
as � and missing only one colour, i.e. a graph regular with respect to a colour,
that we can always suppose to be 3.

In this case by Lemma 1 of [2] there exists a proper ([2]) Heegaard splitting
of M of genus G(M) = G(M).

On the other hand, if the �boundary� colours are consecutive in ε , we can
apply Proposition 7 to get a Heegaard splitting of M of the required genus.

�

Note that the splitting is always proper in the case of M having connected
boundary. In this case G(M) = G(M) = H(M) = H(M) (see [3]).
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