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THREE WEAK SOLUTIONS TO
A DEGENERATE QUASILINEAR ELLIPTIC SYSTEM

J.R. GRAEF - S. HEIDARKHANI - L. KONG - A. SALARI

Sufficient conditions are established to guarantee the existence of at
least three weak solutions to a degenerate quasilinear elliptic system with
three parameters and Dirichlet boundary conditions. An application of the
main theorem to a scalar elliptic problem is also presented. The proofs
in the paper mainly make use of a variational argument and an abstract
critical point theorem due to Ricceri.

1. Introduction

In this paper, we study the existence of multiple weak solutions to the degenerate
quasilinear elliptic system
−∇

(
mi(x)|∇ui|pi−2∇ui

)
= εFui(x,u1, . . . ,un)−λGui(x,u1, . . . ,un)−νHui(x,u1, . . . ,un), x ∈Ω,

ui|∂Ω = 0, i = 1, . . . ,n,
(1.1)

where Ω is a bounded and connected subset of RN (N ≥ 2), pi > 1 are constants
and mi are nonnegative weight functions on Ω, i = 1, . . . ,n, ε , λ , and ν are non-
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negative parameters, F , G, H ∈ C1(Ω×Rn,R), and ∇u = (ut1 , . . . ,utN ) denotes
the gradient of u with respect to (t1, . . . , tN) ∈ RN .

The degeneracy of system (1.1) is considered in the case that the weight
functions mi, i = 1, . . . ,n, are allowed to be unbounded and/or not separated
from zero. Degenerate phenomena frequently occur in many areas such as in
phenomena related to the equilibrium of anisotropic continuous media [6] and
in the study of population dynamics [3, 4]. Scalar degenerated quasilinear ellip-
tic equations with p-Laplacians have been extensively studied in the 1990s and
the reader may refer to the the monograph [7] for some related results. In re-
cent years, there has been renewed and increasing interest in degenerate elliptic
problems. Below, we only briefly mention several works on degenerate quasi-
linear elliptic systems. In 2008, Zographopoulos [19] studied the properties of
the positive principal eigenvalues of the degenerate quasilinear elliptic system
−∇(ν1(x)|∇u|p−2∇u) = λa(x)|u|p−2u+λb(x)|u|α |v|β v, x ∈Ω,

−∇(ν2(x)|∇v|p−2∇v) = λd(x)|v|q−2v+λb(x)|u|α |v|β u, x ∈Ω,

u|∂Ω = v|∂Ω = 0,

(1.2)

and proved that this eigenvalue is simple, unique up to positive eigenfunctions,
and isolated. In 2014, An, Lu, and Suo [1] applied the properties of the principle
eigenvalues of system (1.2) to obtain the existence and multiplicity of weak
solutions to the degenerate quasilinear elliptic system
−∇(ν1(x)|∇u|p−2∇u) = λa(x)|u|p−2u+λb(x)|u|α |v|β v+Fu(x,u,v), x ∈Ω,

−∇(ν2(x)|∇v|p−2∇v) = λd(x)|v|q−2v+λb(x)|u|α |v|β u+Fv(x,u,v), x ∈Ω,

u|∂Ω = v|∂Ω = 0.

Recently, using a variational approach and some recent theory on weighted
Lebesgue and Sobolev spaces with variable exponents, Kong [5] studied the
existence of at least two nontrivial weak solutions of the elliptic system with
degenerate pi(x)-Laplacian operators{

−∇(wi(x)|∇ui|pi(x)−2∇ui) = λ fi(x,u1, . . . ,un) in Ω, i = 1, . . . ,n,
ui = 0 on ∂Ω, i = 1, . . . ,n.

Motivated by the above mentioned work, in this paper, we investigate the
existence of weak solutions to the degenerate quasilinear system (1.1). In par-
ticular, we obtain the existence of at least three weak solutions to system (1.1)
by applying a variational approach and a recent abstract critical point theorem
proved by Ricceri in [12], which can be seen in Lemma 2.1 in Section 2. Lemma
2.1 below has been successfully employed in [11, 18] to obtain the existence of
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three weak solutions for other problems, and the reader may refer to the papers
[12–15] and the monograph [10] for more related results. We also consider the
application of our results to a scalar degenerate elliptic problem. To prove our
results, many new ideas have been developed throughout the paper. Our results
extend and complement some existing results in the literature on degenerate
quasilinear systems, such as those in [1, 12, 19].

The rest of this paper is organized as follows. Section 2 contains some
preliminary results, Section 3 contains the main theorem and its proof, and the
application of the main theorem to a scalar problem is given in Section 4.

2. Preliminary results

In this section, we present some preliminaries. To this end, let E be a non-
empty set and I,Ψ,Φ : E→ R be three given functionals. For µ > 0 and r ∈
(infE Φ,supE Φ), let

β (µI +Ψ,Φ,r) = sup
u∈Φ−1((r,∞))

µI(u)+Ψ(u)− infΦ−1((−∞,r])(µI +Ψ)

r−Φ(u)
.

If Ψ+Φ is bounded from below, for each r ∈ (infE Φ,supE Φ) such that

inf
Φ−1((−∞,r])

I(u)< inf
Φ−1(r)

I(u),

we set

µ
?(I,Ψ,Φ,r) = inf

{
Ψ(u)− γ + r

ηr− I(u)
: u ∈ E, Φ(u)< r, I(u)< ηr

}
,

where
γ = inf

E
(Ψ(u)+Φ(u)) and ηr = inf

u∈Φ−1(r)
I(u).

We now present an abstract critical point theorem due to Ricceri. Here, recall
that the derivative I′ : X → X∗ of a C1-functional I is said to admit a continuous
inverse on X∗ provided that there exists a continuous operator h : X∗→ X such
that h(I′(u)) = u for every u ∈ X .

Lemma 2.1. ([12, Theorem 3]) Let (E,‖.‖) be a reflexive Banach space; I :
E→ R be a sequentially weakly lower semicontinuous, coercive, bounded on
each bounded subset of E, C1-functional whose derivative admits a continuous
inverse on the topological dual E∗; Φ, Ψ : E→ R be two C1-functionals with
compact derivatives. Assume also that the functional Ψ+λΦ is bounded below
for all λ > 0 and

liminf
‖u‖→∞

Ψ(u)
I(u)

=−∞.
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Then, for each r > supS Φ, where S is the set of all global minima of I, for
each µ > max{0,µ?(I,Ψ,Φ,r)}, and each compact interval [ā, b̄]⊂ (0,β (µI+
Ψ,Φ,r)), there exists a number ρ > 0 with the following property: for every
λ ∈ [ā, b̄] and every C1-functional Γ : E→ R with a compact derivative, there
exists δ > 0 such that for each ν ∈ [0,δ ], the equation

µI′(u)+Ψ
′(u)+λΦ

′(u)+νΓ
′(u) = 0

has at least three solutions in E whose norms are less than ρ .

Remark 2.2. In Lemma 2.1, we implicitly use the fact that β (µI+Ψ,Φ,r)> 0,
which is guaranteed by [12, Theorem 2].

In the sequel, we let the function space (N)p be the set consisting of all

the functions m : Ω⊂RN→R such that m ∈ L1(Ω), m−
1

p−1 ∈ L1(Ω) and m−s ∈
L1(Ω) for some p > 1 and s > max{N

p ,
1

p−1} satisfying ps < N(s+1). Through-
out this paper, we assume that the weight functions m1, . . . ,mn appearing in sys-
tem (1.1) satisfy the following hypothesis:

(N) For i= 1, . . . ,n, there exist constants spi with spi > max
{

N
pi
,

1
pi−1

}
and

functions ri ∈ (N)pi such that

ri(x)
li
≤ mi(x)≤ liri(x) (2.1)

a.e. in Ω for some constants li > 1 and i = 1, . . . ,n.

Let m∈ (N)p be a nonnegative weight function in Ω. The weighted Sobolev
space D1,p

0 (Ω,m) is defined as the closure of C∞
0 (Ω) with respect to the norm

‖u‖D1,p
0 (Ω,m)

=

(∫
Ω

m(x)|∇u|pdx
) 1

p

.

Then, D1,p
0 (Ω,m) is a reflexive Banach space. For a discussion of this space, we

refer the reader to [7] and the references therein. Let

p∗s =
N ps

N(s+1)− ps
. (2.2)

Lemma 2.3. ([7, 19]) Assume that Ω is a bounded domain in RN and m ∈ (N)p.
Then, the following embeddings hold:

(i) D1,p
0 (Ω,m) ↪→ Lp∗s (Ω) continuously for 1 < p∗s < N;
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(ii) D1,p
0 (Ω,m) ↪→ Lr(Ω) compactly for r ∈ [1, p∗s ).

For simplicity, in the remainder of this paper, we denote by p∗i the quantities
p∗spi

, i = 1, . . . ,n, where spi is induced by condition (N). Moreover, we use
the symbol ‖ · ‖m for the norm ‖ · ‖D1,p

0 (Ω,m)
for any function m ∈ (N)p; for any

r > 1, we use the usual notation ‖ · ‖Lr to denote the norm in the space Lr(Ω),
i.e., ‖u‖Lr =

∫
Ω
|u|rdx.

The space setting for system (1.1) is taken as the product space

X = D1,p1
0 (Ω,m1)× . . .×D1,pn

0 (Ω,mn)

equipped with the norm

‖u‖X = ‖u1‖m1 + . . .+‖un‖mn , u = (u1, . . . ,un) ∈ X .

Observe that X is a reflexive Banach space and inequalities (2.1) in condition
(N) imply that the functional spaces

D1,p1
0 (Ω,m1)× . . .×D1,pn

0 (Ω,mn)

and
D1,p1

0 (Ω,r1)× . . .×D1,pn
0 (Ω,rn)

are equivalent.
Next, let the functionals S,JF ,JG,JH ,J : X → R be defined by

S(u) = S(u1, . . . ,un) =
n

∑
i=1

1
pi

∫
Ω

mi(x)|∇ui|pidx, (2.3)

JF(u) = JF(u1, . . . ,un) =
∫

Ω

F(x,u1(x), . . . ,un(x))dx, (2.4)

JG(u) = JG(u1, . . . ,un) =
∫

Ω

G(x,u1(x), . . . ,un(x))dx, (2.5)

JH(u) = JH(u1, . . . ,un) =
∫

Ω

H(x,u1(x), . . . ,un(x))dx, (2.6)

and

J(u) = J(u1, . . . ,un) =
n

∑
i=1

1
pi

∫
Ω

|ui|pidx. (2.7)

We denote by F the class of all continuous functions F : Ω×Rn→ R such
that

sup
(x,t)∈Ω×Rn

|F(x, t)|
|t|+ |t|q

< ∞,

where 1 < q < min{p∗1, . . . , p∗n}, t = (t1, . . . , tn), and |t|=
√

t2
1 + . . .+ t2

n . In this
paper, we assume that the functions F,G,H further satisfy the condition
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(C) F,G,H ∈ F .

Now, it is a standard procedure to prove the following properties of the
above functionals. See, for example, the proof of [8, Lemma 2.1].

Lemma 2.4. The functionals S, JF , JG, JH , and J are well defined. Moreover, S,
JF , JG, and JH are continuous and J is compact.

Moreover, it is easy to see that S, JF , JG, JH , and J are continuously Gâteaux
differentiable. More precisely, for every u = (u1, . . . ,un), v = (v1, . . . ,vn) ∈ X ,
we have

S′(u)(v) =
n

∑
i=1

∫
Ω

mi(x)|∇ui(x)|pi−2
∇ui∇vidx,

J′F(u)(v) =
∫

Ω

n

∑
i=1

Fui(x,u(x))vi(x)dx, (2.8)

J′G(u)(v) =
∫

Ω

n

∑
i=1

Gui(x,u(x))vi(x)dx,

J′H(u)(v) =
∫

Ω

n

∑
i=1

Hui(x,u(x))vi(x)dx,

and

J′(u)(v) =
n

∑
i=1

∫
Ω

|ui|pi−2uividx.

Definition 2.5. We say that u = (u1, . . . ,un) ∈ X is a weak solution of sys-
tem (1.1) if and only if (S′(u)− εJ′F(u)+ λJ′G(u)+ νJ′H(u))v = 0 for all v =
(v1, . . . ,vn) ∈ X .

Remark 2.6. In view of Definition 2.5, u = (u1, . . . ,un) ∈ X is a weak solution
of system (1.1) if and only if u is a critical point of the functional P defined by

P(u) = S(u)− εJF(u)+λJG(u)+νJH(u). (2.9)

In the following, for convenience, we let

α = max{αi : i = 1, . . . ,n}, α = min{αi : i = 1, . . . ,n},

and
p = max{pi : i = 1, . . . ,n}, p = min{pi : i = 1, . . . ,n}.

We now present two more results that are necessary in the proof of our main
theorem.
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Lemma 2.7. Assume that either p≥ 2 or 1 < p < 2. Let J := S′ : X −→ X∗ be
the operator defined by

J (u)(v) =
n

∑
i=1

∫
Ω

mi(x)|∇ui(x)|pi−2
∇ui.∇vidx

for every u = (u1, . . . ,un), v = (v1, . . . ,vn) ∈ X. Then J admits a continuous
inverse on X∗.

Below, we let Ci denote a generic positive constant.

Proof. Let u = (u1, . . . ,un) ∈ X\{0}. Note that

〈J (u),u〉=
n

∑
i=1

∫
Ω

mi(x)|∇ui(x)|pidx≥ ‖ui‖pi
mi

for all i = 1, . . . ,n,

and

‖u‖X =
n

∑
i=1
‖ui‖mi ≤ nmax{‖ui‖mi : i = 1, . . . ,n}.

Then, we have

〈J (u),u〉 ≥ 1
npi(u)
‖u‖pi(u)

X , (2.10)

where i(u)∈ {1, . . . ,n} satisfies ‖ui(u)‖mi(u) = max{‖ui‖mi : i = 1, . . . ,n}. Thus,

〈J (u),u〉
‖u‖X

≥ 1
np ‖u‖

p−1
X → ∞ as ‖u‖X → ∞.

Thus, J is a coercive operator. Moreover, J (u) is a linear and continuous
functional on X . Now, for any u = (u1, . . . ,un) ∈ X and v = (v1, . . . ,vn) ∈ X , we
have

〈J (u)−J (v),u− v〉

=
n

∑
i=1

∫
Ω

mi(x)
(
|∇ui(x)|pi−2

∇ui−|∇vi(x)|pi−2
∇vi
)
(∇ui−∇vi)dx.

Then by (2.2) in [16], we see that

〈J (u)−J (v),u− v〉 ≥

C1 ∑
n
i=1
∫

Ω
mi(x)|∇ui(x)−∇vi(x)|pidx, p≥ 2,

C2 ∑
n
i=1
∫

Ω

mi(x)|∇ui(x)−∇vi(x)|2
(|∇ui(x)|+|∇vi(x)|)2−pi

dx, 1 < p < 2.
(2.11)

If p≥ 2, as in obtaining (2.10), it follows from (2.11) that

〈J (u)−J (v),u− v〉 ≥ C1

npi(u,v)
‖u− v‖pi(u,v)

X ,
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where i(u,v)∈ {1, . . . ,n} satisfies ‖ui(u,v)−vi(u,v)‖mi(u,v) = max{‖ui−vi‖mi : i =
1, . . . ,n}. Thus, J is uniformly monotone. By [17, Theorem 26.A (d)], J −1

exists and is continuous on X∗.
If 1 < p < 2, by Hölder’s inequality, we obtain that∫

Ω

mi(x)|∇ui(x)−∇vi(x)|pidx

≤
(∫

Ω

mi(x)|∇ui(x)−∇vi(x)|2

(|∇ui(x)|+ |∇vi(x)|)2−pi
dx
) pi

2

×
(∫

Ω

mi(x)(|∇ui(x)|+ |∇vi(x)|)pidx
) 2−pi

2

≤C3

(∫
Ω

mi(x)|∇ui(x)−∇vi(x)|2

(|∇ui(x)|+ |∇vi(x)|)2−pi
dx
) pi

2

×
(∫

Ω

mi(x)(|∇ui(x)|pi + |∇vi(x)|pi)dx
) 2−pi

2

≤C4

(∫
Ω

mi(x)|∇ui(x)−∇vi(x)|2

(|∇ui(x)|+ |∇vi(x)|)2−pi
dx
) pi

2

(‖u‖X +‖v‖X)
(2−pi)pi

2 . (2.12)

Now, let

p† =

{
p, if‖u‖X +‖v‖X ≥ 1,

p, if‖u‖X +‖v‖X < 1.

Then, from (2.11) and (2.12), it follows that

〈J (u)−J (v),u− v〉 ≥C5

n

∑
i=1

(∫
Ω

mi(x)|∇ui(x)−∇vi(x)|2dx
) 2

pi

(‖u‖X +‖v‖X)2−pi

≥ C5

(‖u‖X +‖v‖X)2−p†

n

∑
i=1

(∫
Ω

mi(x)|∇ui(x)−∇vi(x)|2dx
) 2

pi

≥ C6

(‖u‖X +‖v‖X)2−p†

(
n

∑
i=1

(∫
Ω

mi(x)|∇ui(x)−∇vi(x)|2dx
) 1

pi

)2

=
C6‖u− v‖2

X

(‖u‖X +‖v‖X)2−p†
. (2.13)

Thus, J is strictly monotone. By [17, Theorem 26.A (d)], J −1 exists and is
bounded. Given w1,w2 ∈ X∗, from (2.13), we have

‖J −1(w1)−J −1(w2)‖X ≤
1

C6
(‖J −1(w1)‖X +‖J −1(w2)‖)2−p†‖w1−w2‖X∗ .
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Thus, J −1 is locally Lipschitz continuous and hence continuous. This com-
pletes the proof of the lemma.

Lemma 2.8. Let the functionals S and J be defined by (2.3) and (2.7), respec-
tively. Assume that condition (N) is satisfied. Denote by L the set{

u = (u1, . . . ,un) ∈ X : J(u) = 1

}
.

Then, the equation S′(u) = λJ′(u) admits a positive principal eigenvalue λ1
satisfying

λ1 = inf
(u1,...,un)∈L

S(u). (2.14)

Moreover, the associated normalized eigenfunction φ1 = (φ11, . . . ,φ1n) belongs
to X and each component is nonnegative.

This lemma can be proved by the same argument as contained in the proof
of [19, Theorem 2.4]. For the completeness, we give its proof below.

Proof. In view of Lemma 2.4, we see that the operators S and J are continuously
Fréchet differentiable such that

(i) S is coercive on X ∩{J(u)≤ c}, where c is a constant,

(ii) J is compact and J′(u1, . . . ,un) = 0 only at (u1, . . . ,un) = (0, . . . ,0).

Then, from [2, Theorem 6.3.2], the equation S′(u) = λJ′(u) admits a positive
principal eigenvalue λ1 satisfying (2.14). Moreover, if (u1, . . . ,un) is a mini-
mizer of (2.14), then (|u1|, . . . , |un|) should be also a minimizer. Hence, cor-
responding to λ1 there exists an eigenfunction (u1, . . . ,un) such that ui ≥ 0,
i = 1, . . . ,n, a.e. in Ω.

3. Main theorem

Let us first fix some notations that we will adopt in the sequel. For each r > 0
and each pair of functions F , G : Ω×Rn→ R belonging F such that G−F is
bounded from below, let

µ̃(F,G,r) = inf
u∈X

{
r− γ̃− JF(u)

η̃r−∑
n
i=1

1
pi
‖ui‖pi

mi

: JG(u)< r,
n

∑
i=1

1
pi
‖ui‖pi

mi
< η̃r

}
,

where
γ̃ =

∫
Ω

inf
ξ∈Rn

(
G(x,ξ )−F(x,ξ )

)
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and

η̃r = inf
u∈J−1

G (r)

n

∑
i=1

1
pi
‖ui‖pi

mi
.

Moreover, for each ε ∈
(

0, 1
max{0,µ̃(F,G,r)}

)
, we let

β̃ (ε,F,G,r) = sup
u∈J−1

G ((r,∞))

1
(r− JG(u))

(
n

∑
i=1

1
pi
‖ui‖pi

mi
− εJF(u)

− inf
u∈J−1

G ((−∞,r])

( n

∑
i=1

1
pi
‖ui‖pi

mi
− εJF(u)

))
.

Now, we are in a position to state and prove the main result in this paper.

Theorem 3.1. Assume that the conditions (N) and (C) hold and either p≥ 2 or
1 < p < 2. Suppose further F, G : Ω×Rn→ R satisfy that

lim
|ξ |→∞

infx∈Ω F(x,ξ )
|ξ |p

= ∞, (3.1)

limsup
|ξ |→∞

supx∈Ω F(x,ξ )
|ξ |σ

< ∞, (3.2)

and

lim
|ξ |→∞

infx∈Ω G(x,ξ )
|ξ |σ

= ∞, (3.3)

where ξ = (ξ1, . . . ,ξn), |ξ | =
√

ξ 2
1 + . . .+ξ 2

n , and 1 < σ < min{p∗1, . . . , p∗n}.

Then, for each r > 0, for each ε ∈
(

0, 1
max{0, µ̃(F,G,r)}

)
, and for each compact

interval [ā, b̄]⊂
(
0, β̃ (ε,F,G,r)

)
, there exists a number ρ > 0 with the property:

for every λ ∈ [ā, b̄] and every function H ∈ F , there exists δ > 0 such that, for
each ν ∈ [0,δ ], system (1.1) has at least three weak solutions whose norms in X
are less than ρ .

Proof. Note that, according to the discussion in Section 2, (X ,‖ · ‖X) is a re-
flexive Banach space. Let the functionals S, JF , JG, JH , and J be defined by
(2.3)–(2.7), respectively. Then, in view of Lemma 2.7, it is easy to check that S
is a sequentially weakly lower semicontinuous C1-functional whose derivative
admits a continuous inverse on X∗, and JF , JG, and JH are C1-functionals with
compact derivatives. Moreover, from (2.3), we have

1
p

n

∑
i=1
‖ui‖pi

mi
≤ S(u)≤ 1

p

n

∑
i=1
‖ui‖pi

mi
for all u = (u1, . . . ,un) ∈ X . (3.4)
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which clearly implies that S is coercive and bounded on each bounded subset of
X .

Next, we prove that

limsup
‖u‖X→∞

JF(u)
∑

n
i=1 ‖ui‖pi

mi

= ∞. (3.5)

By Lemma 2.8, λ1, defined by (2.14), is the positive principal eigenvalue of
the equation S′(u) = λJ′(u) and the associated normalized eigenfunction φ1 =
(φ11, . . . ,φ1n) belongs to X and each component is nonnegative. Thus, we have

n

∑
i=1
‖φ1i‖pi

mi
= λ1

n

∑
i=1
‖φ1i‖pi

Lpi . (3.6)

To prove (3.5), it suffices to show that

lim
k→∞

JF(kφ1)

∑
n
i=1 ‖kφ1i‖pi

mi

= ∞. (3.7)

To this end, fix two positive numbers L1 and L2 such that L1 <
L2
p . From (3.1),

there exists η > 0 such that

F(x,ξ )≥
λ1L2 ∑

n
i=1 ‖φ1i‖pi

Lpi

∑
n
i=1 ‖φ1i‖p

Lp

|ξ |p =
λ1L2 ∑

n
i=1 ‖φ1i‖pi

Lpi

∑
n
i=1 ‖φ1i‖p

Lp

(
n

∑
i=1
|ξi|2

)p/2

≥
λ1L2 ∑

n
i=1 ‖φ1i‖pi

Lpi

∑
n
i=1 ‖φ1i‖p

Lp

n

∑
i=1
|ξi|p uniformly for all (x, |ξ |) ∈Ω× [η ,∞).

(3.8)

For each k ∈ N, set

Ak =
{

x ∈Ω : |φ1(x)| ≥
η

k

}
=

{
x ∈Ω : φ

2
11(x)+ . . .+φ

2
1n(x)≥

η2

k2

}
.

Note that, for every k ∈ N, we have Ak ⊆ Ak+1. Then, the numerical sequence{
n

∑
i=1

∫
Ak

|φ1i(x)|pdx

}
k∈N

is nondecreasing, i.e.,

n

∑
i=1

∫
Ak

|φ1i(x)|pdx≤
n

∑
i=1

∫
Ak+1

|φ1i(x)|pdx for every k ∈ N.
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Moreover, we have
n

∑
i=1

∫
Ak

|φ1i(x)|pdx→
n

∑
i=1

∫
Ω

|φ1i(x)|pdx =
n

∑
i=1
‖φ1i‖p

Lp as k→ ∞.

Then, we can fix k̃ ∈ N so that
n

∑
i=1

∫
Ak

|φ1i(x)|pdx >
pL1

L2

n

∑
i=1
‖φ1i‖p

Lp for any k ≥ k̃. (3.9)

Since F ∈ F , there exists a constant c > 0 such that

|F(x,ξ )| ≤ c(|ξ |+ |ξ |q) for all ξ = (ξ1, . . . ,ξn) ∈ Rn.

Thus,
sup

(x,ξ )∈Ω×[0,η ]n
|F(x,ξ )| ≤ c(η +η

q)< ∞,

where [0,η ]n = [0,η ]× . . .× [0,η ]. Then, for each k ∈ N satisfying

k > max

k̃,

(
meas(Ω)sup(x,ξ )∈Ω×[0,η ]n |F(x,ξ )|

L1 ∑
n
i=1 ‖φ1i‖pi

mi

) 1
p

 ,

from (3.6), (3.8), and (3.9), it follows that

JF(kφ1)

∑
n
i=1 ‖kφ1i‖pi

mi

=

∫
Ak

F(x,kφ1(x))dx

∑
n
i=1 kpi‖φ1i‖pi

mi

+

∫
Ω\Ak

F(x,kφ1(x))dx

∑
n
i=1 kpi‖φ1i‖pi

mi

≥
∫

Ak
F(x,kφ1(x))dx

kp ∑
n
i=1 ‖φ1i‖pi

mi

+

∫
Ω\Ak

F(x,kφ1(x))dx

kp ∑
n
i=1 ‖φ1i‖pi

mi

≥

λ1L2 ∑
n
i=1 ‖φ1i‖

pi
Lpi

∑
n
i=1 ‖φ1i‖p

Lp

(
∑

n
i=1
∫

Ak
|φ1i(x)|pdx

)
λ1 ∑

n
i=1 ‖φ1i‖pi

Lpi

+

∫
Ω\Ak

F(x,kφ1(x))dx

kp ∑
n
i=1 ‖φ1i‖pi

mi

≥
pL1 ∑

n
i=1 ‖φ1i‖p

Lp

∑
n
i=1 ‖φ1i‖p

Lp

−
meas(Ω)sup(x,ξ )∈Ω×[0,η ]n |F(x,ξ )|

kp ∑
n
i=1 ‖φ1i‖pi

mi

> pL1−L1 = (p−1)L1,

which shows (3.7) holds. Thus, by (3.4) and (3.7), we have

liminf
‖u‖X→∞

−JF(u)
S(u)

=−∞.

Now, from (3.2), there exists κ > 0 such that

F(x,ξ )≤ κ(|ξ |σ +1), for every(x,ξ ) ∈Ω×Rn, (3.10)
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and from (3.3), for each ι > 0, there exists a constant cι > 0 such that

G(x,η)≥ ι |ξ |σ − cι for every(x,ξ ) ∈Ω×Rn. (3.11)

By (3.10) and (3.11), we see that, for each λ > 0, the functional λJG− JF is
bounded from below in Rn. In fact, for any fixed λ > 0, we can choose ι > 0
large enough so that λι > κ . Hence, by (3.10) and (3.11), it follows that

(λG−F)(x,ξ )≥ λι |ξ |σ −λcι −κ(|ξ |σ +1)

= (λι−κ)|ξ |σ − (λcι +κ)

≥−(λcι +κ) for any (x,ξ ) ∈Ω×Rn.

Thus, ∫
Ω

(λG(x,u(x))−F(x,u(x)))dx≥−(cι +λκ)meas(Ω).

Then, λJG−JF is bounded from below in X . Now, the conclusion of the theorem
follows directly from Lemma 2.1, where it is taken that E = X , I(u) = S(u),
Ψ(u) =−JF(u), Φ(u) = JG(u), and Γ(u) = JH(u). This completes the proof of
the theorem.

4. A scalar problem

As an application of Theorem 3.1, in this section, we consider the scalar problem{
−∇

(
m(x)|∇u|p−2∇u

)
= ε f (u)−λg(u)−νh(u), x ∈Ω,

u|∂Ω = 0,
(4.1)

where Ω is a bounded and connected subset of RN (N ≥ 2), p > 1, m ∈ (N)p

is a nonnegative weight function, ε , λ , and ν are nonnegative parameters, f , g,
h ∈ C(Ω×R,R), and ∇u = (ut1 , . . . ,utN ) denotes the gradient of u with respect
to (t1, . . . , tN) ∈ RN .

We introduce the functions

F(t) =
∫ t

0
f (ξ )dξ for all t ∈ R,

G(t) =
∫ t

0
g(ξ )dξ for all t ∈ R,

and

H(t) =
∫ t

0
h(ξ )dξ for all t ∈ R.
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Now consider the functionals T , J f , Jg, Jh : X → R defined by

T (u) =
1
p

∫
Ω

m(x)|∇u(x)|pdx,

J f (u) =
∫

Ω

F(u(x))dx,

Jg(u) =
∫

Ω

G(u(x))dx,

and
Jh(u) =

∫
Ω

H(u(x))dx.

Then, T , J f , Jg, and Jh are continuously Gâteaux differentiable. More precisely,
for every u, v ∈ D1,p

0 (Ω,m), we have

T ′(u)(v) =
1
p

∫
Ω

m(x)|∇u(x)|p−2
∇u∇vdx,

J′f (u)(v) =
∫

Ω

f (u(x))v(x)dx,

J′g(u)(v) =
∫

Ω

g(u(x))v(x)dx,

and
J′h(u)(v) =

∫
Ω

h(u(x))v(x)dx.

We denote by F1 the class of all continuous functions f : R→ R such that

sup
t∈R

f (t)
1+ |t|q

< ∞

for some q ∈ (0, p∗s −1), where p∗s is defined by (2.2).
We introduce the following notations. For each r > 0 and each pair of func-

tions f , g ∈ F1 such that G−F is bounded from below, let

µ̃( f ,g,r) = p inf
u∈X

{
r− γ̃− J f (u)

η̃r−‖u‖p
m

: Jg(u)< r, ‖u‖p
m < η̃r

}
,

where
γ̃ = inf

ξ∈R
(G(ξ )−F(ξ )),

and
η̃r = inf

u∈J−1
g (r)
‖u‖p

m.
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Moreover, for each ε ∈
(

0, 1
max{0,µ̃( f ,g,r)}

)
, define

β̃ (ε, f ,g,r) = sup
u∈J−1

g ((r,∞))

‖u‖p
m− ε pJ f (u)− infu∈J−1

g ((−∞,r])(‖u‖
p
m− ε pJ f (u))

p(r− Jg(u))
.

The following result is a direct consequence of Theorem 3.1.

Theorem 4.1. Assume that f ,g ∈ F1 and

lim
|ξ |→∞

f (ξ )
|ξ |p−2ξ

= ∞, limsup
|ξ |→∞

f (ξ )
|ξ |σ−2ξ

< ∞, and lim
|ξ |→∞

g(ξ )
|ξ |σ−2ξ

= ∞,

(4.2)
where 1 < σ < p∗s . Then, for each r > 0, for each ε ∈

(
0, 1

max{0, µ̃( f ,g,r)}

)
, and

for each compact interval [ā, b̄]⊂
(
0, β̃ (ε, f ,g,r)

)
, there exists a number ρ > 0

with the property: for every λ ∈ [ā, b̄] and every function h ∈ F1, there exists
δ > 0 such that, for each ν ∈ [0,δ ], system (4.1) has at least three weak solutions
whose norms in D1,p

0 (Ω,m) are less than ρ .

We now give one example to apply Theorem 4.1.

Example 4.2. Let N = 3, p = 4, and Ω = {(x1,x2,x3)∈R3 : x2
1+x2

2+x2
3 ≤ 9}⊂

R3. Consider the problem{
−∇

(
(2+ sin(x2

1 + x2
2 + x2

3))|∇u|p−2∇u
)
= ε f (u)−λg(u)−νh(u) inΩ,

u = 0 on∂Ω,
(4.3)

where
f (t) =

(
1+ t4)sgn(t) and g(t) =

(
1+ t

28
5

)
sgn(t).

We observe that m(x)= 2+sinx∈ (N)p with s= 1, meas(Ω)= 36π , and p∗s = 6.
Moreover, it is easy to see that f , g ∈ F1 and (4.2) holds with σ = 26/5. Then,
the conclusion of Theorem 4.1 holds for problem (4.3).

We comment that, for some special functions f and g in (4.1), it is possible
to obtain some estimates for the constants µ̃( f ,g,r) and β̃ (ε, f ,g,r). For in-
stance, let p < κ < ζ < p∗, f (t) = |t|κ−2t, and g(t) = |t|ζ−2t, where p∗ = N p

2N−p .
Then, we have

F(t) =
1
κ
|t|κ , G(t) =

1
ζ
|t|ζ ,

J f (u) =
1
κ

∫
Ω

|u(x)|κdx, and Jg(u) =
1
ζ

∫
Ω

|u(x)|ζ dx.
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As a consequence, γ̃ = infξ∈R(G(ξ )−F(ξ )) = 1
ζ
− 1

κ
, J f (0) = Jg(0) = 0, and

‖u‖ζ

Lζ
=
∫

Ω

|u(x)|ζ dx = ζ r for any u ∈ J−1
g (r) with r > 0. (4.4)

By Lemma 2.3, there exists C > 0 such that

C‖u‖Lζ ≤ ‖u‖m for all u ∈ D1,p
0 (Ω,m). (4.5)

For any r > 0, define a constant K1 by

K1,r =
p
(

r− 1
ζ
+ 1

κ

)
Cp(ζ r)

p
ζ

. (4.6)

Fix a small positive ε so that the set Ω1 = {x ∈ Ω : dist(x,∂Ω) ≥ 2ε} 6= /0.

Choose uε ∈ D1,p
0 (Ω,m) such that 0≤ uε(x)≤ 2

(
rζ

|Ω1|

)1/ζ

and

uε(x) =

 2
(

rζ

|Ω1|

)1/ζ

, x ∈Ω1,

0, x ∈Ω2,

where Ω2 = {x ∈ Ω : dist(x,∂Ω) ≤ ε} and |S| denotes the Lebesgue measure
of a set S. Then,

Jg(uε)≥
1
ζ

∫
Ω1

|uε(x)|ζ dx≥ 2ζ r > r.

and
‖uε‖p

m =
∫

Ω3

m(x)|∇uε |pdx,

where Ω3 = {x ∈ Ω : ε ≤ dist(x,∂Ω) ≤ 2ε}. Thus, uε ∈ J−1
g ((r,∞)). For any

u ∈ J−1
g ((−∞,r]), we have Jg(u) = 1

ζ

∫
Ω
|u(x)|ζ dx ≤ r. Hence,

∫
Ω
|u(x)|ζ dx ≤

ζ r. Recall that κ < ζ . Then, from Hölder’s inequality, it follows that

J f (u) =
1
κ

∫
Ω

|u(x)|κdx

≤ 1
κ
|Ω|

ζ−κ

ζ

(∫
Ω

|u(x)|ζ dx
) κ

ζ

≤ 1
κ
(ζ r)

κ

ζ |Ω|
ζ−κ

ζ ,

which in turn implies that

‖u‖p
m− ε pJ f (u)≥ γ :=− 1

κ
(ζ r)

κ

ζ |Ω|
ζ−κ

ζ for all u ∈ J−1
g ((−∞,r]).
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Thus, we have
inf

u∈J−1
g ((−∞,r])

(‖u‖p
m− ε pJ f (u))≥ γ. (4.7)

Note that κ > p and

‖kuε‖p
m− ε pJ f (kuε)) = kp‖uε‖p

m− kκ
ε pJ f (uε) for any k > 0.

Then, we can choose a large k1 = k1(ε,r, p,ζ ,κ) > 1 such that Jg(k1uε) =

kζ

1 Jg(uε)> r and

‖k1uε‖p
m− ε pJ f (k1uε)< γ− pJg(uε). (4.8)

Define a constant K2,r = K2,r(ε,r, p,ζ ,κ)> 0 by

K2,r =
1

kζ

1

. (4.9)

The following result provides an upper bound for µ̃( f ,g,r) and a lower
bound for β̃ (ε, f ,g,r).

Corollary 4.3. Assume that f (t) = |t|κ−2t and g(t) = |t|ζ−2t in (4.1), where
p < κ < ζ < p∗ := N p

2N−p . Then,

µ̃( f ,g,r)≤ K1,r and β̃ (ε, f ,g,r)≥ K2,r, (4.10)

where K1,r and K2,r are defined by (4.6) and (4.9), respectively.

Proof. From (4.4), (4.5), and the definition of η̃r, we see that, for any n ∈ N,
there exists un ∈ J−1

g (r) such that

1
n
+ η̃r ≥ ‖un‖p

m ≥Cp‖un‖p
Lζ

=Cp(ζ r)
p
ζ ,

i.e,
1
n
+ η̃r ≥Cp(ζ r)

p
ζ for any n ∈ N.

Hence, η̃r ≥Cp(ζ r)
p
ζ . Then, in view of the definition of µ̃( f ,g,r), we have

µ̃( f ,g,r)≤
p
(

r− 1
ζ
+ 1

κ

)
η̃r

≤
p
(

r− 1
ζ
+ 1

κ

)
Cp(ζ r)

p
ζ

= K1,r.

Thus, the first inequality in (4.10) holds.
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Now, from (4.7), (4.8), and the definition of β̃ (ε, f ,g,r), it follows that

β̃ (ε, f ,g,r) ≥
γ− (‖k1uε‖p

m− ε pJ f (k1uε))

p(Jg(k1uε)− r)

≥
pJg(uε)

pJg(k1uε)
=

1

kζ

1

= K2,r.

Hence, the second inequality in (4.10) also holds. This completes the proof of
the corollary.

The following corollary is a consequence of Theorem 4.1 and Corollary 4.3.

Corollary 4.4. Assume that p > 1 and m ∈ (N)p with s = 1 in (N)p. Let p <

κ < ζ < p∗ with p∗ = N p
2N−p . Then, for each r > 0, for each ε ∈

(
0, 1

K1,r

)
, and

for every compact interval [ā, b̄]⊂ (0,K2,r) there exists ρ > 0 with the property:
for every λ ∈ [ā, b̄] and every continuous function h ∈ F1, there exists δ > 0
such that for every ν ∈ [0,δ ], the problem{

−∇
(
m(x)|∇u|p−2∇u

)
= ε|u|κ−2u−λ |u|ζ−2u−νh(u) inΩ,

u = 0 on∂Ω,

has at least three weak solutions whose norms in D1,p
0 (Ω,m) are less than ρ .
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[8] P. Dràbek, N.M. Stavrakakis, and N.B. Zographopoulos, Multiple nonsemitrivial
solutions for quasilinear elliptic systems, Differ. Integral Equ. 16 (2003) 1519–
1532.

[9] N.I. Karachalios and N.B. Zographopoulos, On the dynamics of a degenerate
parabolic equation: global bifurcation of stationary states and convergence, Calc.
Var. Partial Differ. Equ. 25 (2006) 361–393.

[10] A. Kristály , V. Rădulescu, and Cs. Varga, Variational Principles in Mathematical
Physics, Geometry, and Economics, Qualitative Analysis of Nonlinear Equations
and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No.
136, Cambridge University Press, Cambridge (2010).

[11] G. Molica Bisci and B.A. Pansera. Three weak solutions for nonlocal fractional
equations, Adv. Nonlinear Stud. 14 (2014) 619–629.

[12] B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal.
74 (2011) 7446–7454.

[13] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009)
4151–4157.

[14] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009)
3084–3089.

[15] B. Ricceri, Nonlinear eigenvalue problems, in: D.Y. Gao, D. Motreanu (Eds.),
Handbook of Nonconvex Analysis and Applications, International Press, (2010)
543–595.
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